Skip to main content
Top
Published in: Molecular Imaging and Biology 2/2012

01-04-2012 | Review Article

Importance of Quantification for the Analysis of PET Data in Oncology: Review of Current Methods and Trends for the Future

Authors: Giampaolo Tomasi, Federico Turkheimer, Eric Aboagye

Published in: Molecular Imaging and Biology | Issue 2/2012

Login to get access

Abstract

In oncology, positron emission tomography (PET) is an important tool for tumour diagnosis and staging, assessment of response to treatment and evaluation of the pharmacokinetic properties and efficacy of new drugs. Despite its quantitative potential, however, in daily clinical practice PET is used almost exclusively with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) and, in addition, [18F]FDG data are normally assessed visually or using simple indices as the standardised uptake value (SUV). After explaining why more sophisticated quantification methods can be useful in oncology, the paper reviews the approaches that are commonly used and those available but not routinely employed. Particular emphasis is addressed to the SUV, for its importance in clinical practice. Issues specific to PET quantification in oncology and related examples are then discussed. Finally, some ideas for the development of new quantitative methods for analysing PET data in oncology and for the application of approaches already existing but not commonly employed are presented.
Literature
3.
go back to reference Aboagye EO, Price PM (2003) Use of positron emission tomography in anticancer drug development. Invest New Drugs 21(2):169–181PubMed Aboagye EO, Price PM (2003) Use of positron emission tomography in anticancer drug development. Invest New Drugs 21(2):169–181PubMed
4.
go back to reference Ido TWC, Casella V (1978) Labeled 2-dexoy-d-glucose analogs: 18Flabeled 2-deoxy-2-fluoro-d-glucose, 2-deoxy-2-fluoro-d-mannose and 14C-2-deoxy-2-fluoro-d-glucose. J Labelled Comp Radiopharm 14:175–183 Ido TWC, Casella V (1978) Labeled 2-dexoy-d-glucose analogs: 18Flabeled 2-deoxy-2-fluoro-d-glucose, 2-deoxy-2-fluoro-d-mannose and 14C-2-deoxy-2-fluoro-d-glucose. J Labelled Comp Radiopharm 14:175–183
5.
go back to reference Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, Coleman RE, Wahl R, Paschold JC, Avril N, Einhorn LH, Suh WW, Samson D, Delbeke D, Gorman M, Shields AF (2008) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49(3):480–508. doi:10.2967/jnumed.107.047787 PubMed Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, Coleman RE, Wahl R, Paschold JC, Avril N, Einhorn LH, Suh WW, Samson D, Delbeke D, Gorman M, Shields AF (2008) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49(3):480–508. doi:10.​2967/​jnumed.​107.​047787 PubMed
7.
go back to reference Lin C, Itti E, Haioun C, Petegnief Y, Luciani A, Dupuis J, Paone G, Talbot JN, Rahmouni A, Meignan M (2007) Early 18F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis. J Nucl Med 48(10):1626–1632. doi:10.2967/jnumed.107.042093 PubMed Lin C, Itti E, Haioun C, Petegnief Y, Luciani A, Dupuis J, Paone G, Talbot JN, Rahmouni A, Meignan M (2007) Early 18F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis. J Nucl Med 48(10):1626–1632. doi:10.​2967/​jnumed.​107.​042093 PubMed
9.
go back to reference DuBois DDE (1916) A formula to estimate the approximate surface area if height and weight are known. Arch Intern Medicine 17:863–871 DuBois DDE (1916) A formula to estimate the approximate surface area if height and weight are known. Arch Intern Medicine 17:863–871
10.
go back to reference Zasadny KR, Wahl RL (1993) Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-d-glucose: variations with body weight and a method for correction. Radiology 189(3):847–850PubMed Zasadny KR, Wahl RL (1993) Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-d-glucose: variations with body weight and a method for correction. Radiology 189(3):847–850PubMed
11.
go back to reference Lindholm P, Minn H, Leskinen-Kallio S, Bergman J, Ruotsalainen U, Joensuu H (1993) Influence of the blood glucose concentration on FDG uptake in cancer—a PET study. J Nucl Med 34(1):1–6PubMed Lindholm P, Minn H, Leskinen-Kallio S, Bergman J, Ruotsalainen U, Joensuu H (1993) Influence of the blood glucose concentration on FDG uptake in cancer—a PET study. J Nucl Med 34(1):1–6PubMed
12.
go back to reference Weber WA (2005) Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med 46(6):983–995PubMed Weber WA (2005) Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med 46(6):983–995PubMed
13.
go back to reference Hoekstra CJ, Hoekstra OS, Stroobants SG, Vansteenkiste J, Nuyts J, Smit EF, Boers M, Twisk JW, Lammertsma AA (2002) Methods to monitor response to chemotherapy in non-small cell lung cancer with 18F-FDG PET. J Nucl Med 43(10):1304–1309PubMed Hoekstra CJ, Hoekstra OS, Stroobants SG, Vansteenkiste J, Nuyts J, Smit EF, Boers M, Twisk JW, Lammertsma AA (2002) Methods to monitor response to chemotherapy in non-small cell lung cancer with 18F-FDG PET. J Nucl Med 43(10):1304–1309PubMed
14.
go back to reference Krak NC, van der Hoeven J, Hoekstra OS, Twisk JW, van der Wall E, Lammertsma AA (2003) Measuring [(18)F]FDG uptake in breast cancer during chemotherapy: comparison of analytical methods. Eur J Nucl Med Mol Imaging 30:674–681PubMed Krak NC, van der Hoeven J, Hoekstra OS, Twisk JW, van der Wall E, Lammertsma AA (2003) Measuring [(18)F]FDG uptake in breast cancer during chemotherapy: comparison of analytical methods. Eur J Nucl Med Mol Imaging 30:674–681PubMed
15.
go back to reference Kroep JRVGC, Cuesta MA, Craanen ME, Hoekstra OS, Comans EF, Bloemena E, Hoekstra CJ, Golding RP, Twisk JW, Peters GJ, Pinedo HM, Lammertsma AA (2003) Positron emission tomography using 2-deoxy-2-[18F]-fluoro-d-glucose for response monitoring in locally advanced gastroesophageal cancer; a comparison of different analytical methods. Mol Imaging Biol 5(5):337–346PubMed Kroep JRVGC, Cuesta MA, Craanen ME, Hoekstra OS, Comans EF, Bloemena E, Hoekstra CJ, Golding RP, Twisk JW, Peters GJ, Pinedo HM, Lammertsma AA (2003) Positron emission tomography using 2-deoxy-2-[18F]-fluoro-d-glucose for response monitoring in locally advanced gastroesophageal cancer; a comparison of different analytical methods. Mol Imaging Biol 5(5):337–346PubMed
16.
go back to reference Cazaentre T, Morschhauser F, Vermandel M, Betrouni N, Prangere T, Steinling M, Huglo D Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma. Eur J Nucl Med Mol Imaging 37 (3):494–504. doi:10.1007/s00259-009-1275-x Cazaentre T, Morschhauser F, Vermandel M, Betrouni N, Prangere T, Steinling M, Huglo D Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma. Eur J Nucl Med Mol Imaging 37 (3):494–504. doi:10.​1007/​s00259-009-1275-x
17.
go back to reference Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 34(9):1339–1347. doi:10.1007/s00259-007-0379-4 PubMed Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 34(9):1339–1347. doi:10.​1007/​s00259-007-0379-4 PubMed
18.
go back to reference Prevost S, Boucher L, Larivee P, Boileau R, Benard F (2006) Bone marrow hypermetabolism on 18F-FDG PET as a survival prognostic factor in non-small cell lung cancer. J Nucl Med 47(4):559–565PubMed Prevost S, Boucher L, Larivee P, Boileau R, Benard F (2006) Bone marrow hypermetabolism on 18F-FDG PET as a survival prognostic factor in non-small cell lung cancer. J Nucl Med 47(4):559–565PubMed
19.
go back to reference Cicone F, Loose D, Deron P, Vermeersch H, Signore A, Van de Vyvere F, Scopinaro F, Van de Wiele C (2008) Prognostic value of FDG uptake by the bone marrow in squamous cell carcinoma of the head and neck. Nucl Med Commun 29(5):431–435. doi:10.1097/MNM.0b013e3282f5d2ce PubMed Cicone F, Loose D, Deron P, Vermeersch H, Signore A, Van de Vyvere F, Scopinaro F, Van de Wiele C (2008) Prognostic value of FDG uptake by the bone marrow in squamous cell carcinoma of the head and neck. Nucl Med Commun 29(5):431–435. doi:10.​1097/​MNM.​0b013e3282f5d2ce​ PubMed
20.
go back to reference Teo BK, Badiee S, Hadi M, Lam T, Johnson L, Seo Y, Bacharach SL, Hasegawa BH, Franc BL (2008) Correcting tumour SUV for enhanced bone marrow uptake: retrospective 18F-FDG PET/CT studies. Nucl Med Commun 29(4):359–366. doi:10.1097/MNM.0b013e3282f44f99 PubMed Teo BK, Badiee S, Hadi M, Lam T, Johnson L, Seo Y, Bacharach SL, Hasegawa BH, Franc BL (2008) Correcting tumour SUV for enhanced bone marrow uptake: retrospective 18F-FDG PET/CT studies. Nucl Med Commun 29(4):359–366. doi:10.​1097/​MNM.​0b013e3282f44f99​ PubMed
21.
go back to reference Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M (2006) PET kinetic analysis–compartmental model. Ann Nucl Med 20(9):583–588PubMed Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M (2006) PET kinetic analysis–compartmental model. Ann Nucl Med 20(9):583–588PubMed
23.
go back to reference Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man; theory, procedure and normal values. J Clin Invest 27(4):476–483 Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man; theory, procedure and normal values. J Clin Invest 27(4):476–483
24.
go back to reference Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28(5):897–916PubMed Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28(5):897–916PubMed
25.
go back to reference Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ (1984) A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15(3):217–227. doi:10.1002/ana.410150302 PubMed Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ (1984) A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15(3):217–227. doi:10.​1002/​ana.​410150302 PubMed
26.
go back to reference Strauss LG, Koczan D, Klippel S, Pan L, Cheng C, Haberkorn U, Willis S, Dimitrakopoulou-Strauss A Impact of cell-proliferation-associated gene expression on 2-deoxy-2-[(18)F]fluoro-d-glucose (FDG) kinetics as measured by dynamic positron emission tomography (dPET) in colorectal tumors. Mol Imaging Biol. doi:10.1007/s11307-010-0465-z Strauss LG, Koczan D, Klippel S, Pan L, Cheng C, Haberkorn U, Willis S, Dimitrakopoulou-Strauss A Impact of cell-proliferation-associated gene expression on 2-deoxy-2-[(18)F]fluoro-d-glucose (FDG) kinetics as measured by dynamic positron emission tomography (dPET) in colorectal tumors. Mol Imaging Biol. doi:10.​1007/​s11307-010-0465-z
27.
go back to reference Cook GLM, Marsden P, Dynes A, Fogelman I (1989) Non-invasive assessment of skeletal kinetics using fluorine-18 fluoride positron emission tomography: evaluation of image and population-derived arterial input functions. Eur J Nucl Med 26:1424–1429 Cook GLM, Marsden P, Dynes A, Fogelman I (1989) Non-invasive assessment of skeletal kinetics using fluorine-18 fluoride positron emission tomography: evaluation of image and population-derived arterial input functions. Eur J Nucl Med 26:1424–1429
29.
go back to reference Strauss LG, Dimitrakopoulou-Strauss A, Haberkorn U (2003) Shortened PET data acquisition protocol for the quantification of 18F-FDG kinetics. J Nucl Med 44(12):1933–1939PubMed Strauss LG, Dimitrakopoulou-Strauss A, Haberkorn U (2003) Shortened PET data acquisition protocol for the quantification of 18F-FDG kinetics. J Nucl Med 44(12):1933–1939PubMed
30.
go back to reference Strauss LG, Pan L, Cheng C, Haberkorn U, Dimitrakopoulou-Strauss A Shortened acquisition protocols for the quantitative assessment of the 2-tissue-compartment model using dynamic PET/CT 18F-FDG studies. J Nucl Med 52 (3):379–385. doi:10.2967/jnumed.110.079798 Strauss LG, Pan L, Cheng C, Haberkorn U, Dimitrakopoulou-Strauss A Shortened acquisition protocols for the quantitative assessment of the 2-tissue-compartment model using dynamic PET/CT 18F-FDG studies. J Nucl Med 52 (3):379–385. doi:10.​2967/​jnumed.​110.​079798
31.
go back to reference Logan J (2000) Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 27(7):661–670PubMed Logan J (2000) Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 27(7):661–670PubMed
32.
go back to reference Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3(1):1–7PubMed Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3(1):1–7PubMed
33.
go back to reference Wu HM, Bergsneider M, Glenn TC, Yeh E, Hovda DA, Phelps ME, Huang SC (2003) Measurement of the global lumped constant for 2-deoxy-2-[18F]fluoro-d-glucose in normal human brain using [15O]water and 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography imaging. A method with validation based on multiple methodologies. Mol Imaging Biol 5(1):32–41PubMed Wu HM, Bergsneider M, Glenn TC, Yeh E, Hovda DA, Phelps ME, Huang SC (2003) Measurement of the global lumped constant for 2-deoxy-2-[18F]fluoro-d-glucose in normal human brain using [15O]water and 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography imaging. A method with validation based on multiple methodologies. Mol Imaging Biol 5(1):32–41PubMed
34.
go back to reference Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor RR, Hitzemann R, Bendriem B, Gatley SJ et al (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10(5):740–747PubMed Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor RR, Hitzemann R, Bendriem B, Gatley SJ et al (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10(5):740–747PubMed
36.
37.
go back to reference Cunningham VJ, Jones T (1993) Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab 13(1):15–23PubMed Cunningham VJ, Jones T (1993) Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab 13(1):15–23PubMed
38.
go back to reference Turkheimer F, Moresco RM, Lucignani G, Sokoloff L, Fazio F, Schmidt K (1994) The use of spectral analysis to determine regional cerebral glucose utilization with positron emission tomography and [18F]fluorodeoxyglucose: theory, implementation, and optimization procedures. J Cereb Blood Flow Metab 14(3):406–422PubMed Turkheimer F, Moresco RM, Lucignani G, Sokoloff L, Fazio F, Schmidt K (1994) The use of spectral analysis to determine regional cerebral glucose utilization with positron emission tomography and [18F]fluorodeoxyglucose: theory, implementation, and optimization procedures. J Cereb Blood Flow Metab 14(3):406–422PubMed
39.
go back to reference Rosso L, Brock CS, Gallo JM, Saleem A, Price PM, Turkheimer FE, Aboagye EO (2009) A new model for prediction of drug distribution in tumor and normal tissues: pharmacokinetics of temozolomide in glioma patients. Cancer Res 69(1):120–127. doi:10.1158/0008-5472.CAN-08-2356 PubMed Rosso L, Brock CS, Gallo JM, Saleem A, Price PM, Turkheimer FE, Aboagye EO (2009) A new model for prediction of drug distribution in tumor and normal tissues: pharmacokinetics of temozolomide in glioma patients. Cancer Res 69(1):120–127. doi:10.​1158/​0008-5472.​CAN-08-2356 PubMed
40.
go back to reference Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, Chen X (2006) Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J Nucl Med 47(1):113–121PubMed Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, Chen X (2006) Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J Nucl Med 47(1):113–121PubMed
41.
go back to reference Flores LG, Bertolini S, Yeh HH, Young D, Mukhopadhyay U, Pal A, Ying Y, Volgin A, Shavrin A, Soghomonyan S, Tong W, Bornmann W, Alauddin MM, Logsdon C, Gelovani JG (2009) Detection of pancreatic carcinomas by imaging lactose-binding protein expression in peritumoral pancreas using [18F]fluoroethyl-deoxylactose PET/CT. PLoS One 4(11):e7977. doi:10.1371/journal.pone.0007977 PubMed Flores LG, Bertolini S, Yeh HH, Young D, Mukhopadhyay U, Pal A, Ying Y, Volgin A, Shavrin A, Soghomonyan S, Tong W, Bornmann W, Alauddin MM, Logsdon C, Gelovani JG (2009) Detection of pancreatic carcinomas by imaging lactose-binding protein expression in peritumoral pancreas using [18F]fluoroethyl-deoxylactose PET/CT. PLoS One 4(11):e7977. doi:10.​1371/​journal.​pone.​0007977 PubMed
42.
go back to reference Lammertsma AA, Hoekstra CJ, Giaccone G, Hoekstra OS (2006) How should we analyse FDG PET studies for monitoring tumour response? Eur J Nucl Med Mol Imaging 33(Suppl 1):16–21. doi:10.1007/s00259-006-0131-5 PubMed Lammertsma AA, Hoekstra CJ, Giaccone G, Hoekstra OS (2006) How should we analyse FDG PET studies for monitoring tumour response? Eur J Nucl Med Mol Imaging 33(Suppl 1):16–21. doi:10.​1007/​s00259-006-0131-5 PubMed
43.
go back to reference Weber WA, Ziegler SI, Thodtmann R, Hanauske AR, Schwaiger M (1999) Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 40(11):1771–1777PubMed Weber WA, Ziegler SI, Thodtmann R, Hanauske AR, Schwaiger M (1999) Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 40(11):1771–1777PubMed
45.
go back to reference Velasquez LM, Boellaard R, Kollia G, Hayes W, Hoekstra OS, Lammertsma AA, Galbraith SM (2009) Repeatability of 18F-FDG PET in a multicenter phase I study of patients with advanced gastrointestinal malignancies. J Nucl Med 50(10):1646–1654. doi:10.2967/jnumed.109.063347 PubMed Velasquez LM, Boellaard R, Kollia G, Hayes W, Hoekstra OS, Lammertsma AA, Galbraith SM (2009) Repeatability of 18F-FDG PET in a multicenter phase I study of patients with advanced gastrointestinal malignancies. J Nucl Med 50(10):1646–1654. doi:10.​2967/​jnumed.​109.​063347 PubMed
46.
go back to reference Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, Mattfeldt T, Neumaier B, Reske SN, Hetzel M (2003) Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 44(9):1426–1431PubMed Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, Mattfeldt T, Neumaier B, Reske SN, Hetzel M (2003) Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 44(9):1426–1431PubMed
47.
go back to reference Pio BS, Park CK, Pietras R, Hsueh WA, Satyamurthy N, Pegram MD, Czernin J, Phelps ME, Silverman DH (2006) Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol 8(1):36–42. doi:10.1007/s11307-005-0029-9 PubMed Pio BS, Park CK, Pietras R, Hsueh WA, Satyamurthy N, Pegram MD, Czernin J, Phelps ME, Silverman DH (2006) Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol 8(1):36–42. doi:10.​1007/​s11307-005-0029-9 PubMed
48.
go back to reference de Langen AJ, Klabbers B, Lubberink M, Boellaard R, Spreeuwenberg MD, Slotman BJ, de Bree R, Smit EF, Hoekstra OS, Lammertsma AA (2009) Reproducibility of quantitative 18F-3′-deoxy-3′-fluorothymidine measurements using positron emission tomography. Eur J Nucl Med Mol Imaging 36(3):389–395. doi:10.1007/s00259-008-0960-5 PubMed de Langen AJ, Klabbers B, Lubberink M, Boellaard R, Spreeuwenberg MD, Slotman BJ, de Bree R, Smit EF, Hoekstra OS, Lammertsma AA (2009) Reproducibility of quantitative 18F-3′-deoxy-3′-fluorothymidine measurements using positron emission tomography. Eur J Nucl Med Mol Imaging 36(3):389–395. doi:10.​1007/​s00259-008-0960-5 PubMed
49.
go back to reference Shields AF, Lawhorn-Crews JM, Briston DA, Zalzala S, Gadgeel S, Douglas KA, Mangner TJ, Heilbrun LK, Muzik O (2008) Analysis and reproducibility of 3′-Deoxy-3′-[18F]fluorothymidine positron emission tomography imaging in patients with non-small cell lung cancer. Clin Cancer Res 14(14):4463–4468. doi:10.1158/1078-0432.CCR-07-5243 PubMed Shields AF, Lawhorn-Crews JM, Briston DA, Zalzala S, Gadgeel S, Douglas KA, Mangner TJ, Heilbrun LK, Muzik O (2008) Analysis and reproducibility of 3′-Deoxy-3′-[18F]fluorothymidine positron emission tomography imaging in patients with non-small cell lung cancer. Clin Cancer Res 14(14):4463–4468. doi:10.​1158/​1078-0432.​CCR-07-5243 PubMed
50.
go back to reference de Langen AJ, Lubberink M, Boellaard R, Spreeuwenberg MD, Smit EF, Hoekstra OS, Lammertsma AA (2008) Reproducibility of tumor perfusion measurements using 15O-labeled water and PET. J Nucl Med 49(11):1763–1768. doi:10.2967/jnumed.108.053454 PubMed de Langen AJ, Lubberink M, Boellaard R, Spreeuwenberg MD, Smit EF, Hoekstra OS, Lammertsma AA (2008) Reproducibility of tumor perfusion measurements using 15O-labeled water and PET. J Nucl Med 49(11):1763–1768. doi:10.​2967/​jnumed.​108.​053454 PubMed
52.
go back to reference Sohn HJ, Yang YJ, Ryu JS, Oh SJ, Im KC, Moon DH, Lee DH, Suh C, Lee JS, Kim SW (2008) [18F]Fluorothymidine positron emission tomography before and 7 days after gefitinib treatment predicts response in patients with advanced adenocarcinoma of the lung. Clin Cancer Res 14(22):7423–7429. doi:10.1158/1078-0432.CCR-08-0312 PubMed Sohn HJ, Yang YJ, Ryu JS, Oh SJ, Im KC, Moon DH, Lee DH, Suh C, Lee JS, Kim SW (2008) [18F]Fluorothymidine positron emission tomography before and 7 days after gefitinib treatment predicts response in patients with advanced adenocarcinoma of the lung. Clin Cancer Res 14(22):7423–7429. doi:10.​1158/​1078-0432.​CCR-08-0312 PubMed
53.
go back to reference Herrmann K, Wieder HA, Buck AK, Schoffel M, Krause BJ, Fend F, Schuster T, Meyer zum Buschenfelde C, Wester HJ, Duyster J, Peschel C, Schwaiger M, Dechow T (2007) Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clin Cancer Res 13(12):3552–3558. doi:10.1158/1078-0432.CCR-06-3025 PubMed Herrmann K, Wieder HA, Buck AK, Schoffel M, Krause BJ, Fend F, Schuster T, Meyer zum Buschenfelde C, Wester HJ, Duyster J, Peschel C, Schwaiger M, Dechow T (2007) Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clin Cancer Res 13(12):3552–3558. doi:10.​1158/​1078-0432.​CCR-06-3025 PubMed
55.
56.
go back to reference Mankoff DA, Shields AF, Graham MM, Link JM, Krohn KA (1996) A graphical analysis method to estimate blood-to-tissue transfer constants for tracers with labeled metabolites. J Nucl Med 37(12):2049–2057PubMed Mankoff DA, Shields AF, Graham MM, Link JM, Krohn KA (1996) A graphical analysis method to estimate blood-to-tissue transfer constants for tracers with labeled metabolites. J Nucl Med 37(12):2049–2057PubMed
57.
go back to reference Mankoff DA, Shields AF, Graham MM, Link JM, Eary JF, Krohn KA (1998) Kinetic analysis of 2-[carbon-11]thymidine PET imaging studies: compartmental model and mathematical analysis. J Nucl Med 39(6):1043–1055PubMed Mankoff DA, Shields AF, Graham MM, Link JM, Eary JF, Krohn KA (1998) Kinetic analysis of 2-[carbon-11]thymidine PET imaging studies: compartmental model and mathematical analysis. J Nucl Med 39(6):1043–1055PubMed
58.
go back to reference Mankoff DA, Shields AF, Link JM, Graham MM, Muzi M, Peterson LM, Eary JF, Krohn KA (1999) Kinetic analysis of 2-[11C]thymidine PET imaging studies: validation studies. J Nucl Med 40(4):614–624PubMed Mankoff DA, Shields AF, Link JM, Graham MM, Muzi M, Peterson LM, Eary JF, Krohn KA (1999) Kinetic analysis of 2-[11C]thymidine PET imaging studies: validation studies. J Nucl Med 40(4):614–624PubMed
59.
go back to reference Gunn RN, Yap JT, Wells P, Osman S, Price P, Jones T, Cunningham VJ (2000) A general method to correct PET data for tissue metabolites using a dual-scan approach. J Nucl Med 41(4):706–711PubMed Gunn RN, Yap JT, Wells P, Osman S, Price P, Jones T, Cunningham VJ (2000) A general method to correct PET data for tissue metabolites using a dual-scan approach. J Nucl Med 41(4):706–711PubMed
60.
go back to reference Hatt M, Cheze-Le Rest C, Aboagye EO, Kenny LM, Rosso L, Turkheimer FE, Albarghach NM, Metges JP, Pradier O, Visvikis D Reproducibility of 18F-FDG and 3′-deoxy-3′-18F-fluorothymidine PET tumor volume measurements. J Nucl Med 51 (9):1368–1376. doi:10.2967/jnumed.110.078501 Hatt M, Cheze-Le Rest C, Aboagye EO, Kenny LM, Rosso L, Turkheimer FE, Albarghach NM, Metges JP, Pradier O, Visvikis D Reproducibility of 18F-FDG and 3′-deoxy-3′-18F-fluorothymidine PET tumor volume measurements. J Nucl Med 51 (9):1368–1376. doi:10.​2967/​jnumed.​110.​078501
61.
go back to reference Avril N, Bense S, Ziegler SI, Dose J, Weber W, Laubenbacher C, Romer W, Janicke F, Schwaiger M (1997) Breast imaging with fluorine-18-FDG PET: quantitative image analysis. J Nucl Med 38(8):1186–1191PubMed Avril N, Bense S, Ziegler SI, Dose J, Weber W, Laubenbacher C, Romer W, Janicke F, Schwaiger M (1997) Breast imaging with fluorine-18-FDG PET: quantitative image analysis. J Nucl Med 38(8):1186–1191PubMed
62.
go back to reference Schelling M, Avril N, Nahrig J, Kuhn W, Romer W, Sattler D, Werner M, Dose J, Janicke F, Graeff H, Schwaiger M (2000) Positron emission tomography using [(18)F]Fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 18(8):1689–1695PubMed Schelling M, Avril N, Nahrig J, Kuhn W, Romer W, Sattler D, Werner M, Dose J, Janicke F, Graeff H, Schwaiger M (2000) Positron emission tomography using [(18)F]Fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 18(8):1689–1695PubMed
63.
go back to reference Lee JR, Madsen MT, Bushnel D, Menda Y (2000) A threshold method to improve standardized uptake value reproducibility. Nucl Med Commun 21(7):685–690PubMed Lee JR, Madsen MT, Bushnel D, Menda Y (2000) A threshold method to improve standardized uptake value reproducibility. Nucl Med Commun 21(7):685–690PubMed
64.
go back to reference Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D (2009) A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 28(6):881–893. doi:10.1109/TMI.2008.2012036 PubMed Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D (2009) A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 28(6):881–893. doi:10.​1109/​TMI.​2008.​2012036 PubMed
65.
go back to reference Krak NC, Boellaard R, Hoekstra OS, Twisk JW, Hoekstra CJ, Lammertsma AA (2005) Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging 32(3):294–301. doi:10.1007/s00259-004-1566-1 PubMed Krak NC, Boellaard R, Hoekstra OS, Twisk JW, Hoekstra CJ, Lammertsma AA (2005) Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging 32(3):294–301. doi:10.​1007/​s00259-004-1566-1 PubMed
67.
go back to reference Soret MRC, Hapdey S, Buvat I (2002) Biases affecting the measurements of tumor-to-background activity ratio in PET. IEEE Trans Nucl Science 49:2112–2118 Soret MRC, Hapdey S, Buvat I (2002) Biases affecting the measurements of tumor-to-background activity ratio in PET. IEEE Trans Nucl Science 49:2112–2118
68.
go back to reference O’Sullivan F, Muzi M, Spence AM, Mankoff DM, O’Sullivan JN, Fitzgerald N, Newman GC, Krohn KA (2009) Nonparametric residue analysis of dynamic PET data with application to cerebral FDG studies in normals. J Am Stat Assoc 104(486):556–571. doi:10.1198/jasa.2009.0021 PubMed O’Sullivan F, Muzi M, Spence AM, Mankoff DM, O’Sullivan JN, Fitzgerald N, Newman GC, Krohn KA (2009) Nonparametric residue analysis of dynamic PET data with application to cerebral FDG studies in normals. J Am Stat Assoc 104(486):556–571. doi:10.​1198/​jasa.​2009.​0021 PubMed
69.
go back to reference Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Squire OD, Braban LE, Ford E, Sidhu K, Mageras GS, Larson SM, Humm JL (2002) Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys 29(3):366–371PubMed Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Squire OD, Braban LE, Ford E, Sidhu K, Mageras GS, Larson SM, Humm JL (2002) Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys 29(3):366–371PubMed
70.
go back to reference Nye JA, Esteves F, Votaw JR (2007) Minimizing artifacts resulting from respiratory and cardiac motion by optimization of the transmission scan in cardiac PET/CT. Med Phys 34(6):1901–1906PubMed Nye JA, Esteves F, Votaw JR (2007) Minimizing artifacts resulting from respiratory and cardiac motion by optimization of the transmission scan in cardiac PET/CT. Med Phys 34(6):1901–1906PubMed
71.
go back to reference Gray KR, Contractor KB, Kenny LM, Al-Nahhas A, Shousha S, Stebbing J, Wasan HS, Coombes RC, Aboagye EO, Turkheimer FE, Rosso L (2010) Kinetic filtering of [(18)F]Fluorothymidine in positron emission tomography studies. Phys Med Biol 55(3):695–709. doi:10.1088/0031-9155/55/3/010 PubMed Gray KR, Contractor KB, Kenny LM, Al-Nahhas A, Shousha S, Stebbing J, Wasan HS, Coombes RC, Aboagye EO, Turkheimer FE, Rosso L (2010) Kinetic filtering of [(18)F]Fluorothymidine in positron emission tomography studies. Phys Med Biol 55(3):695–709. doi:10.​1088/​0031-9155/​55/​3/​010 PubMed
72.
go back to reference Turkheimer FE, Edison P, Pavese N, Roncaroli F, Anderson AN, Hammers A, Gerhard A, Hinz R, Tai YF, Brooks DJ (2007) Reference and target region modeling of [11C]-(R)-PK11195 brain studies. J Nucl Med 48(1):158–167PubMed Turkheimer FE, Edison P, Pavese N, Roncaroli F, Anderson AN, Hammers A, Gerhard A, Hinz R, Tai YF, Brooks DJ (2007) Reference and target region modeling of [11C]-(R)-PK11195 brain studies. J Nucl Med 48(1):158–167PubMed
73.
go back to reference Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, Corcos L, Visvikis D Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52 (3):369–378. doi:10.2967/jnumed.110.082404 Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, Corcos L, Visvikis D Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52 (3):369–378. doi:10.​2967/​jnumed.​110.​082404
74.
go back to reference El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, Chaudhari S, Yang D, Schmitt M, Laforest R, Thorstad W, Deasy JO (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit 42(6):1162–1171. doi:10.1016/j.patcog.2008.08.011 PubMed El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, Chaudhari S, Yang D, Schmitt M, Laforest R, Thorstad W, Deasy JO (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit 42(6):1162–1171. doi:10.​1016/​j.​patcog.​2008.​08.​011 PubMed
76.
go back to reference Dimitrakopoulou-Strauss A, Hoffmann M, Bergner R, Uppenkamp M, Eisenhut M, Pan L, Haberkorn U, Strauss LG (2007) Prediction of short-term survival in patients with advanced nonsmall cell lung cancer following chemotherapy based on 2-deoxy-2-[F-18]fluoro-d-glucose-positron emission tomography: a feasibility study. Mol Imaging Biol 9(5):308–317. doi:10.1007/s11307-007-0103-6 PubMed Dimitrakopoulou-Strauss A, Hoffmann M, Bergner R, Uppenkamp M, Eisenhut M, Pan L, Haberkorn U, Strauss LG (2007) Prediction of short-term survival in patients with advanced nonsmall cell lung cancer following chemotherapy based on 2-deoxy-2-[F-18]fluoro-d-glucose-positron emission tomography: a feasibility study. Mol Imaging Biol 9(5):308–317. doi:10.​1007/​s11307-007-0103-6 PubMed
77.
go back to reference Dimitrakopoulou-Strauss A, Hoffmann M, Bergner R, Uppenkamp M, Haberkorn U, Strauss LG (2009) Prediction of progression-free survival in patients with multiple myeloma following anthracycline-based chemotherapy based on dynamic FDG-PET. Clin Nucl Med 34(9):576–584. doi:10.1097/RLU.0b013e3181b06bc5 PubMed Dimitrakopoulou-Strauss A, Hoffmann M, Bergner R, Uppenkamp M, Haberkorn U, Strauss LG (2009) Prediction of progression-free survival in patients with multiple myeloma following anthracycline-based chemotherapy based on dynamic FDG-PET. Clin Nucl Med 34(9):576–584. doi:10.​1097/​RLU.​0b013e3181b06bc5​ PubMed
78.
go back to reference Hatt M, Visvikis D, Albarghach NM, Tixier F, Pradier O, Cheze-le Rest C Prognostic value of (18)F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation methodology. Eur J Nucl Med Mol Imaging 38 (7):1191–1202. doi:10.1007/s00259-011-1755-7 Hatt M, Visvikis D, Albarghach NM, Tixier F, Pradier O, Cheze-le Rest C Prognostic value of (18)F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation methodology. Eur J Nucl Med Mol Imaging 38 (7):1191–1202. doi:10.​1007/​s00259-011-1755-7
79.
go back to reference Byrne HM Dissecting cancer through mathematics: from the cell to the animal model. Nat Rev Cancer 10 (3):221–230. doi:10.1038/nrc2808 Byrne HM Dissecting cancer through mathematics: from the cell to the animal model. Nat Rev Cancer 10 (3):221–230. doi:10.​1038/​nrc2808
80.
go back to reference Sanga S, Frieboes HB, Zheng X, Gatenby R, Bearer EL, Cristini V (2007) Predictive oncology: a review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth. Neuroimage 37(Suppl 1):S120–S134. doi:10.1016/j.neuroimage.2007.05.043 PubMed Sanga S, Frieboes HB, Zheng X, Gatenby R, Bearer EL, Cristini V (2007) Predictive oncology: a review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth. Neuroimage 37(Suppl 1):S120–S134. doi:10.​1016/​j.​neuroimage.​2007.​05.​043 PubMed
82.
83.
go back to reference Flux GD, Guy MJ, Beddows R, Pryor M, Flower MA (2002) Estimation and implications of random errors in whole-body dosimetry for targeted radionuclide therapy. Phys Med Biol 47(17):3211–3223PubMed Flux GD, Guy MJ, Beddows R, Pryor M, Flower MA (2002) Estimation and implications of random errors in whole-body dosimetry for targeted radionuclide therapy. Phys Med Biol 47(17):3211–3223PubMed
84.
go back to reference Gear JI, Charles-Edwards E, Partridge M, Flux GD (2007) A quality-control method for SPECT-based dosimetry in targeted radionuclide therapy. Cancer Biother Radiopharm 22(1):166–174. doi:10.1089/cbr.2007.305 PubMed Gear JI, Charles-Edwards E, Partridge M, Flux GD (2007) A quality-control method for SPECT-based dosimetry in targeted radionuclide therapy. Cancer Biother Radiopharm 22(1):166–174. doi:10.​1089/​cbr.​2007.​305 PubMed
85.
go back to reference Divoli A, Chiavassa S, Ferrer L, Barbet J, Flux GD, Bardies M (2009) Effect of patient morphology on dosimetric calculations for internal irradiation as assessed by comparisons of Monte Carlo versus conventional methodologies. J Nucl Med 50(2):316–323. doi:10.2967/jnumed.108.056705 PubMed Divoli A, Chiavassa S, Ferrer L, Barbet J, Flux GD, Bardies M (2009) Effect of patient morphology on dosimetric calculations for internal irradiation as assessed by comparisons of Monte Carlo versus conventional methodologies. J Nucl Med 50(2):316–323. doi:10.​2967/​jnumed.​108.​056705 PubMed
86.
go back to reference Wu HM, Huang SC, Choi Y, Hoh CK, Hawkins RA (1995) A modeling method to improve quantitation of fluorodeoxyglucose uptake in heterogeneous tumor tissue. J Nucl Med 36(2):297–306PubMed Wu HM, Huang SC, Choi Y, Hoh CK, Hawkins RA (1995) A modeling method to improve quantitation of fluorodeoxyglucose uptake in heterogeneous tumor tissue. J Nucl Med 36(2):297–306PubMed
87.
go back to reference Minn H, Zasadny KR, Quint LE, Wahl RL (1995) Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-d-glucose uptake at PET. Radiology 196(1):167–173PubMed Minn H, Zasadny KR, Quint LE, Wahl RL (1995) Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-d-glucose uptake at PET. Radiology 196(1):167–173PubMed
88.
go back to reference Torizuka T, Zasadny KR, Recker B, Wahl RL (1998) Untreated primary lung and breast cancers: correlation between F-18 FDG kinetic rate constants and findings of in vitro studies. Radiology 207(3):767–774PubMed Torizuka T, Zasadny KR, Recker B, Wahl RL (1998) Untreated primary lung and breast cancers: correlation between F-18 FDG kinetic rate constants and findings of in vitro studies. Radiology 207(3):767–774PubMed
89.
go back to reference Sugawara Y, Zasadny KR, Grossman HB, Francis IR, Clarke MF, Wahl RL (1999) Germ cell tumor: differentiation of viable tumor, mature teratoma, and necrotic tissue with FDG PET and kinetic modeling. Radiology 211(1):249–256PubMed Sugawara Y, Zasadny KR, Grossman HB, Francis IR, Clarke MF, Wahl RL (1999) Germ cell tumor: differentiation of viable tumor, mature teratoma, and necrotic tissue with FDG PET and kinetic modeling. Radiology 211(1):249–256PubMed
90.
go back to reference Dimitrakopoulou-Strauss A, Strauss LG, Schwarzbach M, Burger C, Heichel T, Willeke F, Mechtersheimer G, Lehnert T (2001) Dynamic PET 18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading. J Nucl Med 42(5):713–720PubMed Dimitrakopoulou-Strauss A, Strauss LG, Schwarzbach M, Burger C, Heichel T, Willeke F, Mechtersheimer G, Lehnert T (2001) Dynamic PET 18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading. J Nucl Med 42(5):713–720PubMed
91.
go back to reference Dimitrakopoulou-Strauss A, Strauss LG, Burger C, Ruhl A, Irngartinger G, Stremmel W, Rudi J (2004) Prognostic aspects of 18F-FDG PET kinetics in patients with metastatic colorectal carcinoma receiving FOLFOX chemotherapy. J Nucl Med 45(9):1480–1487PubMed Dimitrakopoulou-Strauss A, Strauss LG, Burger C, Ruhl A, Irngartinger G, Stremmel W, Rudi J (2004) Prognostic aspects of 18F-FDG PET kinetics in patients with metastatic colorectal carcinoma receiving FOLFOX chemotherapy. J Nucl Med 45(9):1480–1487PubMed
92.
go back to reference Dimitrakopoulou-Strauss A, Strauss L (2006) Quantitative studies using positron emission tomography (PET) for the diagnosis and therapy planning of oncological patients. Hell J Nucl Med 9(1):10–21PubMed Dimitrakopoulou-Strauss A, Strauss L (2006) Quantitative studies using positron emission tomography (PET) for the diagnosis and therapy planning of oncological patients. Hell J Nucl Med 9(1):10–21PubMed
93.
go back to reference Dimitrakopoulou-Strauss A, Strauss LG, Egerer G, Vasamiliette J, Mechtersheimer G, Schmitt T, Lehner B, Haberkorn U, Stroebel P, Kasper B Impact of dynamic 18F-FDG PET on the early prediction of therapy outcome in patients with high-risk soft-tissue sarcomas after neoadjuvant chemotherapy: a feasibility study. J Nucl Med 51 (4):551–558. doi:10.2967/jnumed.109.070862 Dimitrakopoulou-Strauss A, Strauss LG, Egerer G, Vasamiliette J, Mechtersheimer G, Schmitt T, Lehner B, Haberkorn U, Stroebel P, Kasper B Impact of dynamic 18F-FDG PET on the early prediction of therapy outcome in patients with high-risk soft-tissue sarcomas after neoadjuvant chemotherapy: a feasibility study. J Nucl Med 51 (4):551–558. doi:10.​2967/​jnumed.​109.​070862
94.
go back to reference Roe K, Aleksandersen TB, Kristian A, Nilsen LB, Seierstad T, Qu H, Ree AH, Olsen DR, Malinen E Preclinical dynamic 18F-FDG PET—tumor characterization and radiotherapy response assessment by kinetic compartment analysis. Acta Oncol 49 (7):914–921. doi:10.3109/0284186X.2010.498831 Roe K, Aleksandersen TB, Kristian A, Nilsen LB, Seierstad T, Qu H, Ree AH, Olsen DR, Malinen E Preclinical dynamic 18F-FDG PET—tumor characterization and radiotherapy response assessment by kinetic compartment analysis. Acta Oncol 49 (7):914–921. doi:10.​3109/​0284186X.​2010.​498831
95.
go back to reference Dunnwald LK, Doot RK, Specht JM, Gralow JR, Ellis GK, Livingston RB, Linden HM, Gadi VK, Kurland BF, Schubert EK, Muzi M, Mankoff DA PET Tumor Metabolism in Locally Advanced Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy: Value of Static versus Kinetic Measures of Fluorodeoxyglucose Uptake. Clin Cancer Res 17 (8):2400–2409. doi:10.1158/1078-0432.CCR-10-2649 Dunnwald LK, Doot RK, Specht JM, Gralow JR, Ellis GK, Livingston RB, Linden HM, Gadi VK, Kurland BF, Schubert EK, Muzi M, Mankoff DA PET Tumor Metabolism in Locally Advanced Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy: Value of Static versus Kinetic Measures of Fluorodeoxyglucose Uptake. Clin Cancer Res 17 (8):2400–2409. doi:10.​1158/​1078-0432.​CCR-10-2649
96.
go back to reference Kenny L, Vigushin D, Al-Nahhas A, Osman S, Luthra S, Coombes C, Aboagye E (2005) Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 65(21) Kenny L, Vigushin D, Al-Nahhas A, Osman S, Luthra S, Coombes C, Aboagye E (2005) Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 65(21)
97.
go back to reference Muzi M, Vesselle H, Grierson JR, Mankoff DA, Schmidt RA, Peterson L, Wells JM, Krohn KA (2005) Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer. J Nucl Med 46(2):274–282PubMed Muzi M, Vesselle H, Grierson JR, Mankoff DA, Schmidt RA, Peterson L, Wells JM, Krohn KA (2005) Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer. J Nucl Med 46(2):274–282PubMed
98.
go back to reference Jacobs AH, Thomas A, Kracht LW, Li H, Dittmar C, Garlip G, Galldiks N, Klein JC, Sobesky J, Hilker R, Vollmar S, Herholz K, Wienhard K, Heiss WD (2005) 18F-fluoro-l-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46(12):1948–1958PubMed Jacobs AH, Thomas A, Kracht LW, Li H, Dittmar C, Garlip G, Galldiks N, Klein JC, Sobesky J, Hilker R, Vollmar S, Herholz K, Wienhard K, Heiss WD (2005) 18F-fluoro-l-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46(12):1948–1958PubMed
99.
go back to reference Muzi M, Spence AM, O’Sullivan F, Mankoff DA, Wells JM, Grierson JR, Link JM, Krohn KA (2006) Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine in patients with gliomas. J Nucl Med 47(10):1612–1621PubMed Muzi M, Spence AM, O’Sullivan F, Mankoff DA, Wells JM, Grierson JR, Link JM, Krohn KA (2006) Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine in patients with gliomas. J Nucl Med 47(10):1612–1621PubMed
100.
go back to reference Ullrich R, Backes H, Li H, Kracht L, Miletic H, Kesper K, Neumaier B, Heiss WD, Wienhard K, Jacobs AH (2008) Glioma proliferation as assessed by 3′-fluoro-3′-deoxy-l-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res 14(7):2049–2055. doi:10.1158/1078-0432.CCR-07-1553 PubMed Ullrich R, Backes H, Li H, Kracht L, Miletic H, Kesper K, Neumaier B, Heiss WD, Wienhard K, Jacobs AH (2008) Glioma proliferation as assessed by 3′-fluoro-3′-deoxy-l-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res 14(7):2049–2055. doi:10.​1158/​1078-0432.​CCR-07-1553 PubMed
101.
go back to reference Pan MH, Huang SC, Liao YP, Schaue D, Wang CC, Stout DB, Barrio JR, McBride WH (2008) FLT-PET imaging of radiation responses in murine tumors. Mol Imaging Biol 10(6):325–334. doi:10.1007/s11307-008-0158-z PubMed Pan MH, Huang SC, Liao YP, Schaue D, Wang CC, Stout DB, Barrio JR, McBride WH (2008) FLT-PET imaging of radiation responses in murine tumors. Mol Imaging Biol 10(6):325–334. doi:10.​1007/​s11307-008-0158-z PubMed
102.
go back to reference Kim SJ, Lee JS, Im KC, Kim SY, Park SA, Lee SJ, Oh SJ, Lee DS, Moon DH (2008) Kinetic modeling of 3′-deoxy-3′-18F-fluorothymidine for quantitative cell proliferation imaging in subcutaneous tumor models in mice. J Nucl Med 49(12):2057–2066. doi:10.2967/jnumed.108.053215 PubMed Kim SJ, Lee JS, Im KC, Kim SY, Park SA, Lee SJ, Oh SJ, Lee DS, Moon DH (2008) Kinetic modeling of 3′-deoxy-3′-18F-fluorothymidine for quantitative cell proliferation imaging in subcutaneous tumor models in mice. J Nucl Med 49(12):2057–2066. doi:10.​2967/​jnumed.​108.​053215 PubMed
103.
go back to reference Eary JF, Mankoff DA, Spence AM, Berger MS, Olshen A, Link JM, O’Sullivan F, Krohn KA (1999) 2-[C-11]thymidine imaging of malignant brain tumors. Cancer Res 59(3):615–621PubMed Eary JF, Mankoff DA, Spence AM, Berger MS, Olshen A, Link JM, O’Sullivan F, Krohn KA (1999) 2-[C-11]thymidine imaging of malignant brain tumors. Cancer Res 59(3):615–621PubMed
104.
go back to reference Wells P, Gunn RN, Alison M, Steel C, Golding M, Ranicar AS, Brady F, Osman S, Jones T, Price P (2002) Assessment of proliferation in vivo using 2-[(11)C]thymidine positron emission tomography in advanced intra-abdominal malignancies. Cancer Res 62(20):5698–5702PubMed Wells P, Gunn RN, Alison M, Steel C, Golding M, Ranicar AS, Brady F, Osman S, Jones T, Price P (2002) Assessment of proliferation in vivo using 2-[(11)C]thymidine positron emission tomography in advanced intra-abdominal malignancies. Cancer Res 62(20):5698–5702PubMed
105.
go back to reference Kissel J, Brix G, Bellemann ME, Strauss LG, Dimitrakopoulou-Strauss A, Port R, Haberkorn U, Lorenz WJ (1997) Pharmacokinetic analysis of 5-[18F]fluorouracil tissue concentrations measured with positron emission tomography in patients with liver metastases from colorectal adenocarcinoma. Cancer Res 57(16):3415–3423PubMed Kissel J, Brix G, Bellemann ME, Strauss LG, Dimitrakopoulou-Strauss A, Port R, Haberkorn U, Lorenz WJ (1997) Pharmacokinetic analysis of 5-[18F]fluorouracil tissue concentrations measured with positron emission tomography in patients with liver metastases from colorectal adenocarcinoma. Cancer Res 57(16):3415–3423PubMed
106.
go back to reference Meikle SR, Matthews JC, Brock CS, Wells P, Harte RJ, Cunningham VJ, Jones T, Price P (1998) Pharmacokinetic assessment of novel anti-cancer drugs using spectral analysis and positron emission tomography: a feasibility study. Cancer Chemother Pharmacol 42(3):183–193PubMed Meikle SR, Matthews JC, Brock CS, Wells P, Harte RJ, Cunningham VJ, Jones T, Price P (1998) Pharmacokinetic assessment of novel anti-cancer drugs using spectral analysis and positron emission tomography: a feasibility study. Cancer Chemother Pharmacol 42(3):183–193PubMed
107.
go back to reference Bading JR, Alauddin MM, Fissekis JD, Shahinian AH, Joung J, Spector T, Conti PS (2000) Blocking catabolism with eniluracil enhances PET studies of 5-[18F]fluorouracil pharmacokinetics. J Nucl Med 41(10):1714–1724PubMed Bading JR, Alauddin MM, Fissekis JD, Shahinian AH, Joung J, Spector T, Conti PS (2000) Blocking catabolism with eniluracil enhances PET studies of 5-[18F]fluorouracil pharmacokinetics. J Nucl Med 41(10):1714–1724PubMed
108.
go back to reference Bading JR, Yoo PB, Fissekis JD, Alauddin MM, D’Argenio DZ, Conti PS (2003) Kinetic modeling of 5-fluorouracil anabolism in colorectal adenocarcinoma: a positron emission tomography study in rats. Cancer Res 63(13):3667–3674PubMed Bading JR, Yoo PB, Fissekis JD, Alauddin MM, D’Argenio DZ, Conti PS (2003) Kinetic modeling of 5-fluorouracil anabolism in colorectal adenocarcinoma: a positron emission tomography study in rats. Cancer Res 63(13):3667–3674PubMed
109.
go back to reference Dimitrakopoulou-Strauss A, Strauss LG, Gutzler F, Irngartinger G, Kontaxakis G, Kim DK, Oberdorfer F, van Kaick G (1999) Pharmacokinetic imaging of 11C ethanol with PET in eight patients with hepatocellular carcinomas who were scheduled for treatment with percutaneous ethanol injection. Radiology 211(3):681–686PubMed Dimitrakopoulou-Strauss A, Strauss LG, Gutzler F, Irngartinger G, Kontaxakis G, Kim DK, Oberdorfer F, van Kaick G (1999) Pharmacokinetic imaging of 11C ethanol with PET in eight patients with hepatocellular carcinomas who were scheduled for treatment with percutaneous ethanol injection. Radiology 211(3):681–686PubMed
110.
go back to reference Dimitrakopoulou-Strauss A, Strauss LG, Burger C (2001) Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[18F]fluoro-l-dopa with 18F-FDG and (15)O-water using compartment and noncompartment analysis. J Nucl Med 42(2):248–256PubMed Dimitrakopoulou-Strauss A, Strauss LG, Burger C (2001) Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[18F]fluoro-l-dopa with 18F-FDG and (15)O-water using compartment and noncompartment analysis. J Nucl Med 42(2):248–256PubMed
111.
113.
go back to reference Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S, Schuhmacher J, Strauss LG, Doll J, Macke HR, Eisenhut M, Debus J, Haberkorn U (2005) Characterization of 68 Ga-DOTA-d-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med 46(5):763–769PubMed Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S, Schuhmacher J, Strauss LG, Doll J, Macke HR, Eisenhut M, Debus J, Haberkorn U (2005) Characterization of 68 Ga-DOTA-d-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med 46(5):763–769PubMed
114.
go back to reference Dimitrakopoulou-Strauss A, Georgoulias V, Eisenhut M, Herth F, Koukouraki S, Macke HR, Haberkorn U, Strauss LG (2006) Quantitative assessment of SSTR2 expression in patients with non-small cell lung cancer using(68)Ga-DOTATOC PET and comparison with (18)F-FDG PET. Eur J Nucl Med Mol Imaging 33(7):823–830. doi:10.1007/s00259-005-0063-5 PubMed Dimitrakopoulou-Strauss A, Georgoulias V, Eisenhut M, Herth F, Koukouraki S, Macke HR, Haberkorn U, Strauss LG (2006) Quantitative assessment of SSTR2 expression in patients with non-small cell lung cancer using(68)Ga-DOTATOC PET and comparison with (18)F-FDG PET. Eur J Nucl Med Mol Imaging 33(7):823–830. doi:10.​1007/​s00259-005-0063-5 PubMed
115.
go back to reference Beer AJ, Grosu AL, Carlsen J, Kolk A, Sarbia M, Stangier I, Watzlowik P, Wester HJ, Haubner R, Schwaiger M (2007) [18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13(22 Pt 1):6610–6616. doi:10.1158/1078-0432.CCR-07-0528 PubMed Beer AJ, Grosu AL, Carlsen J, Kolk A, Sarbia M, Stangier I, Watzlowik P, Wester HJ, Haubner R, Schwaiger M (2007) [18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13(22 Pt 1):6610–6616. doi:10.​1158/​1078-0432.​CCR-07-0528 PubMed
116.
go back to reference Doot RK, Muzi M, Peterson LM, Schubert EK, Gralow JR, Specht JM, Mankoff DA Kinetic analysis of 18F-fluoride PET images of breast cancer bone metastases. J Nucl Med 51 (4):521–527. doi:10.2967/jnumed.109.070052 Doot RK, Muzi M, Peterson LM, Schubert EK, Gralow JR, Specht JM, Mankoff DA Kinetic analysis of 18F-fluoride PET images of breast cancer bone metastases. J Nucl Med 51 (4):521–527. doi:10.​2967/​jnumed.​109.​070052
Metadata
Title
Importance of Quantification for the Analysis of PET Data in Oncology: Review of Current Methods and Trends for the Future
Authors
Giampaolo Tomasi
Federico Turkheimer
Eric Aboagye
Publication date
01-04-2012
Publisher
Springer-Verlag
Published in
Molecular Imaging and Biology / Issue 2/2012
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-011-0514-2

Other articles of this Issue 2/2012

Molecular Imaging and Biology 2/2012 Go to the issue