Skip to main content
Top
Published in: Head and Neck Pathology 1/2018

01-03-2018 | Original Paper

Usefulness of NKX2.2 Immunohistochemistry for Distinguishing Ewing Sarcoma from Other Sinonasal Small Round Blue Cell Tumors

Authors: Austin McCuiston, Justin A. Bishop

Published in: Head and Neck Pathology | Issue 1/2018

Login to get access

Abstract

NKX2.2 is a new immunohistochemical marker that has been reported to be sensitive and specific for Ewing sarcoma (ES). It has not, however, been investigated specifically in the sinonasal small round blue cell tumor (SRBCT) differential diagnosis which includes many tumors specific to that site. It has also not been investigated in the newly recognized “adamantinoma-like” variant of ES. Immunohistochemistry for NKX2.2 was performed on 170 poorly differentiated sinonasal neoplasms: 73 squamous cell carcinomas (67 poorly differentiated, non-keratinizing, or basaloid types and 6 nasopharyngeal carcinomas), 46 olfactory neuroblastomas, 8 sinonasal undifferentiated carcinomas (SNUCs), 6 melanomas, 7 Ewing sarcomas, 6 SMARCB1-deficient carcinomas, 6 teratocarcinosarcomas, 5 alveolar rhabdomyosarcomas, 4 solid adenoid cystic carcinomas, 4 NK/T cell lymphomas, 3 NUT carcinomas, and 2 small cell carcinomas. NKX2.2 was positive in 7 of 7 (100%) Ewing sarcomas, including 3 adamantinoma-like variant (all diffuse, 5 strong and 2 weak). It was also positive in 5 of 6 (83%) teratocarcinosarcomas (strong, but focal), 12 of 46 (26%) olfactory neuroblastomas (diffuse, 2 strong and 10 weak), 4 of 6 melanomas (2 diffuse, 2 focal, all weak), and 1 of 2 small cell carcinomas (diffuse and strong). All squamous cell carcinomas, NUT carcinomas, SMARCB1-deficient carcinomas, SNUCs, solid adenoid cystic carcinomas, NK/T cell lymphomas, and alveolar rhabdomyosarcomas were negative. In the sinonasal SRBCT differential diagnosis, NKX2.2 is a useful and very sensitive marker for Ewing sarcoma, including the treacherous adamantinoma-like variant. At the same time, it is not entirely specific, as it will be positive in a subset of other neuroendocrine/neuroectodermal tumors. As a result, NKX2.2 must be utilized as part of an immunohistochemical panel with other markers, especially cytokeratins, melanoma markers, and CD99.
Literature
1.
go back to reference Weiss SW, Goldblum JR. Enzinger and Weiss’s soft tissue tumors. 5th ed. Philadelphia: Mosby Elsevier; 2008. Weiss SW, Goldblum JR. Enzinger and Weiss’s soft tissue tumors. 5th ed. Philadelphia: Mosby Elsevier; 2008.
2.
go back to reference Qi Y, Cai J, Wu Y, Wu R, Lee J, Fu H, et al. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development. 2001;128:2723–33.PubMed Qi Y, Cai J, Wu Y, Wu R, Lee J, Fu H, et al. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development. 2001;128:2723–33.PubMed
3.
go back to reference Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessell TM, Rubenstein JLR, et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature. 1999;398:622–7.CrossRefPubMed Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessell TM, Rubenstein JLR, et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature. 1999;398:622–7.CrossRefPubMed
4.
go back to reference Wang Y-C, Gallego-Arteche E, Iezza G, Yuan X, Matli MR, Choo S-P, et al. Homeodomain transcription factor NKX2.2 functions in immature cells to control enteroendocrine differentiation and is expressed in gastrointestinal neuroendocrine tumors. Endocr Relat Cancer. 2009;16:267–79.CrossRefPubMed Wang Y-C, Gallego-Arteche E, Iezza G, Yuan X, Matli MR, Choo S-P, et al. Homeodomain transcription factor NKX2.2 functions in immature cells to control enteroendocrine differentiation and is expressed in gastrointestinal neuroendocrine tumors. Endocr Relat Cancer. 2009;16:267–79.CrossRefPubMed
5.
go back to reference Sussel L, Kalamaras J, Hartigan-O’Connor DJ, Meneses JJ, Pedersen RA, Rubenstein JL, et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development. 1998;125:2213–21.PubMed Sussel L, Kalamaras J, Hartigan-O’Connor DJ, Meneses JJ, Pedersen RA, Rubenstein JL, et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development. 1998;125:2213–21.PubMed
6.
go back to reference Hung YP, Fletcher CDM, Hornick JL. Evaluation of NKX2-2 expression in round cell sarcomas and other tumors with EWSR1 rearrangement: imperfect specificity for Ewing sarcoma. Mod Pathol. 2016;29:370–80.CrossRefPubMed Hung YP, Fletcher CDM, Hornick JL. Evaluation of NKX2-2 expression in round cell sarcomas and other tumors with EWSR1 rearrangement: imperfect specificity for Ewing sarcoma. Mod Pathol. 2016;29:370–80.CrossRefPubMed
7.
go back to reference Yoshida A, Sekine S, Tsuta K, Fukayama M, Furuta K, Tsuda H. NKX2.2 is a Useful Immunohistochemical Marker for Ewing Sarcoma. Am J Surg Pathol. 2012;36:993–9.CrossRefPubMed Yoshida A, Sekine S, Tsuta K, Fukayama M, Furuta K, Tsuda H. NKX2.2 is a Useful Immunohistochemical Marker for Ewing Sarcoma. Am J Surg Pathol. 2012;36:993–9.CrossRefPubMed
8.
go back to reference Fadul J, Bell R, Hoffman LM, Beckerle MC, Engel ME, Lessnick SL. EWS/FLI utilizes NKX2-2 to repress mesenchymal features of Ewing sarcoma. Genes Cancer. 2015;6:129–43.PubMedPubMedCentral Fadul J, Bell R, Hoffman LM, Beckerle MC, Engel ME, Lessnick SL. EWS/FLI utilizes NKX2-2 to repress mesenchymal features of Ewing sarcoma. Genes Cancer. 2015;6:129–43.PubMedPubMedCentral
9.
go back to reference Smith R, Owen LA, Trem DJ, Wong JS, Whangbo JS, Golub TR, et al. Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing’s sarcoma. Cancer Cell. 2006;9:405–16.CrossRefPubMed Smith R, Owen LA, Trem DJ, Wong JS, Whangbo JS, Golub TR, et al. Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing’s sarcoma. Cancer Cell. 2006;9:405–16.CrossRefPubMed
10.
go back to reference Owen LA, Kowalewski AA, Lessnick SL. EWS/FLI mediates transcriptional repression via NKX2.2 during oncogenic transformation in Ewing’s sarcoma. PLoS ONE. 2008;3:e1965.CrossRefPubMedPubMedCentral Owen LA, Kowalewski AA, Lessnick SL. EWS/FLI mediates transcriptional repression via NKX2.2 during oncogenic transformation in Ewing’s sarcoma. PLoS ONE. 2008;3:e1965.CrossRefPubMedPubMedCentral
11.
go back to reference Shibuya R, Matsuyama A, Nakamoto M, Shiba E, Kasai T, Hisaoka M. The combination of CD99 and NKX2.2, a transcriptional target of EWSR1-FLI1, is highly specific for the diagnosis of Ewing sarcoma. Virchows Arch. 2014;465:599–605.CrossRefPubMed Shibuya R, Matsuyama A, Nakamoto M, Shiba E, Kasai T, Hisaoka M. The combination of CD99 and NKX2.2, a transcriptional target of EWSR1-FLI1, is highly specific for the diagnosis of Ewing sarcoma. Virchows Arch. 2014;465:599–605.CrossRefPubMed
12.
go back to reference Simons SA, Bridge JA, Leon ME. Sinonasal small round blue cell tumors: an approach to diagnosis. Semin Diagn Pathol. 2016;33:91–103.CrossRefPubMed Simons SA, Bridge JA, Leon ME. Sinonasal small round blue cell tumors: an approach to diagnosis. Semin Diagn Pathol. 2016;33:91–103.CrossRefPubMed
14.
go back to reference Bishop JA. Recently described neoplasms of the sinonasal tract. Semin Diagn Pathol. 2016;33:62–70.CrossRefPubMed Bishop JA. Recently described neoplasms of the sinonasal tract. Semin Diagn Pathol. 2016;33:62–70.CrossRefPubMed
15.
go back to reference Bishop JA, Alaggio R, Zhang L, Seethala RR, Antonescu CR. Adamantinoma-like Ewing family tumors of the head and neck: a pitfall in the differential diagnosis of basaloid and myoepithelial carcinomas. Am J Surg Pathol. 2015;39:1267–74.CrossRefPubMedPubMedCentral Bishop JA, Alaggio R, Zhang L, Seethala RR, Antonescu CR. Adamantinoma-like Ewing family tumors of the head and neck: a pitfall in the differential diagnosis of basaloid and myoepithelial carcinomas. Am J Surg Pathol. 2015;39:1267–74.CrossRefPubMedPubMedCentral
16.
go back to reference Folpe AL, Goldblum JR, Rubin BP, Shehata BM, Liu W, Dei Tos AP, et al. Morphologic and immunophenotypic diversity in Ewing family tumors: a study of 66 genetically confirmed cases. Am J Surg Pathol. 2005;29:1025–33.PubMed Folpe AL, Goldblum JR, Rubin BP, Shehata BM, Liu W, Dei Tos AP, et al. Morphologic and immunophenotypic diversity in Ewing family tumors: a study of 66 genetically confirmed cases. Am J Surg Pathol. 2005;29:1025–33.PubMed
17.
go back to reference Bishop JA, Guo TW, Smith DF, Wang H, Ogawa T, Pai SI, et al. Human papillomavirus-related carcinomas of the sinonasal tract. Am J Surg Pathol. 2013;37:185–92.CrossRefPubMedPubMedCentral Bishop JA, Guo TW, Smith DF, Wang H, Ogawa T, Pai SI, et al. Human papillomavirus-related carcinomas of the sinonasal tract. Am J Surg Pathol. 2013;37:185–92.CrossRefPubMedPubMedCentral
18.
go back to reference Tilson MP, Gallia GL, Bishop JA. Among sinonasal tumors, CDX-2 immunoexpression is not restricted to intestinal-type adenocarcinomas. Head Neck Pathol. 2013;8:59–65.CrossRefPubMedPubMedCentral Tilson MP, Gallia GL, Bishop JA. Among sinonasal tumors, CDX-2 immunoexpression is not restricted to intestinal-type adenocarcinomas. Head Neck Pathol. 2013;8:59–65.CrossRefPubMedPubMedCentral
20.
go back to reference Alexiev BA, Tumer Y, Bishop JA. Sinonasal adamantinoma-like Ewing sarcoma: a case report. Pathol Res Pract. 2017;213:422–6.CrossRefPubMed Alexiev BA, Tumer Y, Bishop JA. Sinonasal adamantinoma-like Ewing sarcoma: a case report. Pathol Res Pract. 2017;213:422–6.CrossRefPubMed
21.
go back to reference Iezzoni JC, Mills SE. “Undifferentiated” small round cell tumors of the sinonasal tract: differential diagnosis update. Am J Clin Pathol. 2005;124(Suppl):S110–21.PubMed Iezzoni JC, Mills SE. “Undifferentiated” small round cell tumors of the sinonasal tract: differential diagnosis update. Am J Clin Pathol. 2005;124(Suppl):S110–21.PubMed
22.
go back to reference Tilson MP, Bishop JA. Utility of p40 in the differential diagnosis of small round blue cell tumors of the sinonasal tract. Head Neck Pathol. 2013;8:141–5.CrossRefPubMedPubMedCentral Tilson MP, Bishop JA. Utility of p40 in the differential diagnosis of small round blue cell tumors of the sinonasal tract. Head Neck Pathol. 2013;8:141–5.CrossRefPubMedPubMedCentral
23.
go back to reference Chapman-Fredricks J, Jorda M, Gomez-Fernandez C. A limited immunohistochemical panel helps differentiate small cell epithelial malignancies of the sinonasal cavity and nasopharynx. Appl Immunohistochem Mol Morphol AIMM. 2009;17:207–10.CrossRefPubMed Chapman-Fredricks J, Jorda M, Gomez-Fernandez C. A limited immunohistochemical panel helps differentiate small cell epithelial malignancies of the sinonasal cavity and nasopharynx. Appl Immunohistochem Mol Morphol AIMM. 2009;17:207–10.CrossRefPubMed
25.
go back to reference Hafezi S, Seethala RR, Stelow EB, Mills SE, Leong IT, MacDuff E, et al. Ewing’s family of tumors of the sinonasal tract and maxillary bone. Head Neck Pathol. 2011;5:8–16.CrossRefPubMed Hafezi S, Seethala RR, Stelow EB, Mills SE, Leong IT, MacDuff E, et al. Ewing’s family of tumors of the sinonasal tract and maxillary bone. Head Neck Pathol. 2011;5:8–16.CrossRefPubMed
26.
go back to reference Vaccani JP, Forte V, de Jong AL, Taylor G. Ewing’s sarcoma of the head and neck in children. Int J Pediatr Otorhinolaryngol. 1999;48:209–16.CrossRefPubMed Vaccani JP, Forte V, de Jong AL, Taylor G. Ewing’s sarcoma of the head and neck in children. Int J Pediatr Otorhinolaryngol. 1999;48:209–16.CrossRefPubMed
28.
go back to reference Rodriguez-Galindo C, Spunt SL, Pappo AS. Treatment of Ewing sarcoma family of tumors: current status and outlook for the future. Med Pediatr Oncol. 2003;40:276–87.CrossRefPubMed Rodriguez-Galindo C, Spunt SL, Pappo AS. Treatment of Ewing sarcoma family of tumors: current status and outlook for the future. Med Pediatr Oncol. 2003;40:276–87.CrossRefPubMed
29.
go back to reference Bridge RS, Rajaram V, Dehner LP, Pfeifer JD, Perry A. Molecular diagnosis of Ewing sarcoma/primitive neuroectodermal tumor in routinely processed tissue: a comparison of two FISH strategies and RT-PCR in malignant round cell tumors. Mod Pathol. 2006;19:1–8.CrossRefPubMed Bridge RS, Rajaram V, Dehner LP, Pfeifer JD, Perry A. Molecular diagnosis of Ewing sarcoma/primitive neuroectodermal tumor in routinely processed tissue: a comparison of two FISH strategies and RT-PCR in malignant round cell tumors. Mod Pathol. 2006;19:1–8.CrossRefPubMed
30.
go back to reference Weidner N, Tjoe J. Immunohistochemical profile of monoclonal antibody O13: antibody that recognizes glycoprotein p30/32MIC2 and is useful in diagnosing Ewing’s sarcoma and peripheral neuroepithelioma. Am J Surg Pathol. 1994;18:486–94.CrossRefPubMed Weidner N, Tjoe J. Immunohistochemical profile of monoclonal antibody O13: antibody that recognizes glycoprotein p30/32MIC2 and is useful in diagnosing Ewing’s sarcoma and peripheral neuroepithelioma. Am J Surg Pathol. 1994;18:486–94.CrossRefPubMed
31.
go back to reference Llombart-Bosch A, Machado I, Navarro S, Bertoni F, Bacchini P, Alberghini M, et al. Histological heterogeneity of Ewing’s sarcoma/PNET: an immunohistochemical analysis of 415 genetically confirmed cases with clinical support. Virchows Arch. 2009;455:397–411.CrossRefPubMed Llombart-Bosch A, Machado I, Navarro S, Bertoni F, Bacchini P, Alberghini M, et al. Histological heterogeneity of Ewing’s sarcoma/PNET: an immunohistochemical analysis of 415 genetically confirmed cases with clinical support. Virchows Arch. 2009;455:397–411.CrossRefPubMed
32.
go back to reference Fatima SS, Minhas K, Din NU, Fatima S, Ahmed A, Ahmad Z. Sinonasal teratocarcinosarcoma: a clinicopathologic and immunohistochemical study of 6 cases. Ann Diagn Pathol. 2013;17:313–8.CrossRefPubMed Fatima SS, Minhas K, Din NU, Fatima S, Ahmed A, Ahmad Z. Sinonasal teratocarcinosarcoma: a clinicopathologic and immunohistochemical study of 6 cases. Ann Diagn Pathol. 2013;17:313–8.CrossRefPubMed
33.
go back to reference Pai SA, Naresh KN, Masih K, Ramarao C, Borges AM. Teratocarcinosarcoma of the paranasal sinuses: a clinicopathologic and immunohistochemical study. Hum Pathol. 1998;29:718–22.CrossRefPubMed Pai SA, Naresh KN, Masih K, Ramarao C, Borges AM. Teratocarcinosarcoma of the paranasal sinuses: a clinicopathologic and immunohistochemical study. Hum Pathol. 1998;29:718–22.CrossRefPubMed
34.
go back to reference Yang S, Sun R, Liang J, Zhou Z, Zhou J, Rui J. Sinonasal teratocarcinosarcoma: a clinical and pathological analysis. Int J Surg Pathol. 2013;21:37–43.CrossRefPubMed Yang S, Sun R, Liang J, Zhou Z, Zhou J, Rui J. Sinonasal teratocarcinosarcoma: a clinical and pathological analysis. Int J Surg Pathol. 2013;21:37–43.CrossRefPubMed
Metadata
Title
Usefulness of NKX2.2 Immunohistochemistry for Distinguishing Ewing Sarcoma from Other Sinonasal Small Round Blue Cell Tumors
Authors
Austin McCuiston
Justin A. Bishop
Publication date
01-03-2018
Publisher
Springer US
Published in
Head and Neck Pathology / Issue 1/2018
Electronic ISSN: 1936-0568
DOI
https://doi.org/10.1007/s12105-017-0830-1

Other articles of this Issue 1/2018

Head and Neck Pathology 1/2018 Go to the issue

Proceedings of the North American Society of Head and Neck Pathology Companion Meeting, March 18, 2018, Vancouver, British Columbia, Canada

Human Papillomavirus-Related Neuroendocrine Carcinomas of the Head and Neck

Sine qua non Clinicopathologic Correlation

Angioleiomyoma (Vascular Leiomyoma) of the Oral Cavity