Skip to main content
Top
Published in: Clinical and Translational Oncology 12/2017

Open Access 01-12-2017 | Research Article

Influence of ovarian cancer type I and type II microenvironment on the phenotype and function of monocyte-derived dendritic cells

Authors: J. Surówka, I. Wertel, K. Okła, W. Bednarek, R. Tarkowski, J. Kotarski

Published in: Clinical and Translational Oncology | Issue 12/2017

Login to get access

Abstract

PURPOSE

The aim of this study was to evaluate the influence of ovarian cancer cell lysates isolated from type I or type II ovarian cancer (OC) on the phenotype of monocyte-derived dendritic cells (Mo-DCs) and the cytokine profile. We also determined whether the Mo-DCs and tumor microenvironment, reflected by peritoneal fluid (PF) from type I or II ovarian cancer, could promote regulatory T cell (Tregs) differentiation from naive CD4+ lymphocytes in vitro.

RESULTS

Our results show a significant role of the ovarian cancer microenvironment reflected by PF from type I or II OC in the inhibition of the DC differentiation process. Interestingly, the percentage of cells co-expressing CD45 and CD14 antigens in the cultures stimulated with PF from both type I and type II OC was higher than in the control. Furthermore, the percentage of cells expressing CD1a, i.e., a marker of immature DCs, was significantly reduced in the cultures stimulated with PF from type I and type II OC. The results obtained show that ovarian cancer type II lysates induce differentiation of monocytes into macrophage-like cells with a CD1a+/HLA-DR+/CD83 phenotype and significantly higher CD86/HLA-DR expression. We show that ovarian cancer type II Mo-DCs are able to prevent an immune response by release of IL-10, whereas OC type I Mo-DCs can promote the generation of Tregs.

CONCLUSIONS

We demonstrate that each type of ovarian cancer can induce a unique phenotype of DCs and differentiation of Tregs, both associated with immune-suppressive function, which may be an obstacle while developing effective anticancer dendritic cell vaccination.
Literature
1.
go back to reference Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1. 0, cancer incidence and mortality worldwide: IARC cancer base no. 11. Lyon: International Agency for Research on Cancer. 2013. Accessed 29 Dec 2015. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1. 0, cancer incidence and mortality worldwide: IARC cancer base no. 11. Lyon: International Agency for Research on Cancer. 2013. Accessed 29 Dec 2015.
2.
go back to reference Chester C, Dorigo O, Berek JS, Kohrt H. Immunotherapeutic approaches to ovarian cancer treatment. J Immunother Cancer. 2015;24:3–7. Chester C, Dorigo O, Berek JS, Kohrt H. Immunotherapeutic approaches to ovarian cancer treatment. J Immunother Cancer. 2015;24:3–7.
3.
go back to reference IeM Shih, RJ Kurman. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol. 2004;164(5):1511–8.CrossRef IeM Shih, RJ Kurman. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol. 2004;164(5):1511–8.CrossRef
4.
go back to reference Kurman RJ, I-M Shih. The dualistic model of ovarian carcinogenesis: revisited, revised, and expanded. Am J Pathol. 2016;186(4):733–47.CrossRefPubMed Kurman RJ, I-M Shih. The dualistic model of ovarian carcinogenesis: revisited, revised, and expanded. Am J Pathol. 2016;186(4):733–47.CrossRefPubMed
5.
go back to reference Latha TS, Panati K, Gowd DS, Reddy MC, Lomada D. Ovarian cancer biology and immunotherapy. Int Rev Immunol. 2014;33(5):428–40.CrossRefPubMed Latha TS, Panati K, Gowd DS, Reddy MC, Lomada D. Ovarian cancer biology and immunotherapy. Int Rev Immunol. 2014;33(5):428–40.CrossRefPubMed
6.
go back to reference Osorio F, Fuentes C, López MN, Salazar-Onfray F, González FE. Role of dendritic cells in the induction of lymphocyte tolerance. Front Immunol. 2015;6:535.CrossRefPubMedPubMedCentral Osorio F, Fuentes C, López MN, Salazar-Onfray F, González FE. Role of dendritic cells in the induction of lymphocyte tolerance. Front Immunol. 2015;6:535.CrossRefPubMedPubMedCentral
7.
go back to reference Hernando JJ, Park TW, Kübler K, Offergeld R, Schlebusch H, Bauknecht T. Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase I trial. Cancer Immunol Immunother. 2002;51(1):45–52.CrossRefPubMed Hernando JJ, Park TW, Kübler K, Offergeld R, Schlebusch H, Bauknecht T. Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase I trial. Cancer Immunol Immunother. 2002;51(1):45–52.CrossRefPubMed
8.
go back to reference Oosterwijk-Wakka JC, Tiemessen DM, Bleumer I, de Vries IJM, Jongmans W, Adema GJ, et al. Vaccination of patients with metastatic renal cell carcinoma with autologous dendritic cells pulsed with autologous tumor antigens in combination with interleukin-2: a phase 1 study. J Immunother. 2002;25:500–8.CrossRefPubMed Oosterwijk-Wakka JC, Tiemessen DM, Bleumer I, de Vries IJM, Jongmans W, Adema GJ, et al. Vaccination of patients with metastatic renal cell carcinoma with autologous dendritic cells pulsed with autologous tumor antigens in combination with interleukin-2: a phase 1 study. J Immunother. 2002;25:500–8.CrossRefPubMed
9.
go back to reference Kandalaft LE, Powell DJ Jr, Chiang CL-L, Tanyi J, Kim S, Bosch M, et al. Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo costimulated T-cells in recurrent ovarian cancer. Oncoimmunology. 2013;2(1):e22664.CrossRefPubMedPubMedCentral Kandalaft LE, Powell DJ Jr, Chiang CL-L, Tanyi J, Kim S, Bosch M, et al. Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo costimulated T-cells in recurrent ovarian cancer. Oncoimmunology. 2013;2(1):e22664.CrossRefPubMedPubMedCentral
10.
go back to reference Chiang CL, Kandalaft LE, Tanyi J, Hagemann AR, Motz GT, Svoronos N, et al. A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin Cancer Res. 2013;19(17):4801–15.CrossRefPubMedPubMedCentral Chiang CL, Kandalaft LE, Tanyi J, Hagemann AR, Motz GT, Svoronos N, et al. A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin Cancer Res. 2013;19(17):4801–15.CrossRefPubMedPubMedCentral
11.
go back to reference Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E, Kroemer, et al. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med. 2005;202(7):919–29.CrossRefPubMedPubMedCentral Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E, Kroemer, et al. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med. 2005;202(7):919–29.CrossRefPubMedPubMedCentral
12.
go back to reference Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9.CrossRefPubMed Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9.CrossRefPubMed
13.
go back to reference Conrad C, Gregorio J, Wang YH, Ito T, Meller S, Hanabuchi S, et al. Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS costimulation of Foxp3(+) T-regulatory cells. Cancer Res. 2012;72(20):5240–9.CrossRefPubMedPubMedCentral Conrad C, Gregorio J, Wang YH, Ito T, Meller S, Hanabuchi S, et al. Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS costimulation of Foxp3(+) T-regulatory cells. Cancer Res. 2012;72(20):5240–9.CrossRefPubMedPubMedCentral
14.
go back to reference Wertel I, Surówka J, Polak G, Barczyński B, Bednarek W, Jakubowicz-Gil J, et al. Macrophage-derived chemokine CCL22 and regulatory T cells in ovarian cancer patients. Tumour Biol. 2015;36(6):4811–7.CrossRefPubMedPubMedCentral Wertel I, Surówka J, Polak G, Barczyński B, Bednarek W, Jakubowicz-Gil J, et al. Macrophage-derived chemokine CCL22 and regulatory T cells in ovarian cancer patients. Tumour Biol. 2015;36(6):4811–7.CrossRefPubMedPubMedCentral
15.
go back to reference Wertel I, Bednarek W, Stachowicz N, Rogala E, Nowicka A, Kotarski J. Phenotype of dendritic cells generated from peripheral blood monocytes of patients with ovarian cancer. Transplant Proc. 2010;42(8):3301–5.CrossRefPubMed Wertel I, Bednarek W, Stachowicz N, Rogala E, Nowicka A, Kotarski J. Phenotype of dendritic cells generated from peripheral blood monocytes of patients with ovarian cancer. Transplant Proc. 2010;42(8):3301–5.CrossRefPubMed
16.
go back to reference Chen F, Hou M, Ye F, Lv W, Xie X. Ovarian cancer cells induce peripheral mature dendritic cells to differentiate into macrophage like cells in vitro. Int J Gynecol Cancer. 2009;19(9):1487–93.CrossRefPubMed Chen F, Hou M, Ye F, Lv W, Xie X. Ovarian cancer cells induce peripheral mature dendritic cells to differentiate into macrophage like cells in vitro. Int J Gynecol Cancer. 2009;19(9):1487–93.CrossRefPubMed
17.
go back to reference Giuntoli RL 2nd, Webb TJ, Zoso A, Rogers O, Diaz-Montes TP, Bristow RE, et al. Ovarian cancer-associated ascites demonstrates altered immune environment: implications for antitumor immunity. Anticancer Res. 2009;29(8):2875–84.PubMed Giuntoli RL 2nd, Webb TJ, Zoso A, Rogers O, Diaz-Montes TP, Bristow RE, et al. Ovarian cancer-associated ascites demonstrates altered immune environment: implications for antitumor immunity. Anticancer Res. 2009;29(8):2875–84.PubMed
18.
go back to reference Yang Y, Lu J, Liu H, Jin G, Bai R, Li X, et al. Dendritic cells loading autologous tumor lysate promote tumor angiogenesis. Tumour Biol. 2016;37(12):15687–95. Yang Y, Lu J, Liu H, Jin G, Bai R, Li X, et al. Dendritic cells loading autologous tumor lysate promote tumor angiogenesis. Tumour Biol. 2016;37(12):15687–95.
19.
go back to reference Erwig LP, Kluth DC, Walsh GM, Rees AJ. Initial cytokine exposure determines function of macrophages and renders them unresponsive to other cytokines. J Immunol. 1998;161(4):1983–8.PubMed Erwig LP, Kluth DC, Walsh GM, Rees AJ. Initial cytokine exposure determines function of macrophages and renders them unresponsive to other cytokines. J Immunol. 1998;161(4):1983–8.PubMed
20.
go back to reference Alvero AB, Montagna MK, Craveiro V, Liu L, Mor G. Distinct subpopulations of epithelial ovarian cancer cells can differentially induce macrophages and T regulatory cells toward a pro-tumor phenotype. Am J Reprod Immunol. 2012;67(3):256–65.CrossRefPubMed Alvero AB, Montagna MK, Craveiro V, Liu L, Mor G. Distinct subpopulations of epithelial ovarian cancer cells can differentially induce macrophages and T regulatory cells toward a pro-tumor phenotype. Am J Reprod Immunol. 2012;67(3):256–65.CrossRefPubMed
21.
go back to reference Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.CrossRefPubMed Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.CrossRefPubMed
22.
go back to reference Hagemann T, Wilson J, Burke F, Kulbe H, Li NF, Plüddemann A, et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol. 2006;176(8):5023–32.CrossRefPubMed Hagemann T, Wilson J, Burke F, Kulbe H, Li NF, Plüddemann A, et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol. 2006;176(8):5023–32.CrossRefPubMed
23.
go back to reference Loercher AE, Nash MA, Kavanagh JJ, Platsoucas CD, Freedman RS. Identification of an IL-10-producing HLA-DR-negative monocyte subset in the malignant ascites of patients with ovarian carcinoma that inhibits cytokine protein expression and proliferation of autologous T cells. J Immunol. 1999;163(11):6251–60.PubMed Loercher AE, Nash MA, Kavanagh JJ, Platsoucas CD, Freedman RS. Identification of an IL-10-producing HLA-DR-negative monocyte subset in the malignant ascites of patients with ovarian carcinoma that inhibits cytokine protein expression and proliferation of autologous T cells. J Immunol. 1999;163(11):6251–60.PubMed
24.
go back to reference Wertel I, Polak G, Tarkowski R, Kotarska M. Evaluation of IL-10 and TGF-β levels and myeloid and lymphoid dendritic cells in ovarian cancer patients. Ginekol Pol. 2011;82(6):414–20.PubMed Wertel I, Polak G, Tarkowski R, Kotarska M. Evaluation of IL-10 and TGF-β levels and myeloid and lymphoid dendritic cells in ovarian cancer patients. Ginekol Pol. 2011;82(6):414–20.PubMed
25.
go back to reference Nowak M, Glowacka E, Kielbik M, Kulig A, Sulowska Z, Klink M. Secretion of cytokines and heat shock protein (HspA1A) by ovarian cancer cells depending on the tumor type and stage of disease. Cytokine. 2017;89:136–42.CrossRefPubMed Nowak M, Glowacka E, Kielbik M, Kulig A, Sulowska Z, Klink M. Secretion of cytokines and heat shock protein (HspA1A) by ovarian cancer cells depending on the tumor type and stage of disease. Cytokine. 2017;89:136–42.CrossRefPubMed
26.
go back to reference Berntsen A, Brimnes MK, thor Straten P, Svane IM. Increase of circulating CD4+CD25highFoxp3+ regulatory T cells in patients with metastatic renal cell carcinoma during treatment with dendritic cell vaccination and low-dose interleukin-2. J Immunother. 2010;33(4):425–34.CrossRefPubMed Berntsen A, Brimnes MK, thor Straten P, Svane IM. Increase of circulating CD4+CD25highFoxp3+ regulatory T cells in patients with metastatic renal cell carcinoma during treatment with dendritic cell vaccination and low-dose interleukin-2. J Immunother. 2010;33(4):425–34.CrossRefPubMed
27.
go back to reference Cannon MJ, Santin AD, O’Brien TJ. Immunological treatment of ovarian cancer. Curr Opin Obstet Gynecol. 2004;16(1):87–92.CrossRefPubMed Cannon MJ, Santin AD, O’Brien TJ. Immunological treatment of ovarian cancer. Curr Opin Obstet Gynecol. 2004;16(1):87–92.CrossRefPubMed
28.
go back to reference Ramos RN, Chin LS, Dos Santos AP, Bergami-Santos PC, Laginha F, Barbuto JA. Monocyte-derived dendritic cells from breast cancer patients are biased to induce CD4+CD25+Foxp3+ regulatory T cells. J Leukoc Biol. 2012;92(3):673–82.CrossRefPubMed Ramos RN, Chin LS, Dos Santos AP, Bergami-Santos PC, Laginha F, Barbuto JA. Monocyte-derived dendritic cells from breast cancer patients are biased to induce CD4+CD25+Foxp3+ regulatory T cells. J Leukoc Biol. 2012;92(3):673–82.CrossRefPubMed
29.
go back to reference Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD. Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+regulatory T cells. J Immunol. 2009;182(5):2795–807.CrossRefPubMed Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD. Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+regulatory T cells. J Immunol. 2009;182(5):2795–807.CrossRefPubMed
30.
go back to reference Li X, Ye F, Chen H, Lu W, Wan X, Xie X. Human ovarian carcinoma cells generate CD4(+)CD25(+) regulatory T cells from peripheral CD4(+)CD25(−) T cells through secreting TGF-beta. Cancer Lett. 2007;253(1):144–53.CrossRefPubMed Li X, Ye F, Chen H, Lu W, Wan X, Xie X. Human ovarian carcinoma cells generate CD4(+)CD25(+) regulatory T cells from peripheral CD4(+)CD25(−) T cells through secreting TGF-beta. Cancer Lett. 2007;253(1):144–53.CrossRefPubMed
Metadata
Title
Influence of ovarian cancer type I and type II microenvironment on the phenotype and function of monocyte-derived dendritic cells
Authors
J. Surówka
I. Wertel
K. Okła
W. Bednarek
R. Tarkowski
J. Kotarski
Publication date
01-12-2017
Publisher
Springer International Publishing
Published in
Clinical and Translational Oncology / Issue 12/2017
Print ISSN: 1699-048X
Electronic ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-017-1686-2

Other articles of this Issue 12/2017

Clinical and Translational Oncology 12/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine