Skip to main content
Top
Published in: Annals of Nuclear Medicine 4/2023

Open Access 19-01-2023 | Original Article

Effect of scan-time shortening on the 11C-PHNO binding potential to dopamine D3 receptor in humans and test–retest reliability

Published in: Annals of Nuclear Medicine | Issue 4/2023

Login to get access

Abstract

Objective

11C-PHNO is a PET radioligand most specific to dopamine D3 receptor (D3R). The long scan duration of 120 min used in quantification of 11C-PHNO binding to D3R in previous studies is challenging to subjects. The main objective of this study was to investigate the effects of shorter scan times on the binding of 11C-PHNO to D3R and test–retest reliability using the latest digital whole-body PET system.

Methods

Two 120-min 11C-PHNO brain scans were performed in 7 healthy subjects using a digital whole-body PET/CT. The binding potential relative to non-displaceable tracer in the tissue (BPND) of D3R-rich regions: the pallidum, ventral striatum (VST), substantia nigra (SN) and hypothalamus, were quantified using the simplified reference tissue model. The bias, correlation, and test–retest reliability of BPND, which includes the test–retest variability (TRV) and intraclass correlation coefficient (ICC), were evaluated and compared between scans of shorter durations (40–110 min post-injection) and the original 120-min scan acquisitions.

Results

Progressively, shorter scan durations were associated with underestimation of BPND, slightly decreased correlation with 120-min derived BPND, and decrease in test–retest reliability. The BPND values of the pallidum, VST and SN from the shortened 90-min scans showed excellent correlation with those derived from the 120-min scans (determination coefficients > 0.98), and the bias within 5%. The test–retest reliability of BPND in these regions derived from 90-min scan (TRV of 3% in the VST and pallidum, 7% in the SN and the ICC exceeded 0.88) was comparable to those obtained in previous 120-min studies using brain-dedicated PET scanners. In the hypothalamus, the BPND values obtained from scan-time less than 110 min showed bias larger than 5% and the TRV more than 9%.

Conclusion

The scan-time shortening causes bias and decreasing test–retest reliability of 11C-PHNO BPND. However, in the whole-body PET system, 90-min scan duration was sufficient for estimating the 11C-PHNO BPND in the D3R-rich striatum and SN with small bias and at the test–retest reliability comparable to those derived from 120-min scans using the brain-dedicated PET systems.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sokoloff P, Giros B, Martres M-P, Bouthenet M-L, Schwartz J-C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature. 1990;347:146–51.PubMedCrossRef Sokoloff P, Giros B, Martres M-P, Bouthenet M-L, Schwartz J-C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature. 1990;347:146–51.PubMedCrossRef
2.
go back to reference Herroelen L, Backer J-PD, Wilczak N, Flamez A, Vauquelin G, Keyser JD. Autoradiographic distribution of D3-type dopamine receptors in human brain using [3H]7-hydroxy-N, N-di-n-propyl-2-aminotetralin. Brain Res. 1994;648:222–8.PubMedCrossRef Herroelen L, Backer J-PD, Wilczak N, Flamez A, Vauquelin G, Keyser JD. Autoradiographic distribution of D3-type dopamine receptors in human brain using [3H]7-hydroxy-N, N-di-n-propyl-2-aminotetralin. Brain Res. 1994;648:222–8.PubMedCrossRef
3.
go back to reference Suzuki M, Hurd YL, Sokoloff P, Schwartz J-C, Sedvall G. D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res. 1998;779:58–74.PubMedCrossRef Suzuki M, Hurd YL, Sokoloff P, Schwartz J-C, Sedvall G. D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res. 1998;779:58–74.PubMedCrossRef
4.
go back to reference Gurevich EV, Joyce JN. Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacol. 1999;20:60–80.CrossRef Gurevich EV, Joyce JN. Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacol. 1999;20:60–80.CrossRef
5.
go back to reference Khan ZU, Gutiérrez A, Martín R, Peñafiel A, Rivera A, Calle ADL. Differential regional and cellular distribution of dopamine D2-like receptors: an immunocytochemical study of subtype-specific antibodies in rat and human brain. J Comp Neurol. 1998;402:353–71.PubMedCrossRef Khan ZU, Gutiérrez A, Martín R, Peñafiel A, Rivera A, Calle ADL. Differential regional and cellular distribution of dopamine D2-like receptors: an immunocytochemical study of subtype-specific antibodies in rat and human brain. J Comp Neurol. 1998;402:353–71.PubMedCrossRef
6.
go back to reference Larson ER, Ariano MA. D3 and D2 dopamine receptors: visualization of cellular expression patterns in motor and limbic structures. Synapse. 1995;20:325–37.PubMedCrossRef Larson ER, Ariano MA. D3 and D2 dopamine receptors: visualization of cellular expression patterns in motor and limbic structures. Synapse. 1995;20:325–37.PubMedCrossRef
7.
go back to reference Murray AM, Ryoo HL, Gurevich E, Joyce JN. Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. Proc National Acad Sci. 1994;91:11271–5.CrossRef Murray AM, Ryoo HL, Gurevich E, Joyce JN. Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. Proc National Acad Sci. 1994;91:11271–5.CrossRef
8.
go back to reference Landwehrmeyer B, Mengod G, Palacios JM. Dopamine D3 receptor mRNA and binding sites in human brain. Mol Brain Res. 1993;18:187–92.PubMedCrossRef Landwehrmeyer B, Mengod G, Palacios JM. Dopamine D3 receptor mRNA and binding sites in human brain. Mol Brain Res. 1993;18:187–92.PubMedCrossRef
9.
go back to reference Nakajima S, Gerretsen P, Takeuchi H, Caravaggio F, Chow T, Foll BL, et al. The potential role of dopamine D3 receptor neurotransmission in cognition. Eur Neuropsychopharm. 2013;23:799–813.CrossRef Nakajima S, Gerretsen P, Takeuchi H, Caravaggio F, Chow T, Foll BL, et al. The potential role of dopamine D3 receptor neurotransmission in cognition. Eur Neuropsychopharm. 2013;23:799–813.CrossRef
10.
go back to reference Sokoloff P, Foll BL. The dopamine D3 receptor, a quarter century later. Eur J Neurosci. 2016;45:2–19.PubMedCrossRef Sokoloff P, Foll BL. The dopamine D3 receptor, a quarter century later. Eur J Neurosci. 2016;45:2–19.PubMedCrossRef
11.
go back to reference Kiss B, Laszlovszky I, Krámos B, Visegrády A, Bobok A, Lévay G, et al. Neuronal dopamine D3 receptors: translational implications for preclinical research and CNS disorders. Biomol. 2021;11:104. Kiss B, Laszlovszky I, Krámos B, Visegrády A, Bobok A, Lévay G, et al. Neuronal dopamine D3 receptors: translational implications for preclinical research and CNS disorders. Biomol. 2021;11:104.
12.
go back to reference Wilson AA, McCormick P, Kapur S, Willeit M, Garcia A, Hussey D, et al. Radiosynthesis and evaluation of [11C]-(+)-4-Propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J Med Chem. 2005;48:4153–60.PubMedCrossRef Wilson AA, McCormick P, Kapur S, Willeit M, Garcia A, Hussey D, et al. Radiosynthesis and evaluation of [11C]-(+)-4-Propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J Med Chem. 2005;48:4153–60.PubMedCrossRef
13.
go back to reference Gallezot J, Beaver JD, Gunn RN, Nabulsi N, Weinzimmer D, Singhal T, et al. Affinity and selectivity of [11C]-(+)-PHNO for the D3 and D2 receptors in the rhesus monkey brain in vivo. Synapse. 2012;66:489–500.PubMedCrossRef Gallezot J, Beaver JD, Gunn RN, Nabulsi N, Weinzimmer D, Singhal T, et al. Affinity and selectivity of [11C]-(+)-PHNO for the D3 and D2 receptors in the rhesus monkey brain in vivo. Synapse. 2012;66:489–500.PubMedCrossRef
14.
go back to reference Tziortzi AC, Searle GE, Tzimopoulou S, Salinas C, Beaver JD, Jenkinson M, et al. Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy. Neuroimage. 2011;54:264–77.PubMedCrossRef Tziortzi AC, Searle GE, Tzimopoulou S, Salinas C, Beaver JD, Jenkinson M, et al. Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy. Neuroimage. 2011;54:264–77.PubMedCrossRef
15.
go back to reference Rabiner EA, Laruelle M. Imaging the D3 receptor in humans in vivo using [11C](+)-PHNO positron emission tomography (PET). Int J Neuropsychoph. 2010;13:289–90.CrossRef Rabiner EA, Laruelle M. Imaging the D3 receptor in humans in vivo using [11C](+)-PHNO positron emission tomography (PET). Int J Neuropsychoph. 2010;13:289–90.CrossRef
16.
go back to reference Foll BL, Wilson AA, Graff A, Boileau I, Ciano PD. Recent methods for measuring dopamine D3 receptor occupancy in vivo: importance for drug development. Front Pharmacol. 2014;5:161.PubMedPubMedCentral Foll BL, Wilson AA, Graff A, Boileau I, Ciano PD. Recent methods for measuring dopamine D3 receptor occupancy in vivo: importance for drug development. Front Pharmacol. 2014;5:161.PubMedPubMedCentral
17.
go back to reference Ginovart N, Willeit M, Rusjan P, Graff A, Bloomfield PM, Houle S, et al. Positron emission tomography quantification of [11C]-(+)-PHNO binding in the human brain. J Cereb Blood Flow Metab. 2006;27:857–71.PubMedCrossRef Ginovart N, Willeit M, Rusjan P, Graff A, Bloomfield PM, Houle S, et al. Positron emission tomography quantification of [11C]-(+)-PHNO binding in the human brain. J Cereb Blood Flow Metab. 2006;27:857–71.PubMedCrossRef
18.
go back to reference Gallezot J-D, Zheng M-Q, Lim K, Lin S, Labaree D, Matuskey D, et al. Parametric imaging and test–retest variability of 11C-(+)-PHNO binding to D2/D3 dopamine receptors in humans on the high-resolution research tomograph PET scanner. J Nucl Med. 2014;55:960–6.PubMedCrossRef Gallezot J-D, Zheng M-Q, Lim K, Lin S, Labaree D, Matuskey D, et al. Parametric imaging and test–retest variability of 11C-(+)-PHNO binding to D2/D3 dopamine receptors in humans on the high-resolution research tomograph PET scanner. J Nucl Med. 2014;55:960–6.PubMedCrossRef
19.
go back to reference Ito H, Hietala J, Blomqvist G, Halldin C, Farde L. Comparison of the transient equilibrium and continuous infusion method for quantitative PET analysis of [11C]raclopride binding. J Cereb Blood Flow Metab. 1998;9:941–50.CrossRef Ito H, Hietala J, Blomqvist G, Halldin C, Farde L. Comparison of the transient equilibrium and continuous infusion method for quantitative PET analysis of [11C]raclopride binding. J Cereb Blood Flow Metab. 1998;9:941–50.CrossRef
20.
go back to reference Willeit M, Ginovart N, Graff A, Rusjan P, Vitcu I, Houle S, et al. First human evidence of d-amphetamine induced displacement of a D2/3 agonist radioligand: a [11C]-(+)-PHNO positron emission tomography study. Neuropsychopharmacology. 2008;33:279–89.PubMedCrossRef Willeit M, Ginovart N, Graff A, Rusjan P, Vitcu I, Houle S, et al. First human evidence of d-amphetamine induced displacement of a D2/3 agonist radioligand: a [11C]-(+)-PHNO positron emission tomography study. Neuropsychopharmacology. 2008;33:279–89.PubMedCrossRef
21.
go back to reference Lee DE, Gallezot J-D, Zheng M-Q, Lim K, Ding Y-S, Huang Y, et al. Test-retest reproducibility of [11C]-(+)-propyl-hexahydro-naphtho-oxazin positron emission tomography using the bolus plus constant infusion paradigm. Mol Imag. 2013;12:77–82. Lee DE, Gallezot J-D, Zheng M-Q, Lim K, Ding Y-S, Huang Y, et al. Test-retest reproducibility of [11C]-(+)-propyl-hexahydro-naphtho-oxazin positron emission tomography using the bolus plus constant infusion paradigm. Mol Imag. 2013;12:77–82.
22.
go back to reference Mizrahi R, Houle S, Vitcu I, Ng A, Wilson AA. Side effects profile in humans of 11C-(+)-PHNO, a dopamine D2/3 agonist ligand for PET. J Nucl Med. 2010;51:496–7.PubMedCrossRef Mizrahi R, Houle S, Vitcu I, Ng A, Wilson AA. Side effects profile in humans of 11C-(+)-PHNO, a dopamine D2/3 agonist ligand for PET. J Nucl Med. 2010;51:496–7.PubMedCrossRef
23.
go back to reference van Sluis J, de Jong J, Schaar J, Noordzij W, van Snick P, Dierckx R, et al. Performance characteristics of the digital Biograph Vision PET/CT system. J Nucl Med. 2019;60:1031–6.PubMedCrossRef van Sluis J, de Jong J, Schaar J, Noordzij W, van Snick P, Dierckx R, et al. Performance characteristics of the digital Biograph Vision PET/CT system. J Nucl Med. 2019;60:1031–6.PubMedCrossRef
24.
go back to reference Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ, Holmes CJ, et al. Design and construction of a realistic digital brain phantom. IEEE T Med Imag. 1998;17:463–8.CrossRef Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ, Holmes CJ, et al. Design and construction of a realistic digital brain phantom. IEEE T Med Imag. 1998;17:463–8.CrossRef
25.
go back to reference Papademetris X, Jackowski MP, Rajeevan N, DiStasio M, Okuda H, Constable RT, et al. BioImage Suite: an integrated medical image analysis suite: an update. Insight J. 2006;11:209–11. Papademetris X, Jackowski MP, Rajeevan N, DiStasio M, Okuda H, Constable RT, et al. BioImage Suite: an integrated medical image analysis suite: an update. Insight J. 2006;11:209–11.
26.
go back to reference Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5:143–56.PubMedCrossRef Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5:143–56.PubMedCrossRef
27.
go back to reference Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:825–41.PubMedCrossRef Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:825–41.PubMedCrossRef
28.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89.PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89.PubMedCrossRef
29.
go back to reference Mawlawi O, Martinez D, Slifstein M, Broft A, Chatterjee R, Hwang D-R, et al. Imaging human mesolimbic dopamine transmission with positron emission tomography: I accuracy and precision of D2 receptor parameter measurements in ventral striatum. J Cereb Blood Flow Metab. 2001;21:1034–57.PubMedCrossRef Mawlawi O, Martinez D, Slifstein M, Broft A, Chatterjee R, Hwang D-R, et al. Imaging human mesolimbic dopamine transmission with positron emission tomography: I accuracy and precision of D2 receptor parameter measurements in ventral striatum. J Cereb Blood Flow Metab. 2001;21:1034–57.PubMedCrossRef
30.
go back to reference Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4:153–8.PubMedCrossRef Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4:153–8.PubMedCrossRef
31.
go back to reference Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420–8.PubMedCrossRef Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420–8.PubMedCrossRef
32.
go back to reference Frankle WG, Huang Y, Hwang D-R, Talbot PS, Slifstein M, Heertum RV, et al. Comparative evaluation of serotonin transporter radioligands 11C-DASB and 11C-McN 5652 in healthy humans. J Nucl Med. 2004;45:682–94.PubMed Frankle WG, Huang Y, Hwang D-R, Talbot PS, Slifstein M, Heertum RV, et al. Comparative evaluation of serotonin transporter radioligands 11C-DASB and 11C-McN 5652 in healthy humans. J Nucl Med. 2004;45:682–94.PubMed
33.
go back to reference de Jong HWAM, van Velden FHP, Kloet RW, Buijs FL, Boellaard R, Lammertsma AA. Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol. 2007;52:1505–26.PubMedCrossRef de Jong HWAM, van Velden FHP, Kloet RW, Buijs FL, Boellaard R, Lammertsma AA. Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol. 2007;52:1505–26.PubMedCrossRef
34.
go back to reference Červenka S, Halldin C, Farde L. Age-related diurnal effect on D2 receptor binding: a preliminary PET study. Int J Neuropsychoph. 2008;11:671–8.CrossRef Červenka S, Halldin C, Farde L. Age-related diurnal effect on D2 receptor binding: a preliminary PET study. Int J Neuropsychoph. 2008;11:671–8.CrossRef
35.
go back to reference Graff-Guerrero A, Redden L, Abi-Saab W, Katz DA, Houle S, Barsoum P, et al. Blockade of [11C](+)-PHNO binding in human subjects by the dopamine D3 receptor antagonist ABT-925. Int J Neuropsychoph. 2009;13:273–87.CrossRef Graff-Guerrero A, Redden L, Abi-Saab W, Katz DA, Houle S, Barsoum P, et al. Blockade of [11C](+)-PHNO binding in human subjects by the dopamine D3 receptor antagonist ABT-925. Int J Neuropsychoph. 2009;13:273–87.CrossRef
36.
go back to reference Ciano PD, Mansouri E, Tong J, Wilson AA, Houle S, Boileau I, et al. Occupancy of dopamine D2 and D3 receptors by a novel D3 partial agonist BP1 4979: a [11C]-(+)-PHNO PET study in humans. Neuropsychopharmacol. 2019;44:1284–90.CrossRef Ciano PD, Mansouri E, Tong J, Wilson AA, Houle S, Boileau I, et al. Occupancy of dopamine D2 and D3 receptors by a novel D3 partial agonist BP1 4979: a [11C]-(+)-PHNO PET study in humans. Neuropsychopharmacol. 2019;44:1284–90.CrossRef
37.
go back to reference Tateno A, Sakayori T, Kim W, Honjo K, Nakayama H, Arakawa R, et al. Comparison of dopamine D3 and D2 receptor occupancies by a single dose of blonanserin in healthy subjects: A positron emission tomography study with [11C]-(+)-PHNO. Int J Neuropsychoph. 2018;21:522–7.CrossRef Tateno A, Sakayori T, Kim W, Honjo K, Nakayama H, Arakawa R, et al. Comparison of dopamine D3 and D2 receptor occupancies by a single dose of blonanserin in healthy subjects: A positron emission tomography study with [11C]-(+)-PHNO. Int J Neuropsychoph. 2018;21:522–7.CrossRef
38.
go back to reference Sakayori T, Tateno A, Arakawa R, Kim W, Okubo Y. Evaluation of dopamine D3 receptor occupancy by blonanserin using [11C]-(+)-PHNO in schizophrenia patients. Psychopharmacology. 2020;238:1343–50.PubMedPubMedCentralCrossRef Sakayori T, Tateno A, Arakawa R, Kim W, Okubo Y. Evaluation of dopamine D3 receptor occupancy by blonanserin using [11C]-(+)-PHNO in schizophrenia patients. Psychopharmacology. 2020;238:1343–50.PubMedPubMedCentralCrossRef
39.
go back to reference Takano A, Varrone A, Gulyás B, Salvadori P, Gee A, Windhorst A, et al. Guidelines to PET measurements of the target occupancy in the brain for drug development. Eur J Nucl Med Mol. 2016;I(43):2255–62.CrossRef Takano A, Varrone A, Gulyás B, Salvadori P, Gee A, Windhorst A, et al. Guidelines to PET measurements of the target occupancy in the brain for drug development. Eur J Nucl Med Mol. 2016;I(43):2255–62.CrossRef
40.
go back to reference Naganawa M, Nabulsi NB, Matuskey D, Henry S, Ropchan J, Lin S-F, et al. Imaging pituitary vasopressin 1B receptor in humans with the PET radiotracer 11C-TASP699. J Nucl Med. 2022;63:609–14.PubMedCrossRef Naganawa M, Nabulsi NB, Matuskey D, Henry S, Ropchan J, Lin S-F, et al. Imaging pituitary vasopressin 1B receptor in humans with the PET radiotracer 11C-TASP699. J Nucl Med. 2022;63:609–14.PubMedCrossRef
41.
go back to reference Ikoma Y, Sasaki T, Kimura Y, Seki C, Okubo Y, Suhara T, et al. Evaluation of semi-quantitative method for quantification of dopamine transporter in human PET study with 18F-FE-PE2I. Ann Nucl Med. 2015;29:697–708.PubMedCrossRef Ikoma Y, Sasaki T, Kimura Y, Seki C, Okubo Y, Suhara T, et al. Evaluation of semi-quantitative method for quantification of dopamine transporter in human PET study with 18F-FE-PE2I. Ann Nucl Med. 2015;29:697–708.PubMedCrossRef
Metadata
Title
Effect of scan-time shortening on the 11C-PHNO binding potential to dopamine D3 receptor in humans and test–retest reliability
Publication date
19-01-2023
Published in
Annals of Nuclear Medicine / Issue 4/2023
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-022-01819-4

Other articles of this Issue 4/2023

Annals of Nuclear Medicine 4/2023 Go to the issue