Skip to main content
Top
Published in: Hepatology International 6/2020

01-12-2020 | Original Article

Exosomal miR-199a-5p promotes hepatic lipid accumulation by modulating MST1 expression and fatty acid metabolism

Authors: Yuhan Li, Yansong Luan, Jianning Li, Hui Song, Yan Li, Hi Qi, Bo Sun, Peng Zhang, Xianxian Wu, Xing Liu, Yanhui Yang, Wufan Tao, Lei Cai, Zhiwei Yang, Yi Yang

Published in: Hepatology International | Issue 6/2020

Login to get access

Abstract

Background and Aims

Non-alcoholic fatty liver disease (NAFLD) and its complications has become an expanding health problem worldwide with limited therapeutic approaches. The current study was aiming to identify novel microRNA in the regulation of hepatic lipid metabolism in NAFLD.

Approches and Results

Systematic screening of microRNA expression by high-throughput small RNA sequencing demonstrated that microRNA 199a-5p (miR-199a-5p) was significantly upregulated in high fat diet-induced steatosis mouse model, with the most abundant expression in adipose tissue. MST1 was further identified as the target gene for miR-199a with specific recognition at the 3′ untranslated region with dural luciferase reporter assay. Delivery of miR-199a-5p with exosomes into mice aggravated liver lipid accumulation in hepatocytes, accompanied by down-regulation of hepatic MST1 expression and modulation of hepatic lipogenesis and lipolysis, including SREBP-1c, AMPK signaling cascades and the down-stream CPT1α and FASN. Conversely, administration of exosome containing anti-miR-199a-5p resulted in attenuated steotosis in mice fed on high fat diet. Importanly, miR-199a-5p-induced abnormal cellular lipid accumulation could be markedly reversed by overexpression of MST1.

Conclusion

miR-199a-5p might be an essentail regulator for hepatic lipid metabolism, possibly through its interction with MST1 and the subsequent signaling cascade. Thus, miR-199a-5p may serve as an important therapeutic target in the treatment of NAFLD.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Musso G, Cassader M, Gambino R. Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies. Nat Rev Drug Discov. 2016;15:249–74.PubMedCrossRef Musso G, Cassader M, Gambino R. Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies. Nat Rev Drug Discov. 2016;15:249–74.PubMedCrossRef
3.
go back to reference Hardy T, Mann DA. Epigenetics in liver disease: from biology to therapeutics. Gut. 2016;65:1895–905.PubMedCrossRef Hardy T, Mann DA. Epigenetics in liver disease: from biology to therapeutics. Gut. 2016;65:1895–905.PubMedCrossRef
4.
go back to reference Stender S, Kozlitina J, Nordestgaard BG, Tybjaerg-Hansen A, Hobbs HH, Cohen JC. Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nat Genet. 2017;49:842–7.PubMedPubMedCentralCrossRef Stender S, Kozlitina J, Nordestgaard BG, Tybjaerg-Hansen A, Hobbs HH, Cohen JC. Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nat Genet. 2017;49:842–7.PubMedPubMedCentralCrossRef
5.
go back to reference Zhang X, Ji X, Wang Q, Li JZ. New insight into inter-organ crosstalk contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Protein Cell. 2018;9:164–77.PubMedCrossRef Zhang X, Ji X, Wang Q, Li JZ. New insight into inter-organ crosstalk contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Protein Cell. 2018;9:164–77.PubMedCrossRef
6.
go back to reference Wree A, Broderick L, Canbay A, Hoffman HM, Feldstein AE. From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nat Rev Gastroenterol Hepatol. 2013;10:627–36.PubMedCrossRef Wree A, Broderick L, Canbay A, Hoffman HM, Feldstein AE. From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nat Rev Gastroenterol Hepatol. 2013;10:627–36.PubMedCrossRef
7.
go back to reference Korf H, van der Merwe S. Adipose-derived exosomal MicroRNAs orchestrate gene regulation in the liver: Is this the missing link in nonalcoholic fatty liver disease? Hepatology. 2017;66:1689–91.PubMedCrossRef Korf H, van der Merwe S. Adipose-derived exosomal MicroRNAs orchestrate gene regulation in the liver: Is this the missing link in nonalcoholic fatty liver disease? Hepatology. 2017;66:1689–91.PubMedCrossRef
8.
go back to reference Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Am J Gastroenterol. 2012;107:811–26.PubMedCrossRef Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Am J Gastroenterol. 2012;107:811–26.PubMedCrossRef
9.
go back to reference Ahmed A, Wong RJ, Harrison SA. Nonalcoholic fatty liver disease review: diagnosis, treatment, and outcomes. Clin Gastroenterol Hepatol. 2015;13:2062–70.PubMedCrossRef Ahmed A, Wong RJ, Harrison SA. Nonalcoholic fatty liver disease review: diagnosis, treatment, and outcomes. Clin Gastroenterol Hepatol. 2015;13:2062–70.PubMedCrossRef
10.
go back to reference Monetti M, Levin MC, Watt MJ, Sajan MP, Marmor S, Hubbard BK, Stevens RD, et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab. 2007;6:69–78.PubMedCrossRef Monetti M, Levin MC, Watt MJ, Sajan MP, Marmor S, Hubbard BK, Stevens RD, et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab. 2007;6:69–78.PubMedCrossRef
11.
go back to reference Goedeke L, Bates J, Vatner DF, Perry RJ, Wang T, Ramirez R, Li L, et al. Acetyl-CoA carboxylase inhibition reverses NAFLD and hepatic insulin resistance but promotes hypertriglyceridemia in rodents. Hepatology. 2018;68:2197–211.PubMedCrossRef Goedeke L, Bates J, Vatner DF, Perry RJ, Wang T, Ramirez R, Li L, et al. Acetyl-CoA carboxylase inhibition reverses NAFLD and hepatic insulin resistance but promotes hypertriglyceridemia in rodents. Hepatology. 2018;68:2197–211.PubMedCrossRef
12.
go back to reference Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011;13:376–88.PubMedPubMedCentralCrossRef Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011;13:376–88.PubMedPubMedCentralCrossRef
13.
go back to reference Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610.PubMedCrossRef Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610.PubMedCrossRef
15.
go back to reference Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16:421–33.PubMedCrossRef Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16:421–33.PubMedCrossRef
16.
go back to reference Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, Li P, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100–4.PubMedPubMedCentralCrossRef Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, Li P, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100–4.PubMedPubMedCentralCrossRef
17.
go back to reference Mayourian J, Ceholski DK, Gorski PA, Mathiyalagan P, Murphy JF, Salazar SI, Stillitano F, et al. Exosomal microRNA-21-5p mediates mesenchymal stem cell paracrine effects on human cardiac tissue contractility. Circ Res. 2018;122:933–44.PubMedPubMedCentralCrossRef Mayourian J, Ceholski DK, Gorski PA, Mathiyalagan P, Murphy JF, Salazar SI, Stillitano F, et al. Exosomal microRNA-21-5p mediates mesenchymal stem cell paracrine effects on human cardiac tissue contractility. Circ Res. 2018;122:933–44.PubMedPubMedCentralCrossRef
18.
go back to reference Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.CrossRefPubMed Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.CrossRefPubMed
20.
go back to reference Wang X, Wang H, Cao J, Ye C. Exosomes from adipose-derived stem cells promotes VEGF-C-dependent lymphangiogenesis by regulating miRNA-132/TGF-beta pathway. Cell Physiol Biochem. 2018;49:160–71.PubMedCrossRef Wang X, Wang H, Cao J, Ye C. Exosomes from adipose-derived stem cells promotes VEGF-C-dependent lymphangiogenesis by regulating miRNA-132/TGF-beta pathway. Cell Physiol Biochem. 2018;49:160–71.PubMedCrossRef
21.
go back to reference Ferrante SC, Nadler EP, Pillai DK, Hubal MJ, Wang Z, Wang JM, Gordish-Dressman H, et al. Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr Res. 2015;77:447–54.PubMedCrossRef Ferrante SC, Nadler EP, Pillai DK, Hubal MJ, Wang Z, Wang JM, Gordish-Dressman H, et al. Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr Res. 2015;77:447–54.PubMedCrossRef
22.
go back to reference Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017;27:172–88.PubMedCrossRef Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017;27:172–88.PubMedCrossRef
23.
go back to reference Mori MA, Raghavan P, Thomou T, Boucher J, Robida-Stubbs S, Macotela Y, Russell SJ, et al. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab. 2012;16:336–47.PubMedPubMedCentralCrossRef Mori MA, Raghavan P, Thomou T, Boucher J, Robida-Stubbs S, Macotela Y, Russell SJ, et al. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab. 2012;16:336–47.PubMedPubMedCentralCrossRef
24.
go back to reference Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, Ofrecio JM, et al. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell. 2017;171(372–384):e312.CrossRef Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, Ofrecio JM, et al. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell. 2017;171(372–384):e312.CrossRef
25.
go back to reference Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, Rao TN, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017;542:450–5.PubMedPubMedCentralCrossRef Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, Rao TN, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017;542:450–5.PubMedPubMedCentralCrossRef
26.
go back to reference Kim S, Lee UJ, Kim MN, Lee EJ, Kim JY, Lee MY, Choung S, et al. MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). J Biol Chem. 2008;283:18158–66.PubMedCrossRef Kim S, Lee UJ, Kim MN, Lee EJ, Kim JY, Lee MY, Choung S, et al. MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). J Biol Chem. 2008;283:18158–66.PubMedCrossRef
27.
go back to reference Shatseva T, Lee DY, Deng Z, Yang BB. MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2. J Cell Sci. 2011;124:2826–36.PubMedCrossRef Shatseva T, Lee DY, Deng Z, Yang BB. MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2. J Cell Sci. 2011;124:2826–36.PubMedCrossRef
28.
go back to reference Wang Z, Ma X, Cai Q, Wang X, Yu B, Cai Q, Liu B, et al. MiR-199a-3p promotes gastric cancer progression by targeting ZHX1. FEBS Lett. 2014;588:4504–12.PubMedCrossRef Wang Z, Ma X, Cai Q, Wang X, Yu B, Cai Q, Liu B, et al. MiR-199a-3p promotes gastric cancer progression by targeting ZHX1. FEBS Lett. 2014;588:4504–12.PubMedCrossRef
29.
go back to reference Qu Y, Huang X, Li Z, Liu J, Wu J, Chen D, Zhao F, et al. miR-199a-3p inhibits aurora kinase A and attenuates prostate cancer growth: new avenue for prostate cancer treatment. Am J Pathol. 2014;184:1541–9.PubMedCrossRef Qu Y, Huang X, Li Z, Liu J, Wu J, Chen D, Zhao F, et al. miR-199a-3p inhibits aurora kinase A and attenuates prostate cancer growth: new avenue for prostate cancer treatment. Am J Pathol. 2014;184:1541–9.PubMedCrossRef
30.
go back to reference Ren K, Li T, Zhang W, Ren J, Li Z, Wu G. miR-199a-3p inhibits cell proliferation and induces apoptosis by targeting YAP1, suppressing Jagged1-Notch signaling in human hepatocellular carcinoma. J Biomed Sci. 2016;23:79.PubMedPubMedCentralCrossRef Ren K, Li T, Zhang W, Ren J, Li Z, Wu G. miR-199a-3p inhibits cell proliferation and induces apoptosis by targeting YAP1, suppressing Jagged1-Notch signaling in human hepatocellular carcinoma. J Biomed Sci. 2016;23:79.PubMedPubMedCentralCrossRef
31.
go back to reference Gu N, You L, Shi C, Yang L, Pang L, Cui X, Ji C, et al. Expression of miR-199a-3p in human adipocytes is regulated by free fatty acids and adipokines. Mol Med Rep. 2016;14:1180–6.PubMedPubMedCentralCrossRef Gu N, You L, Shi C, Yang L, Pang L, Cui X, Ji C, et al. Expression of miR-199a-3p in human adipocytes is regulated by free fatty acids and adipokines. Mol Med Rep. 2016;14:1180–6.PubMedPubMedCentralCrossRef
32.
go back to reference Zhang M, Zhang L, Hu J, Lin J, Wang T, Duan Y, Man W, et al. MST1 coordinately regulates autophagy and apoptosis in diabetic cardiomyopathy in mice. Diabetologia. 2016;59:2435–47.PubMedCrossRef Zhang M, Zhang L, Hu J, Lin J, Wang T, Duan Y, Man W, et al. MST1 coordinately regulates autophagy and apoptosis in diabetic cardiomyopathy in mice. Diabetologia. 2016;59:2435–47.PubMedCrossRef
33.
go back to reference Geng C, Zhang Y, Gao Y, Tao W, Zhang H, Liu X, Fang F, et al. Mst1 regulates hepatic lipid metabolism by inhibiting Sirt1 ubiquitination in mice. Biochem Biophys Res Commun. 2016;471:444–9.PubMedCrossRef Geng C, Zhang Y, Gao Y, Tao W, Zhang H, Liu X, Fang F, et al. Mst1 regulates hepatic lipid metabolism by inhibiting Sirt1 ubiquitination in mice. Biochem Biophys Res Commun. 2016;471:444–9.PubMedCrossRef
34.
go back to reference Ardestani A, Paroni F, Azizi Z, Kaur S, Khobragade V, Yuan T, Frogne T, et al. MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes. Nat Med. 2014;20:385–97.PubMedPubMedCentralCrossRef Ardestani A, Paroni F, Azizi Z, Kaur S, Khobragade V, Yuan T, Frogne T, et al. MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes. Nat Med. 2014;20:385–97.PubMedPubMedCentralCrossRef
35.
go back to reference Jeong SH, Kim HB, Kim MC, Lee JM, Lee JH, Kim JH, Kim JW, et al. Hippo-mediated suppression of IRS2/AKT signaling prevents hepatic steatosis and liver cancer. J Clin Invest. 2018;128:1010–25.PubMedPubMedCentralCrossRef Jeong SH, Kim HB, Kim MC, Lee JM, Lee JH, Kim JH, Kim JW, et al. Hippo-mediated suppression of IRS2/AKT signaling prevents hepatic steatosis and liver cancer. J Clin Invest. 2018;128:1010–25.PubMedPubMedCentralCrossRef
36.
go back to reference Park BH, Kim DS, Won GW, Jeon HJ, Oh BC, Lee Y, Kim EG, et al. Mammalian ste20-like kinase and SAV1 promote 3T3-L1 adipocyte differentiation by activation of PPARgamma. PLoS ONE. 2012;7:e30983.PubMedPubMedCentralCrossRef Park BH, Kim DS, Won GW, Jeon HJ, Oh BC, Lee Y, Kim EG, et al. Mammalian ste20-like kinase and SAV1 promote 3T3-L1 adipocyte differentiation by activation of PPARgamma. PLoS ONE. 2012;7:e30983.PubMedPubMedCentralCrossRef
37.
go back to reference Nascimbeni F, Bedossa P, Fedchuk L, Pais R, Charlotte F, Lebray P, Poynard T, et al. Clinical validation of the FLIP algorithm and the SAF score in patients with non-alcoholic fatty liver disease. J Hepatol. 2020;72:828–38.PubMedCrossRef Nascimbeni F, Bedossa P, Fedchuk L, Pais R, Charlotte F, Lebray P, Poynard T, et al. Clinical validation of the FLIP algorithm and the SAF score in patients with non-alcoholic fatty liver disease. J Hepatol. 2020;72:828–38.PubMedCrossRef
38.
go back to reference Bedossa P, Consortium FP (2014) Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology 60:565–575 Bedossa P, Consortium FP (2014) Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology 60:565–575
39.
go back to reference Murakami Y, Toyoda H, Tanaka M, Kuroda M, Harada Y, Matsuda F, Tajima A, et al. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS ONE. 2011;6:e16081.PubMedPubMedCentralCrossRef Murakami Y, Toyoda H, Tanaka M, Kuroda M, Harada Y, Matsuda F, Tajima A, et al. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS ONE. 2011;6:e16081.PubMedPubMedCentralCrossRef
40.
go back to reference Yang X, Ma L, Wei R, Ye T, Zhou J, Wen M, Men R, et al. Twist1-induced miR-199a-3p promotes liver fibrosis by suppressing caveolin-2 and activating TGF-beta pathway. Signal Transduct Target Ther. 2020;5:75.PubMedPubMedCentralCrossRef Yang X, Ma L, Wei R, Ye T, Zhou J, Wen M, Men R, et al. Twist1-induced miR-199a-3p promotes liver fibrosis by suppressing caveolin-2 and activating TGF-beta pathway. Signal Transduct Target Ther. 2020;5:75.PubMedPubMedCentralCrossRef
41.
go back to reference Li B, Zhang Z, Zhang H, Quan K, Lu Y, Cai D, Ning G. Aberrant miR199a-5p/caveolin1/PPARalpha axis in hepatic steatosis. J Mol Endocrinol. 2014;53:393–403.PubMedCrossRef Li B, Zhang Z, Zhang H, Quan K, Lu Y, Cai D, Ning G. Aberrant miR199a-5p/caveolin1/PPARalpha axis in hepatic steatosis. J Mol Endocrinol. 2014;53:393–403.PubMedCrossRef
42.
go back to reference Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, Wang J, et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes. 2009;58:2498–505.PubMedPubMedCentralCrossRef Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, Wang J, et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes. 2009;58:2498–505.PubMedPubMedCentralCrossRef
43.
go back to reference Allaire M, Rautou PE, Codogno P, Lotersztajn S. Autophagy in liver diseases: time for translation? J Hepatol. 2019;70:985–98.PubMedCrossRef Allaire M, Rautou PE, Codogno P, Lotersztajn S. Autophagy in liver diseases: time for translation? J Hepatol. 2019;70:985–98.PubMedCrossRef
44.
go back to reference Kanda T, Matsuoka S, Yamazaki M, Shibata T, Nirei K, Takahashi H, Kaneko T, et al. Apoptosis and non-alcoholic fatty liver diseases. World J Gastroenterol. 2018;24:2661–722.PubMedPubMedCentralCrossRef Kanda T, Matsuoka S, Yamazaki M, Shibata T, Nirei K, Takahashi H, Kaneko T, et al. Apoptosis and non-alcoholic fatty liver diseases. World J Gastroenterol. 2018;24:2661–722.PubMedPubMedCentralCrossRef
45.
go back to reference Arab JP, Arrese M, Trauner M. Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu Rev Pathol. 2018;13:321–50.PubMedCrossRef Arab JP, Arrese M, Trauner M. Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu Rev Pathol. 2018;13:321–50.PubMedCrossRef
46.
go back to reference Song T, Zhang X, Yang G, Song Y, Cai W. Decrement of miR-199a-5p contributes to the tumorigenesis of bladder urothelial carcinoma by regulating MLK3/NF-kappaB pathway. Am J Transl Res. 2015;7:2786–94.PubMedPubMedCentral Song T, Zhang X, Yang G, Song Y, Cai W. Decrement of miR-199a-5p contributes to the tumorigenesis of bladder urothelial carcinoma by regulating MLK3/NF-kappaB pathway. Am J Transl Res. 2015;7:2786–94.PubMedPubMedCentral
47.
go back to reference Li Z, Song Y, Liu L, Hou N, An X, Zhan D, Li Y, et al. miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation. Cell Death Differ. 2017;24:1205–13.PubMedCrossRef Li Z, Song Y, Liu L, Hou N, An X, Zhan D, Li Y, et al. miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation. Cell Death Differ. 2017;24:1205–13.PubMedCrossRef
48.
go back to reference Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, Liu Y. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8:122.PubMedPubMedCentralCrossRef Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, Liu Y. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8:122.PubMedPubMedCentralCrossRef
49.
go back to reference Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology. 2018;67:940–54.PubMedCrossRef Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology. 2018;67:940–54.PubMedCrossRef
50.
go back to reference Vega-Badillo J, Gutierrez-Vidal R, Hernandez-Perez HA, Villamil-Ramirez H, Leon-Mimila P, Sanchez-Munoz F, Moran-Ramos S, et al. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects. Liver Int. 2016;36:1383–91.PubMedCrossRef Vega-Badillo J, Gutierrez-Vidal R, Hernandez-Perez HA, Villamil-Ramirez H, Leon-Mimila P, Sanchez-Munoz F, Moran-Ramos S, et al. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects. Liver Int. 2016;36:1383–91.PubMedCrossRef
Metadata
Title
Exosomal miR-199a-5p promotes hepatic lipid accumulation by modulating MST1 expression and fatty acid metabolism
Authors
Yuhan Li
Yansong Luan
Jianning Li
Hui Song
Yan Li
Hi Qi
Bo Sun
Peng Zhang
Xianxian Wu
Xing Liu
Yanhui Yang
Wufan Tao
Lei Cai
Zhiwei Yang
Yi Yang
Publication date
01-12-2020
Publisher
Springer India
Published in
Hepatology International / Issue 6/2020
Print ISSN: 1936-0533
Electronic ISSN: 1936-0541
DOI
https://doi.org/10.1007/s12072-020-10096-0

Other articles of this Issue 6/2020

Hepatology International 6/2020 Go to the issue