Skip to main content
Top
Published in: Clinical and Translational Oncology 7/2015

01-07-2015 | Research Article

Correlation between down-expression of miR-431 and clinicopathological significance in HCC tissues

Authors: L. Pan, F. Ren, M. Rong, Y. Dang, Y. Luo, D. Luo, G. Chen

Published in: Clinical and Translational Oncology | Issue 7/2015

Login to get access

Abstract

Background and aims

Researches have shown that miRNAs have been proposed as novel diagnostic biomarkers for classification and prognostic stratification of HCC. However, whether or not miR-431 contributes to the progression of HCC remains unknown. Therefore, we aimed to investigate the clinicopathological significance of miR-431 in HCC.

Methods

MiR-431 expression in 95 HCC cases and corresponding adjacent non-cancerous tissues was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, statistical analysis was performed to identify the correlations between expression of miR-431 and a variety of clinicopathological parameters and patient recurrence. The area under the receiver operating characteristic curve (AUC) was used to evaluate the accuracy of miR-431 as a biomarker for HCC diagnosis and prediction of disease deterioration.

Results

MiR-431 was markedly down-regulated in the HCC samples (1.1885 ± 0.75867) compared with corresponding adjacent tumor tissues (1.7957 ± 0.89333, P < 0.001). The AUC of low miR-431 expression to diagnose HCC was 0.668 (95 % CI 0.592–0.744, P < 0.001). MiR-431 down-expression was correlated with multiple malignant characteristics, including lymph node metastasis (r = −0.455, P < 0.001), clinical TNM stage (r = −0.223, P = 0.030), MTDH (r = −0.292, P = 0.006), vaso-invasion (r = −0.204, P = 0.047), MVD (r = −0.281, P = 0.006) and HCV (r = 0.215, P = 0.037). Additionally, the recurrent time of lower miR-431 expression group was 56.602 ± 3.914 months, much longer than that in the high expression group (50.009 ± 2.731 months), however, no significant difference was noted (χ 2 = 0.005, P = 0.943).

Conclusions

The down-expression of miR-431 is partially responsible for a series of clinicopathological features which may be tightly correlated with the progression of HCC. Thus, expression of miR-431 may be proposed as a new factor in association with the progression of HCC.
Literature
1.
go back to reference Hu Q, Lou GG, Liu YC, Qian L, Lv BD. The tumor necrosis factor-alpha-308 and -238 polymorphisms and risk of hepatocellular carcinoma for Asian populations: a meta-analysis. Curr Ther Res Clin Exp. 2014;76:70–5.PubMedCentralPubMedCrossRef Hu Q, Lou GG, Liu YC, Qian L, Lv BD. The tumor necrosis factor-alpha-308 and -238 polymorphisms and risk of hepatocellular carcinoma for Asian populations: a meta-analysis. Curr Ther Res Clin Exp. 2014;76:70–5.PubMedCentralPubMedCrossRef
3.
go back to reference Ye SL, Takayama T, Geschwind J, Marrero JA, Bronowicki JP. Current approaches to the treatment of early hepatocellular carcinoma. Oncologist. 2010;15(Suppl 4):34–41.PubMedCrossRef Ye SL, Takayama T, Geschwind J, Marrero JA, Bronowicki JP. Current approaches to the treatment of early hepatocellular carcinoma. Oncologist. 2010;15(Suppl 4):34–41.PubMedCrossRef
4.
go back to reference Tanaka S, Arii S. Molecular targeted therapies in hepatocellular carcinoma. Semin Oncol. 2012;39:486–92.PubMedCrossRef Tanaka S, Arii S. Molecular targeted therapies in hepatocellular carcinoma. Semin Oncol. 2012;39:486–92.PubMedCrossRef
6.
7.
go back to reference He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.PubMedCrossRef He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.PubMedCrossRef
8.
go back to reference Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.PubMedCrossRef Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.PubMedCrossRef
9.
go back to reference Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452:896–9.PubMedCrossRef Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452:896–9.PubMedCrossRef
10.
go back to reference Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9.PubMedCrossRef Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9.PubMedCrossRef
11.
go back to reference Park JK, Kogure T, Nuovo GJ, Jiang J, He L, Kim JH, et al. miR-221 silencing blocks hepatocellular carcinoma and promotes survival. Cancer Res. 2011;71:7608–16.PubMedCentralPubMedCrossRef Park JK, Kogure T, Nuovo GJ, Jiang J, He L, Kim JH, et al. miR-221 silencing blocks hepatocellular carcinoma and promotes survival. Cancer Res. 2011;71:7608–16.PubMedCentralPubMedCrossRef
12.
go back to reference Tanaka T, Sugaya S, Kita K, Arai M, Kanda T, Fujii K, et al. Inhibition of cell viability by human IFN-beta is mediated by microRNA-431. Int J Oncol. 2012;40:1470–6.PubMed Tanaka T, Sugaya S, Kita K, Arai M, Kanda T, Fujii K, et al. Inhibition of cell viability by human IFN-beta is mediated by microRNA-431. Int J Oncol. 2012;40:1470–6.PubMed
13.
go back to reference Fang L, Du WW, Yang X, Chen K, Ghanekar A, Levy G, et al. Versican 3′-untranslated region (3′-UTR) functions as a ceRNA in inducing the development of hepatocellular carcinoma by regulating miRNA activity. FASEB J. 2013;27:907–19.PubMedCrossRef Fang L, Du WW, Yang X, Chen K, Ghanekar A, Levy G, et al. Versican 3′-untranslated region (3′-UTR) functions as a ceRNA in inducing the development of hepatocellular carcinoma by regulating miRNA activity. FASEB J. 2013;27:907–19.PubMedCrossRef
14.
go back to reference Chen G, Kronenberger P, Teugels E, Umelo IA, De Greve J. Targeting the epidermal growth factor receptor in non-small cell lung cancer cells: the effect of combining RNA interference with tyrosine kinase inhibitors or cetuximab. BMC Med. 2012;10:28.PubMedCentralPubMedCrossRef Chen G, Kronenberger P, Teugels E, Umelo IA, De Greve J. Targeting the epidermal growth factor receptor in non-small cell lung cancer cells: the effect of combining RNA interference with tyrosine kinase inhibitors or cetuximab. BMC Med. 2012;10:28.PubMedCentralPubMedCrossRef
15.
go back to reference Dang Y, Luo D, Rong M, Chen G. Underexpression of miR-34a in hepatocellular carcinoma and its contribution towards enhancement of proliferating inhibitory effects of agents targeting c-MET. PLoS One. 2013;8:e61054.PubMedCentralPubMedCrossRef Dang Y, Luo D, Rong M, Chen G. Underexpression of miR-34a in hepatocellular carcinoma and its contribution towards enhancement of proliferating inhibitory effects of agents targeting c-MET. PLoS One. 2013;8:e61054.PubMedCentralPubMedCrossRef
16.
go back to reference Rong M, Chen G, Dang Y. Increased miR-221 expression in hepatocellular carcinoma tissues and its role in enhancing cell growth and inhibiting apoptosis in vitro. BMC Cancer. 2013;13:21.PubMedCentralPubMedCrossRef Rong M, Chen G, Dang Y. Increased miR-221 expression in hepatocellular carcinoma tissues and its role in enhancing cell growth and inhibiting apoptosis in vitro. BMC Cancer. 2013;13:21.PubMedCentralPubMedCrossRef
17.
go back to reference Chen G, Umelo IA, Lv S, Teugels E, Fostier K, Kronenberger P, et al. miR-146a inhibits cell growth, cell migration and induces apoptosis in non-small cell lung cancer cells. PLoS One. 2013;8:e60317.PubMedCentralPubMedCrossRef Chen G, Umelo IA, Lv S, Teugels E, Fostier K, Kronenberger P, et al. miR-146a inhibits cell growth, cell migration and induces apoptosis in non-small cell lung cancer cells. PLoS One. 2013;8:e60317.PubMedCentralPubMedCrossRef
18.
go back to reference Wheeler G, Ntounia-Fousara S, Granda B, Rathjen T, Dalmay T. Identification of new central nervous system specific mouse microRNAs. FEBS Lett. 2006;580:2195–200.PubMedCrossRef Wheeler G, Ntounia-Fousara S, Granda B, Rathjen T, Dalmay T. Identification of new central nervous system specific mouse microRNAs. FEBS Lett. 2006;580:2195–200.PubMedCrossRef
19.
go back to reference Abu-Elneel K, Liu T, Gazzaniga FS, Nishimura Y, Wall DP, Geschwind DH, et al. Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics. 2008;9:153–61.PubMedCrossRef Abu-Elneel K, Liu T, Gazzaniga FS, Nishimura Y, Wall DP, Geschwind DH, et al. Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics. 2008;9:153–61.PubMedCrossRef
20.
go back to reference Salem AM, Ismail S, Zarouk WA, Abdul Baky O, Sayed AA, Abd El-Hamid S, et al. Genetic variants of neurotransmitter-related genes and miRNAs in Egyptian autistic patients. Sci World J. 2013;2013:670621.CrossRef Salem AM, Ismail S, Zarouk WA, Abdul Baky O, Sayed AA, Abd El-Hamid S, et al. Genetic variants of neurotransmitter-related genes and miRNAs in Egyptian autistic patients. Sci World J. 2013;2013:670621.CrossRef
21.
go back to reference Wu D, Murashov AK. MicroRNA-431 regulates axon regeneration in mature sensory neurons by targeting the Wnt antagonist Kremen1. Front Mol Neurosci. 2013;6:35.PubMedCentralPubMedCrossRef Wu D, Murashov AK. MicroRNA-431 regulates axon regeneration in mature sensory neurons by targeting the Wnt antagonist Kremen1. Front Mol Neurosci. 2013;6:35.PubMedCentralPubMedCrossRef
22.
go back to reference Liu R, Ma X, Xu L, Wang D, Jiang X, Zhu W, et al. Differential microRNA expression in peripheral blood mononuclear cells from Graves’ disease patients. J Clin Endocrinol Metab. 2012;97:E968–72.PubMedCrossRef Liu R, Ma X, Xu L, Wang D, Jiang X, Zhu W, et al. Differential microRNA expression in peripheral blood mononuclear cells from Graves’ disease patients. J Clin Endocrinol Metab. 2012;97:E968–72.PubMedCrossRef
23.
go back to reference Wu MJ, Ke PY, Horng JT. RacGTPase-activating protein 1 interacts with hepatitis C virus polymerase NS5B to regulate viral replication. Biochem Biophys Res Commun. 2014;454:19–24.PubMedCrossRef Wu MJ, Ke PY, Horng JT. RacGTPase-activating protein 1 interacts with hepatitis C virus polymerase NS5B to regulate viral replication. Biochem Biophys Res Commun. 2014;454:19–24.PubMedCrossRef
24.
go back to reference Sakamuro D, Furukawa T, Takegami T. Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells. J Virol. 1995;69:3893–6.PubMedCentralPubMed Sakamuro D, Furukawa T, Takegami T. Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells. J Virol. 1995;69:3893–6.PubMedCentralPubMed
Metadata
Title
Correlation between down-expression of miR-431 and clinicopathological significance in HCC tissues
Authors
L. Pan
F. Ren
M. Rong
Y. Dang
Y. Luo
D. Luo
G. Chen
Publication date
01-07-2015
Publisher
Springer Milan
Published in
Clinical and Translational Oncology / Issue 7/2015
Print ISSN: 1699-048X
Electronic ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-015-1278-y

Other articles of this Issue 7/2015

Clinical and Translational Oncology 7/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine