Skip to main content
Top
Published in: Annals of Nuclear Medicine 2/2017

01-02-2017 | Original Article

Spatiotemporal distribution modeling of PET tracer uptake in solid tumors

Authors: Madjid Soltani, Mostafa Sefidgar, Hossein Bazmara, Michael E. Casey, Rathan M. Subramaniam, Richard L. Wahl, Arman Rahmim

Published in: Annals of Nuclear Medicine | Issue 2/2017

Login to get access

Abstract

Objective

Distribution of PET tracer uptake is elaborately modeled via a general equation used for solute transport modeling. This model can be used to incorporate various transport parameters of a solid tumor such as hydraulic conductivity of the microvessel wall, transvascular permeability as well as interstitial space parameters. This is especially significant because tracer delivery and drug delivery to solid tumors are determined by similar underlying tumor transport phenomena, and quantifying the former can enable enhanced prediction of the latter.

Methods

We focused on the commonly utilized FDG PET tracer. First, based on a mathematical model of angiogenesis, the capillary network of a solid tumor and normal tissues around it were generated. The coupling mathematical method, which simultaneously solves for blood flow in the capillary network as well as fluid flow in the interstitium, is used to calculate pressure and velocity distributions. Subsequently, a comprehensive spatiotemporal distribution model (SDM) is applied to accurately model distribution of PET tracer uptake, specifically FDG in this work, within solid tumors.

Results

The different transport mechanisms, namely convention and diffusion from vessel to tissue and in tissue, are elaborately calculated across the domain of interest and effect of each parameter on tracer distribution is investigated. The results show the convection terms to have negligible effect on tracer transport and the SDM can be solved after eliminating these terms.

Conclusion

The proposed framework of spatiotemporal modeling for PET tracers can be utilized to comprehensively assess the impact of various parameters on the spatiotemporal distribution of PET tracers.
Literature
1.
go back to reference Wahl R, Buchanan J. Principles and practice of positron emission tomography. Philadelphia: Lippincott Williams & Wilkins; 2002. Wahl R, Buchanan J. Principles and practice of positron emission tomography. Philadelphia: Lippincott Williams & Wilkins; 2002.
2.
go back to reference Tomasi G, Turkheimer F, Aboagye E. Importance of quantification for the analysis of PET data in oncology: review of current methods and trends for the future. Mol Imaging Biol (Springer-Verlag). 2012;14:131–46.CrossRef Tomasi G, Turkheimer F, Aboagye E. Importance of quantification for the analysis of PET data in oncology: review of current methods and trends for the future. Mol Imaging Biol (Springer-Verlag). 2012;14:131–46.CrossRef
3.
go back to reference Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med (Springer-Verlag). 1999;26:22–30.CrossRef Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med (Springer-Verlag). 1999;26:22–30.CrossRef
4.
go back to reference Keyes JW. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36:1836–9.PubMed Keyes JW. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36:1836–9.PubMed
5.
go back to reference Freedman N, Sundaram S, Kurdziel K, Carrasquillo J, Whatley M, Carson J, et al. Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans. Eur J Nucl Med Mol Imaging (Springer-Verlag). 2003;30:46–53.CrossRef Freedman N, Sundaram S, Kurdziel K, Carrasquillo J, Whatley M, Carson J, et al. Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans. Eur J Nucl Med Mol Imaging (Springer-Verlag). 2003;30:46–53.CrossRef
6.
go back to reference Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. Eur J Cancer (Elsevier). 2014;35:1773–82.CrossRef Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. Eur J Cancer (Elsevier). 2014;35:1773–82.CrossRef
7.
go back to reference Huang S-C. Anatomy of SUV. Nucl Med Biol (Pergamon Press). 2000;27:643–6. Huang S-C. Anatomy of SUV. Nucl Med Biol (Pergamon Press). 2000;27:643–6.
8.
go back to reference Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat 1. J Neurochem (Blackwell Publishing Ltd). 1977;28:897–916.CrossRef Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat 1. J Neurochem (Blackwell Publishing Ltd). 1977;28:897–916.CrossRef
9.
go back to reference Blomqvist G, Pauli S, Farde L, Ericksson L, Persson A, Halldin C. Clinical research and clinical diagnosis. In: Beckers C, Goffinet A, Bo A, editors. Dyn Model Revers Ligand Bind. New York: Kluwer; 1989. Blomqvist G, Pauli S, Farde L, Ericksson L, Persson A, Halldin C. Clinical research and clinical diagnosis. In: Beckers C, Goffinet A, Bo A, editors. Dyn Model Revers Ligand Bind. New York: Kluwer; 1989.
10.
go back to reference Sefidgar M, Soltani M, Raahemifar K, Bazmara H, Nayinian S, Bazargan M. Effect of tumor shape, size, and tissue transport properties on drug delivery to solid tumors. J Biol Eng. 2014;8:12.CrossRefPubMedPubMedCentral Sefidgar M, Soltani M, Raahemifar K, Bazmara H, Nayinian S, Bazargan M. Effect of tumor shape, size, and tissue transport properties on drug delivery to solid tumors. J Biol Eng. 2014;8:12.CrossRefPubMedPubMedCentral
11.
go back to reference Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors III. role of binding and metabolism. Microvasc Res. 1991;41:5–23.CrossRefPubMed Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors III. role of binding and metabolism. Microvasc Res. 1991;41:5–23.CrossRefPubMed
12.
go back to reference Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. (I) role of interstitial pressure and convection. Microvasc Res. 1989;37:77–104.CrossRefPubMed Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. (I) role of interstitial pressure and convection. Microvasc Res. 1989;37:77–104.CrossRefPubMed
13.
go back to reference Magdoom KN, Pishko GL, Rice L, Pampo C, Siemann DW, Sarntinoranont M. MRI-based computational model of heterogeneous tracer transport following local infusion into a mouse hind limb tumor. PLoS One. 2014;9:e89594 [cited 2014 Jul 4].CrossRefPubMedPubMedCentral Magdoom KN, Pishko GL, Rice L, Pampo C, Siemann DW, Sarntinoranont M. MRI-based computational model of heterogeneous tracer transport following local infusion into a mouse hind limb tumor. PLoS One. 2014;9:e89594 [cited 2014 Jul 4].CrossRefPubMedPubMedCentral
14.
go back to reference Pishko GL, Astary GW, Zhang J, Mareci TH, Sarntinoranont M. Role of convection and diffusion on DCE-MRI parameters in low leakiness KHT sarcomas. Microvasc Res (Elsevier Inc). 2012;84:306–13 [cited 2013 Jun 8].CrossRef Pishko GL, Astary GW, Zhang J, Mareci TH, Sarntinoranont M. Role of convection and diffusion on DCE-MRI parameters in low leakiness KHT sarcomas. Microvasc Res (Elsevier Inc). 2012;84:306–13 [cited 2013 Jun 8].CrossRef
15.
go back to reference Pishko GL, Astary GW, Mareci TH, Sarntinoranont M. Sensitivity analysis of an image-based solid tumor computational model with heterogeneous vasculature and porosity. Ann Biomed Eng. 2011;39:2360–73.CrossRefPubMedPubMedCentral Pishko GL, Astary GW, Mareci TH, Sarntinoranont M. Sensitivity analysis of an image-based solid tumor computational model with heterogeneous vasculature and porosity. Ann Biomed Eng. 2011;39:2360–73.CrossRefPubMedPubMedCentral
16.
go back to reference Stylianopoulos T, Jain RK. Combining two strategies to improve perfusion and drug delivery in solid tumors. PANS. 2013;110:18632–7.CrossRef Stylianopoulos T, Jain RK. Combining two strategies to improve perfusion and drug delivery in solid tumors. PANS. 2013;110:18632–7.CrossRef
17.
go back to reference Stylianopoulos T, Economides E-A, Baish J, Fukumura D, Jain R. Towards optimal design of cancer nanomedicines: multi-stage nanoparticles for the treatment of solid tumors. Ann Biomed Eng (Springer US). 2015;43:2291–300.CrossRef Stylianopoulos T, Economides E-A, Baish J, Fukumura D, Jain R. Towards optimal design of cancer nanomedicines: multi-stage nanoparticles for the treatment of solid tumors. Ann Biomed Eng (Springer US). 2015;43:2291–300.CrossRef
18.
go back to reference Sefidgar M, Soltani M, Raahemifar K, Sadeghi M, Bazmara H, Bazargan M, et al. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature. Microvasc Res. 2015;99:43–56.CrossRefPubMed Sefidgar M, Soltani M, Raahemifar K, Sadeghi M, Bazmara H, Bazargan M, et al. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature. Microvasc Res. 2015;99:43–56.CrossRefPubMed
19.
go back to reference Soltani M, Sefidgar M, Bazmara H, Sheikhbahaei S, Marcus C, Ashrafinia S, et al. WE-AB-204-07: spatiotemporal distribution of the FDG PET tracer in solid tumors: contributions of diffusion and convection mechanisms. Med Phys. 2015;42:3660.CrossRef Soltani M, Sefidgar M, Bazmara H, Sheikhbahaei S, Marcus C, Ashrafinia S, et al. WE-AB-204-07: spatiotemporal distribution of the FDG PET tracer in solid tumors: contributions of diffusion and convection mechanisms. Med Phys. 2015;42:3660.CrossRef
20.
go back to reference Soltani M, Sefidgar M, Casey ME, Wahl RL, Subramaniam RM, Rahmim A. Comprehensive Modeling of the Spatiotemporal Distribution of PET Tracer Uptake in Solid Tumors based on the Convection-Diffusion-Reaction Equation. In: 21th IEEE Nuclear Science Symposium Medical imaging Conference Washington State Convention Center, Seattle, WA USA; 2014. Soltani M, Sefidgar M, Casey ME, Wahl RL, Subramaniam RM, Rahmim A. Comprehensive Modeling of the Spatiotemporal Distribution of PET Tracer Uptake in Solid Tumors based on the Convection-Diffusion-Reaction Equation. In: 21th IEEE Nuclear Science Symposium Medical imaging Conference Washington State Convention Center, Seattle, WA USA; 2014.
21.
go back to reference Kelly CJ, Brady M. A model to simulate tumour oxygenation and dynamic [18F] -Fmiso PET data. Phys Med Biol. 2006;51:5859–73.CrossRefPubMed Kelly CJ, Brady M. A model to simulate tumour oxygenation and dynamic [18F] -Fmiso PET data. Phys Med Biol. 2006;51:5859–73.CrossRefPubMed
22.
go back to reference Monnich D, Troost EGC, Kaanders JHAM, Oyen WJG, Alber M, Thorwarth D. Modelling and simulation of the influence of acute and chronic hypoxia on [18 F] fluoromisonidazole PET imaging. Phys Med Biol. 2012;57:1675–84.CrossRefPubMed Monnich D, Troost EGC, Kaanders JHAM, Oyen WJG, Alber M, Thorwarth D. Modelling and simulation of the influence of acute and chronic hypoxia on [18 F] fluoromisonidazole PET imaging. Phys Med Biol. 2012;57:1675–84.CrossRefPubMed
23.
go back to reference Monnich D, Troost EGC, Kaanders JHAM, Oyen WJG, Alber M, Thorwarth D. Modelling and simulation of [18 F] fluoromisonidazole dynamics based on histology-derived microvessel maps. Phys Med Biol. 2011;56:2045–57.CrossRefPubMed Monnich D, Troost EGC, Kaanders JHAM, Oyen WJG, Alber M, Thorwarth D. Modelling and simulation of [18 F] fluoromisonidazole dynamics based on histology-derived microvessel maps. Phys Med Biol. 2011;56:2045–57.CrossRefPubMed
24.
go back to reference Alessio A, Bassingthwaighte J, Glenny R, Caldwell J. Validation of an axially distributed model for quantification of myocardial blood flow using 13 N-ammonia PET. J Nucl Cardiol Springer US. 2013;20:64–75.CrossRef Alessio A, Bassingthwaighte J, Glenny R, Caldwell J. Validation of an axially distributed model for quantification of myocardial blood flow using 13 N-ammonia PET. J Nucl Cardiol Springer US. 2013;20:64–75.CrossRef
25.
go back to reference Huang S, Phelps M. Principles of tracer kinetic modeling in positron emission tomography and autoradiography. In: Phelps M, Mazziotta J, Schelbert H, editors. Positron Emission Tomogra Autoradiogram. New York: Raven; 1986. p. 287–346. Huang S, Phelps M. Principles of tracer kinetic modeling in positron emission tomography and autoradiography. In: Phelps M, Mazziotta J, Schelbert H, editors. Positron Emission Tomogra Autoradiogram. New York: Raven; 1986. p. 287–346.
26.
go back to reference Bertoldo A, Peltoniemi P, Oikonen V, Knuuti J, Nuutila P, Cobelli C. Kinetic modeling of [18 F]FDG in skeletal muscle by PET: a four-compartment five-rate-constant model. Am J Physiol Endocrinol Metab. 2001;281:524–36. Bertoldo A, Peltoniemi P, Oikonen V, Knuuti J, Nuutila P, Cobelli C. Kinetic modeling of [18 F]FDG in skeletal muscle by PET: a four-compartment five-rate-constant model. Am J Physiol Endocrinol Metab. 2001;281:524–36.
27.
go back to reference Curry FE. Mechanics and thermodynamics of transcapillary exchange. In: Renkin EM, Michel CC, editors. Handb. Physiol, section 2. American Physiological Society; 1984. Curry FE. Mechanics and thermodynamics of transcapillary exchange. In: Renkin EM, Michel CC, editors. Handb. Physiol, section 2. American Physiological Society; 1984.
28.
go back to reference Jain RK. Delivery of molecular and cellular medicine to solid tumors. Microcirculation. 1997;4:1–23.CrossRefPubMed Jain RK. Delivery of molecular and cellular medicine to solid tumors. Microcirculation. 1997;4:1–23.CrossRefPubMed
29.
go back to reference Chaplain MAJ, McDougall SR, Anderson AR. Blood flow and tumour-induced angiogenesis: dynamically adapting vascular networks. In: Jackson TL, editor. Modeling Tumor Vasculature. New York: Springer; 2012. p. 167–212.CrossRef Chaplain MAJ, McDougall SR, Anderson AR. Blood flow and tumour-induced angiogenesis: dynamically adapting vascular networks. In: Jackson TL, editor. Modeling Tumor Vasculature. New York: Springer; 2012. p. 167–212.CrossRef
30.
go back to reference McDougall SR, Anderson ARA, Chaplain MAJ. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol. 2006;241:564–89 [cited 2010 Jun 26].CrossRefPubMed McDougall SR, Anderson ARA, Chaplain MAJ. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol. 2006;241:564–89 [cited 2010 Jun 26].CrossRefPubMed
31.
go back to reference Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA. 2012;109:17561–6 [cited 2012 Nov 4].CrossRefPubMedPubMedCentral Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA. 2012;109:17561–6 [cited 2012 Nov 4].CrossRefPubMedPubMedCentral
32.
go back to reference Jain RK, Baxter LT. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. 1988;48:7022–32.PubMed Jain RK, Baxter LT. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. 1988;48:7022–32.PubMed
33.
go back to reference Stylianopoulos T, Soteriou K, Fukumura D, Jain RK. Cationic nanoparticles have superior transvascular flux into solid tumors: insights from a mathematical model. Ann Biomed Eng. 2013;41:68–77 [cited 2014 Jan 27].CrossRefPubMed Stylianopoulos T, Soteriou K, Fukumura D, Jain RK. Cationic nanoparticles have superior transvascular flux into solid tumors: insights from a mathematical model. Ann Biomed Eng. 2013;41:68–77 [cited 2014 Jan 27].CrossRefPubMed
34.
go back to reference Chauhan VP, Stylianopoulos T, Martin JD, Chen O, Kamoun WS, Bawendi MG, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol. 2012;7:383–8.CrossRefPubMedPubMedCentral Chauhan VP, Stylianopoulos T, Martin JD, Chen O, Kamoun WS, Bawendi MG, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol. 2012;7:383–8.CrossRefPubMedPubMedCentral
35.
go back to reference Sefidgar M, Raahemifar K, Bazmara H, Bazargan M, Mousavi SM, Soltani M. Effect of remodeled tumor-induced capillary network on interstitial flow in cancerous tissue. In: IEEE 2nd Middle East Conference on Biomedical Engineering; 2014. p. 212–5. Sefidgar M, Raahemifar K, Bazmara H, Bazargan M, Mousavi SM, Soltani M. Effect of remodeled tumor-induced capillary network on interstitial flow in cancerous tissue. In: IEEE 2nd Middle East Conference on Biomedical Engineering; 2014. p. 212–5.
36.
go back to reference Sefidgar M, Soltani M, Bazmara H, Mousavi M, Bazargan M, Elkamel A. Interstitial flow in cancerous tissue: effect of considering remodeled capillary network. J Tissue Sci Eng. 2014;4:1–8. Sefidgar M, Soltani M, Bazmara H, Mousavi M, Bazargan M, Elkamel A. Interstitial flow in cancerous tissue: effect of considering remodeled capillary network. J Tissue Sci Eng. 2014;4:1–8.
37.
go back to reference Soltani M, Chen P. Numerical modeling of interstitial fluid flow coupled with blood flow through a remodeled solid tumor microvascular network. PLoS One. 2013;8:e67025.CrossRefPubMedPubMedCentral Soltani M, Chen P. Numerical modeling of interstitial fluid flow coupled with blood flow through a remodeled solid tumor microvascular network. PLoS One. 2013;8:e67025.CrossRefPubMedPubMedCentral
38.
go back to reference Soltani M. Numerical Modeling of Drug Delivery to Solid Tumor Microvasculature. PhD thesis, Chem. Eng. (Nanotechnology), Waterloo, Ontario, Canada. 2012. Soltani M. Numerical Modeling of Drug Delivery to Solid Tumor Microvasculature. PhD thesis, Chem. Eng. (Nanotechnology), Waterloo, Ontario, Canada. 2012.
39.
go back to reference Anderson AR, Chaplain MA, Mcdougall S. A hybrid discrete-continuum model of tumour induced angiogenesis. In: Jackson TL, editor. Modeling Tumor Vasculature. New York: Springer; 2012. p. 105–34 [cited 2012 Nov 1].CrossRef Anderson AR, Chaplain MA, Mcdougall S. A hybrid discrete-continuum model of tumour induced angiogenesis. In: Jackson TL, editor. Modeling Tumor Vasculature. New York: Springer; 2012. p. 105–34 [cited 2012 Nov 1].CrossRef
40.
go back to reference Stephanou AS, Mcdougall SRR, Anderson ARA, Chaplain MAJ. Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis. Math Comput Model. 2006;44:96–123 [cited 2011 Feb 12].CrossRef Stephanou AS, Mcdougall SRR, Anderson ARA, Chaplain MAJ. Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis. Math Comput Model. 2006;44:96–123 [cited 2011 Feb 12].CrossRef
41.
go back to reference Pries AR, Secomb TW. Blood Flow in Microvascular Networks. Tuma RF, Durán WN, Ley K, editors. Direct. Second Edi. San Diego: Academic Press; 2008. p. 3–36. Pries AR, Secomb TW. Blood Flow in Microvascular Networks. Tuma RF, Durán WN, Ley K, editors. Direct. Second Edi. San Diego: Academic Press; 2008. p. 3–36.
43.
go back to reference Soltani M, Chen P. Shape design of internal flow with minimum pressure loss. Adv Sci Lett. 2009;2:347–55.CrossRef Soltani M, Chen P. Shape design of internal flow with minimum pressure loss. Adv Sci Lett. 2009;2:347–55.CrossRef
45.
go back to reference Soltani M, Chen P. Numerical Modeling of Fluid Flow in Solid Tumors. PLoS One. 2011;6:1–15 [cited 2011 Jun 16].CrossRef Soltani M, Chen P. Numerical Modeling of Fluid Flow in Solid Tumors. PLoS One. 2011;6:1–15 [cited 2011 Jun 16].CrossRef
46.
go back to reference Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. (II) role of heterogeneous perfusion and lymphatics. Microvasc Res. 1990;40:246–63.CrossRefPubMed Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. (II) role of heterogeneous perfusion and lymphatics. Microvasc Res. 1990;40:246–63.CrossRefPubMed
47.
go back to reference Cai Y, Xu S, Wu JLQ, Cai Y, Xu S, Wu J, Long Q. Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion. J Theor Biol (Elsevier). 2011;279:90–101 [cited 2012 Oct 9].CrossRef Cai Y, Xu S, Wu JLQ, Cai Y, Xu S, Wu J, Long Q. Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion. J Theor Biol (Elsevier). 2011;279:90–101 [cited 2012 Oct 9].CrossRef
48.
go back to reference Wu J, Long Q, Xu S, Padhani AR. Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature. J. Biomech. 2009;42:712–21 [cited 2011 Jul 8].CrossRefPubMed Wu J, Long Q, Xu S, Padhani AR. Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature. J. Biomech. 2009;42:712–21 [cited 2011 Jul 8].CrossRefPubMed
49.
go back to reference Wu J, Xu S, Long Q, Collins MW, König CS, Zhao G, et al. Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature. J. Biomech. 2008;41:996–1004 [cited 2010 Dec 29].CrossRefPubMed Wu J, Xu S, Long Q, Collins MW, König CS, Zhao G, et al. Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature. J. Biomech. 2008;41:996–1004 [cited 2010 Dec 29].CrossRefPubMed
50.
go back to reference Orlanski I. A simple boundary condition for unbounded hyperbolic flows. J Comput Phys. 1976;21:251–69.CrossRef Orlanski I. A simple boundary condition for unbounded hyperbolic flows. J Comput Phys. 1976;21:251–69.CrossRef
51.
go back to reference O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell (Elsevier). 2016;88:277–85. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell (Elsevier). 2016;88:277–85.
52.
go back to reference Boucher Y, Baxter LT, Jain RK. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 1990;50:4478–84.PubMed Boucher Y, Baxter LT, Jain RK. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 1990;50:4478–84.PubMed
53.
go back to reference Hompland T, Ellingsen C, Øvrebø KM, Rofstad EK. Interstitial fluid pressure and associated lymph node metastasis revealed in tumors by dynamic contrast-enhanced MRI interstitial fluid pressure and associated lymph node. Cancer Res. 2012;72:4899–908.CrossRefPubMed Hompland T, Ellingsen C, Øvrebø KM, Rofstad EK. Interstitial fluid pressure and associated lymph node metastasis revealed in tumors by dynamic contrast-enhanced MRI interstitial fluid pressure and associated lymph node. Cancer Res. 2012;72:4899–908.CrossRefPubMed
54.
go back to reference Backes H, Walberer M, Endepols H, Neumaier B, Graf R, Wienhard K, et al. Whiskers area as extracerebral reference tissue for quantification of rat brain metabolism using (18)F-FDG PET: application to focal cerebral ischemia. J. Nucl. Med. 2011;52:1252–60 [cited 2014 Apr 22].CrossRefPubMed Backes H, Walberer M, Endepols H, Neumaier B, Graf R, Wienhard K, et al. Whiskers area as extracerebral reference tissue for quantification of rat brain metabolism using (18)F-FDG PET: application to focal cerebral ischemia. J. Nucl. Med. 2011;52:1252–60 [cited 2014 Apr 22].CrossRefPubMed
55.
go back to reference Soltani M, Sefidgar M, Bazmara H, Rahmim A. Enhanced modeling of spatiotemporal distribution of PET tracers in solid tumors and estimation of transport parameters. J Nucl Med. 2015;56:1221. Soltani M, Sefidgar M, Bazmara H, Rahmim A. Enhanced modeling of spatiotemporal distribution of PET tracers in solid tumors and estimation of transport parameters. J Nucl Med. 2015;56:1221.
56.
go back to reference Soltani M, Sefidgar M, Bazmara H, Subramaniam R, Rahmim A. Effect of tumor shape and size on drug delivery. J Nucl Med. 2015;56:1220. Soltani M, Sefidgar M, Bazmara H, Subramaniam R, Rahmim A. Effect of tumor shape and size on drug delivery. J Nucl Med. 2015;56:1220.
57.
go back to reference Soltani M, Bazmara H, Sefidgar M, Subramaniam R, Rahmim A. SU-D-201-04: study on the impact of tumor shape and size on drug delivery to pancreatic tumors. Med Phys. 2015;42:3220.CrossRef Soltani M, Bazmara H, Sefidgar M, Subramaniam R, Rahmim A. SU-D-201-04: study on the impact of tumor shape and size on drug delivery to pancreatic tumors. Med Phys. 2015;42:3220.CrossRef
58.
go back to reference Beard D, Bassingthwaighte J. Advection and diffusion of substances in biological tissues with complex vascular networks. Ann Biomed Eng (Kluwer Academic Publishers-Plenum Publishers). 2000;28:253–68.CrossRef Beard D, Bassingthwaighte J. Advection and diffusion of substances in biological tissues with complex vascular networks. Ann Biomed Eng (Kluwer Academic Publishers-Plenum Publishers). 2000;28:253–68.CrossRef
59.
go back to reference Dash RK, Bassingthwaighte JB. Simultaneous blood-tissue exchange of oxygen, carbon dioxide, bicarbonate, and hydrogen ion. Ann Biomed Eng. 2006;34:1129–48.CrossRefPubMedPubMedCentral Dash RK, Bassingthwaighte JB. Simultaneous blood-tissue exchange of oxygen, carbon dioxide, bicarbonate, and hydrogen ion. Ann Biomed Eng. 2006;34:1129–48.CrossRefPubMedPubMedCentral
60.
go back to reference Bassingthwaighte JB, Raymond GM, Butterworth E, Alessio A, Caldwell JH. Multiscale modeling of metabolism, flows, and exchanges in heterogeneous organs. Ann N Y Acad Sci (Blackwell Publishing Inc). 2010;1188:111–20.CrossRef Bassingthwaighte JB, Raymond GM, Butterworth E, Alessio A, Caldwell JH. Multiscale modeling of metabolism, flows, and exchanges in heterogeneous organs. Ann N Y Acad Sci (Blackwell Publishing Inc). 2010;1188:111–20.CrossRef
61.
go back to reference Soltani M, Sefidgar M, Bazmara H, Marcus C, Subramaniam RM, Rahmim A. Effect of tumor size on drug delivery to lung tumors. In: IEEE Nuclear Science Symposium Medical Imaging Conference. 2015. Soltani M, Sefidgar M, Bazmara H, Marcus C, Subramaniam RM, Rahmim A. Effect of tumor size on drug delivery to lung tumors. In: IEEE Nuclear Science Symposium Medical Imaging Conference. 2015.
62.
go back to reference Huber PE, Bischof M, Heiland S, Peschke P, Saffrich R, Gro H, et al. Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy. Cancer Res. 2005;65:3643–55.CrossRefPubMed Huber PE, Bischof M, Heiland S, Peschke P, Saffrich R, Gro H, et al. Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy. Cancer Res. 2005;65:3643–55.CrossRefPubMed
63.
go back to reference van Dongen GAMS, Poot AJ, Vugts DJ. PET imaging with radiolabeled antibodies and tyrosine kinase inhibitors: immuno-PET and TKI-PET. Tumour Biol. 2012;33:607–15 [cited 2014 Jun 9].CrossRefPubMedPubMedCentral van Dongen GAMS, Poot AJ, Vugts DJ. PET imaging with radiolabeled antibodies and tyrosine kinase inhibitors: immuno-PET and TKI-PET. Tumour Biol. 2012;33:607–15 [cited 2014 Jun 9].CrossRefPubMedPubMedCentral
64.
go back to reference Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun. 2008;29:193–207.CrossRefPubMed Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun. 2008;29:193–207.CrossRefPubMed
65.
go back to reference Rahmim A, Qi J, Sossi V. Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys. 2013;40:64301.CrossRef Rahmim A, Qi J, Sossi V. Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys. 2013;40:64301.CrossRef
66.
go back to reference Choi SH, Paeng JC, Sohn C-H, Pagsisihan JR, Kim Y-J, Kim KG, et al. Correlation of 18F-FDG uptake with apparent diffusion coefficient ratio measured on standard and high b value diffusion MRI in head and neck cancer. J Nucl Med. 2011;52:1056–62 [cited 2014 Apr 18].CrossRefPubMed Choi SH, Paeng JC, Sohn C-H, Pagsisihan JR, Kim Y-J, Kim KG, et al. Correlation of 18F-FDG uptake with apparent diffusion coefficient ratio measured on standard and high b value diffusion MRI in head and neck cancer. J Nucl Med. 2011;52:1056–62 [cited 2014 Apr 18].CrossRefPubMed
67.
go back to reference Er HC, Erden A, Kucuk NO, Gecim E. Correlation of minimum apparent diffusion coefficient with maximum standardized uptake on fluorodeoxyglucose PET-CT in patients with rectal adenocarcinoma. Diagn Interv Radiol. 2014;20:105–9 [cited 2014 Apr 11].PubMed Er HC, Erden A, Kucuk NO, Gecim E. Correlation of minimum apparent diffusion coefficient with maximum standardized uptake on fluorodeoxyglucose PET-CT in patients with rectal adenocarcinoma. Diagn Interv Radiol. 2014;20:105–9 [cited 2014 Apr 11].PubMed
Metadata
Title
Spatiotemporal distribution modeling of PET tracer uptake in solid tumors
Authors
Madjid Soltani
Mostafa Sefidgar
Hossein Bazmara
Michael E. Casey
Rathan M. Subramaniam
Richard L. Wahl
Arman Rahmim
Publication date
01-02-2017
Publisher
Springer Japan
Published in
Annals of Nuclear Medicine / Issue 2/2017
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-016-1141-4

Other articles of this Issue 2/2017

Annals of Nuclear Medicine 2/2017 Go to the issue

Acknowledgements to Reviewers

Acknowledgements to reviewers