Skip to main content
Top
Published in: Annals of Nuclear Medicine 10/2022

Open Access 19-07-2022 | Positron Emission Tomography | Original Article

Brain PET motion correction using 3D face-shape model: the first clinical study

Authors: Yuma Iwao, Go Akamatsu, Hideaki Tashima, Miwako Takahashi, Taiga Yamaya

Published in: Annals of Nuclear Medicine | Issue 10/2022

Login to get access

Abstract

Objective

Head motions during brain PET scan cause degradation of brain images, but head fixation or external-maker attachment become burdensome on patients. Therefore, we have developed a motion correction method that uses a 3D face-shape model generated by a range-sensing camera (Kinect) and by CT images. We have successfully corrected the PET images of a moving mannequin-head phantom containing radioactivity. Here, we conducted a volunteer study to verify the effectiveness of our method for clinical data.

Methods

Eight healthy men volunteers aged 22–45 years underwent a 10-min head-fixed PET scan as a standard of truth in this study, which was started 45 min after 18F-fluorodeoxyglucose (285 ± 23 MBq) injection, and followed by a 15-min head-moving PET scan with the developed Kinect based motion-tracking system. First, selecting a motion-less period of the head-moving PET scan provided a reference PET image. Second, CT images separately obtained on the same day were registered to the reference PET image, and create a 3D face-shape model, then, to which Kinect-based 3D face-shape model matched. This matching parameter was used for spatial calibration between the Kinect and the PET system. This calibration parameter and the motion-tracking of the 3D face shape by Kinect comprised our motion correction method. The head-moving PET with motion correction was compared with the head-fixed PET images visually and by standard uptake value ratios (SUVRs) in the seven volume-of-interest regions. To confirm the spatial calibration accuracy, a test–retest experiment was performed by repeating the head-moving PET with motion correction twice where the volunteer’s pose and the sensor’s position were different.

Results

No difference was identified visually and statistically in SUVRs between the head-moving PET images with motion correction and the head-fixed PET images. One of the small nuclei, the inferior colliculus, was identified in the head-fixed PET images and in the head-moving PET images with motion correction, but not in those without motion correction. In the test–retest experiment, the SUVRs were well correlated (determinant coefficient, r2 = 0.995).

Conclusion

Our motion correction method provided good accuracy for the volunteer data which suggested it is useable in clinical settings.
Appendix
Available only for authorised users
Literature
1.
go back to reference Clark CM, Schneider J, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305:275–83.CrossRef Clark CM, Schneider J, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305:275–83.CrossRef
2.
go back to reference Sabri O, Sabbagh MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y, et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement. 2015;11:964–74.CrossRef Sabri O, Sabbagh MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y, et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement. 2015;11:964–74.CrossRef
3.
go back to reference Ikonomovic MD, Buckley CJ, Heurling K, Sherwin P, Jones PA, Zanette M, et al. Post-mortem histopathology underlying β-amyloid PET imaging following flutemetamol F 18 injection. Acta Neuropathol Commun. 2016;4:130.CrossRef Ikonomovic MD, Buckley CJ, Heurling K, Sherwin P, Jones PA, Zanette M, et al. Post-mortem histopathology underlying β-amyloid PET imaging following flutemetamol F 18 injection. Acta Neuropathol Commun. 2016;4:130.CrossRef
4.
go back to reference Jie C, Treyer V, Schibli R, Mu L. Tauvid™: the first FDA-approved PET tracer for imaging tau pathology in Alzheimer’s disease. Pharmaceuticals. 2021;14:110.CrossRef Jie C, Treyer V, Schibli R, Mu L. Tauvid™: the first FDA-approved PET tracer for imaging tau pathology in Alzheimer’s disease. Pharmaceuticals. 2021;14:110.CrossRef
5.
go back to reference Ikejima C, Hisanaga A, Meguro K, Yamada T, Ouma S, Kawamuro Y, et al. Multicentre population-based dementia prevalence survey in Japan: a preliminary report. Psychogeriatrics. 2012;12:120–3.CrossRef Ikejima C, Hisanaga A, Meguro K, Yamada T, Ouma S, Kawamuro Y, et al. Multicentre population-based dementia prevalence survey in Japan: a preliminary report. Psychogeriatrics. 2012;12:120–3.CrossRef
6.
go back to reference Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9:63–75.CrossRef Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9:63–75.CrossRef
7.
go back to reference Nichols E, Collaborators GD. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:88–106.CrossRef Nichols E, Collaborators GD. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:88–106.CrossRef
8.
go back to reference Lu Y, Naganawa M, Toyonaga T, Gallezot JD, Fontaine K, Ren S, et al. Data-driven motion detection and event-by-event correction for brain PET: comparison with Vicra. J Nucl Med. 2020;61:1397–403.CrossRef Lu Y, Naganawa M, Toyonaga T, Gallezot JD, Fontaine K, Ren S, et al. Data-driven motion detection and event-by-event correction for brain PET: comparison with Vicra. J Nucl Med. 2020;61:1397–403.CrossRef
9.
go back to reference Shiyam Sundar LK, Iommi D, Muzik O, Chalampalakis Z, Klebermass EM, Hienert M, et al. Conditional generative adversarial networks aided motion correction of dynamic (18)F-FDG PET brain studies. J Nucl Med. 2021;62:871–9.CrossRef Shiyam Sundar LK, Iommi D, Muzik O, Chalampalakis Z, Klebermass EM, Hienert M, et al. Conditional generative adversarial networks aided motion correction of dynamic (18)F-FDG PET brain studies. J Nucl Med. 2021;62:871–9.CrossRef
10.
go back to reference Olesen OV, Sullivan JM, Mulnix T, Paulsen RR, Højgaard L, Roed B, et al. List-mode PET motion correction using markerless head tracking: proof-of-concept with scans of human subject. IEEE Trans Med Imaging. 2013;32:200–9.CrossRef Olesen OV, Sullivan JM, Mulnix T, Paulsen RR, Højgaard L, Roed B, et al. List-mode PET motion correction using markerless head tracking: proof-of-concept with scans of human subject. IEEE Trans Med Imaging. 2013;32:200–9.CrossRef
11.
go back to reference Noonan PJ, Howard J, Hallett WA, Gunn RN. Repurposing the Microsoft Kinect for Windows v2 for external head motion tracking for brain PET. Phys Med Biol. 2015;60:8753–66.CrossRef Noonan PJ, Howard J, Hallett WA, Gunn RN. Repurposing the Microsoft Kinect for Windows v2 for external head motion tracking for brain PET. Phys Med Biol. 2015;60:8753–66.CrossRef
12.
go back to reference Kyme AZ, Se S, Meikle SR, Fulton RR. Markerless motion estimation for motion-compensated clinical brain imaging. Phys Med Biol. 2018;63: 105018.CrossRef Kyme AZ, Se S, Meikle SR, Fulton RR. Markerless motion estimation for motion-compensated clinical brain imaging. Phys Med Biol. 2018;63: 105018.CrossRef
13.
go back to reference Olesen OV, Paulsen RR, Højgaar L, Roed B, Larsen R. Motion tracking in narrow spaces: a structured light approach. Med Image Comput Comput Assist Interv. 2010;13:253–60.PubMed Olesen OV, Paulsen RR, Højgaar L, Roed B, Larsen R. Motion tracking in narrow spaces: a structured light approach. Med Image Comput Comput Assist Interv. 2010;13:253–60.PubMed
14.
go back to reference Spangler-Bickell MG, Khalighi MM, Hoo C, DiGiacomo PS, Maclaren J, Aksoy M, et al. Rigid motion correction for brain PET/MR imaging using optical tracking. IEEE Trans Radiat Plasma Med Sci. 2019;3:498–503.CrossRef Spangler-Bickell MG, Khalighi MM, Hoo C, DiGiacomo PS, Maclaren J, Aksoy M, et al. Rigid motion correction for brain PET/MR imaging using optical tracking. IEEE Trans Radiat Plasma Med Sci. 2019;3:498–503.CrossRef
15.
go back to reference Slipsager JM, Ellegaard AH, Glimberg SL, Paulsen RR, Tisdall MD, Wighton P, et al. Markerless motion tracking and correction for PET, MRI, and simultaneous PET/MRI. PLoS ONE. 2019;14: e0215524.CrossRef Slipsager JM, Ellegaard AH, Glimberg SL, Paulsen RR, Tisdall MD, Wighton P, et al. Markerless motion tracking and correction for PET, MRI, and simultaneous PET/MRI. PLoS ONE. 2019;14: e0215524.CrossRef
17.
go back to reference Yoshida E, Tashima H, Akamatsu G, Iwao Y, Takahashi M, Yamashita T, et al. 245 ps-TOF brain-dedicated PET prototype with a hemispherical detector arrangement. Phys Med Biol. 2020;65: 145008.CrossRef Yoshida E, Tashima H, Akamatsu G, Iwao Y, Takahashi M, Yamashita T, et al. 245 ps-TOF brain-dedicated PET prototype with a hemispherical detector arrangement. Phys Med Biol. 2020;65: 145008.CrossRef
18.
go back to reference Iwao Y, Tashima H, Yoshida E, Nishikido F, Ida T, Yamaya T. Seated versus supine: consideration of the optimum measurement posture for brain-dedicated PET. Phys Med Biol. 2019;64: 125003.CrossRef Iwao Y, Tashima H, Yoshida E, Nishikido F, Ida T, Yamaya T. Seated versus supine: consideration of the optimum measurement posture for brain-dedicated PET. Phys Med Biol. 2019;64: 125003.CrossRef
19.
go back to reference Nelder JA, Read M. A simplex method for function minimization. Comput J. 1965;7:308–13.CrossRef Nelder JA, Read M. A simplex method for function minimization. Comput J. 1965;7:308–13.CrossRef
20.
go back to reference Besl PJ, McKay ND. A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell. 1992;14:239–56.CrossRef Besl PJ, McKay ND. A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell. 1992;14:239–56.CrossRef
21.
go back to reference Carson RE, Barker WC, Liow JS, Johnson CA. Design of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction for the HRRT. 2003 IEEE Nuclear Science Symposium. Conference Record 2003;5:3281-5 Carson RE, Barker WC, Liow JS, Johnson CA. Design of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction for the HRRT. 2003 IEEE Nuclear Science Symposium. Conference Record 2003;5:3281-5
22.
go back to reference Johnson CA, Thada S, Rodriguez M, Zhao Y, Iano-Fletcher AR, Liow JS, et al. Software architecture of the MOLAR-HRRT reconstruction engine. IEEE Symposium Conference Record Nuclear Science 2004 2004;6:3956-60 Johnson CA, Thada S, Rodriguez M, Zhao Y, Iano-Fletcher AR, Liow JS, et al. Software architecture of the MOLAR-HRRT reconstruction engine. IEEE Symposium Conference Record Nuclear Science 2004 2004;6:3956-60
23.
go back to reference Watson CC. New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci. 2000;47:1587–94.CrossRef Watson CC. New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci. 2000;47:1587–94.CrossRef
24.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89.CrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89.CrossRef
25.
go back to reference Moore JK. The human auditory brain stem as a generator of auditory evoked potentials. Hear Res. 1987;29:33–43.CrossRef Moore JK. The human auditory brain stem as a generator of auditory evoked potentials. Hear Res. 1987;29:33–43.CrossRef
26.
go back to reference Suk JY, Thompson CJ, Labuda A, Goertzen AL. Improvement of the spatial resolution of the MicroPET R4 scanner by wobbling the bed. Med Phys. 2008;35:1223–31.CrossRef Suk JY, Thompson CJ, Labuda A, Goertzen AL. Improvement of the spatial resolution of the MicroPET R4 scanner by wobbling the bed. Med Phys. 2008;35:1223–31.CrossRef
Metadata
Title
Brain PET motion correction using 3D face-shape model: the first clinical study
Authors
Yuma Iwao
Go Akamatsu
Hideaki Tashima
Miwako Takahashi
Taiga Yamaya
Publication date
19-07-2022
Publisher
Springer Nature Singapore
Published in
Annals of Nuclear Medicine / Issue 10/2022
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-022-01774-0

Other articles of this Issue 10/2022

Annals of Nuclear Medicine 10/2022 Go to the issue