Skip to main content
Top
Published in: Hepatology International 2/2019

01-03-2019 | Laser | Review Article

Laser capture microdissection: techniques and applications in liver diseases

Authors: Beatriz Aguilar-Bravo, Pau Sancho-Bru

Published in: Hepatology International | Issue 2/2019

Login to get access

Abstract

Routine transcriptomic and proteomic analysis are usually performed at a whole organ or tissue level. These approaches provide an average readout of all cell types present within the tissue but do not allow differentiating the profile of specific cell populations. Laser capture microdissection (LCM) constitutes an excellent tool to isolate cell populations or areas of interest within a tissue. By direct visualization, the selected area is excised by a laser and can be further processed for a variety of downstream analyses. This technology has been widely used in the study of liver diseases, from DNA and RNA sequencing to mass spectrometry. However, LCM also has important limitations. To ensure the best integrity of the molecule of interest, optimal tissue preservation, careful tissue sectioning, and optimization of the staining procedure are required. The present review provides a description of the LCM technology, including tips and technical recommendations to perform the procedure, as well as an overview of studies using LCM technology in the field of liver disease.
Literature
1.
go back to reference Kandathil AJ, Graw F, Quinn J, Hwang HS, Torbenson M, Perelson AS, et al. Use of laser capture microdissection to map hepatitis C virus-positive hepatocytes in human liver. Gastroenterology 2013;145(1404–1413):e10 Kandathil AJ, Graw F, Quinn J, Hwang HS, Torbenson M, Perelson AS, et al. Use of laser capture microdissection to map hepatitis C virus-positive hepatocytes in human liver. Gastroenterology 2013;145(1404–1413):e10
2.
go back to reference Henriet E, Abou Hammoud A, Dupuy J-W, Dartigues B, Ezzoukry Z, Dugot-Senant N, et al. Argininosuccinate synthase 1 (ASS1): a marker of unclassified hepatocellular adenoma and high bleeding risk. Hepatology 2017;66:2016–2028CrossRefPubMed Henriet E, Abou Hammoud A, Dupuy J-W, Dartigues B, Ezzoukry Z, Dugot-Senant N, et al. Argininosuccinate synthase 1 (ASS1): a marker of unclassified hepatocellular adenoma and high bleeding risk. Hepatology 2017;66:2016–2028CrossRefPubMed
3.
go back to reference Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, et al. Laser capture microdissection. Science 1996;274:998–1001CrossRefPubMed Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, et al. Laser capture microdissection. Science 1996;274:998–1001CrossRefPubMed
4.
go back to reference Fodor SP, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, et al. DNA SEQUENCING: massively parallel genomics. Science (80-) [Internet] 1997;277:393–395 (American Association for the Advancement of Science) CrossRef Fodor SP, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, et al. DNA SEQUENCING: massively parallel genomics. Science (80-) [Internet] 1997;277:393–395 (American Association for the Advancement of Science) CrossRef
5.
go back to reference Murray GI, Curran S. Laser capture microdissection: methods and protocols. New York: Humana Press; 2005.CrossRef Murray GI, Curran S. Laser capture microdissection: methods and protocols. New York: Humana Press; 2005.CrossRef
6.
go back to reference Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, et al. Laser-capture microdissection. Nat Protoc 2006;1:586–603CrossRefPubMed Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, et al. Laser-capture microdissection. Nat Protoc 2006;1:586–603CrossRefPubMed
7.
go back to reference Fang J, Schneider B. Laser microdissection: a sample preparation technique for plant micrometabolic profiling. Phytochem Anal 2014;25:307–313CrossRefPubMed Fang J, Schneider B. Laser microdissection: a sample preparation technique for plant micrometabolic profiling. Phytochem Anal 2014;25:307–313CrossRefPubMed
8.
go back to reference Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S. Laser capture microdissection: big data from small samples. Histol Histopathol 2015;30:1255–1269PubMedPubMedCentral Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S. Laser capture microdissection: big data from small samples. Histol Histopathol 2015;30:1255–1269PubMedPubMedCentral
9.
go back to reference Liu H, Mcdowell TL, Hanson NE, Tang X, Fujimoto J, Rodriguez-Canales J. Laser capture microdissection for the investigative pathologist. Vet Pathol 2014;51(1):257–269CrossRefPubMed Liu H, Mcdowell TL, Hanson NE, Tang X, Fujimoto J, Rodriguez-Canales J. Laser capture microdissection for the investigative pathologist. Vet Pathol 2014;51(1):257–269CrossRefPubMed
10.
go back to reference Tangrea MA, Mukherjee S, Gao B, Markey SP, Du Q, Armani M, et al. Effect of immunohistochemistry on molecular analysis of tissue samples: implications for microdissection technologies. J Histochem Cytochem 2011;59:591–600(in press 10.1002/HEP.30472)CrossRefPubMedPubMedCentral Tangrea MA, Mukherjee S, Gao B, Markey SP, Du Q, Armani M, et al. Effect of immunohistochemistry on molecular analysis of tissue samples: implications for microdissection technologies. J Histochem Cytochem 2011;59:591–600(in press 10.1002/HEP.30472)CrossRefPubMedPubMedCentral
11.
go back to reference Liu A. Laser capture microdissection in the tissue biorepository. J Biomol Tech 2010;21:120–125 (The Association of Biomolecular Resource Facilities) PubMedPubMedCentral Liu A. Laser capture microdissection in the tissue biorepository. J Biomol Tech 2010;21:120–125 (The Association of Biomolecular Resource Facilities) PubMedPubMedCentral
12.
go back to reference Vandewoestyne M, Goossens K, Burvenich C, Van Soom A, Peelman L, Deforce D. Laser capture microdissection: should an ultraviolet or infrared laser be used? Anal Biochem 2013;439:88–98CrossRefPubMed Vandewoestyne M, Goossens K, Burvenich C, Van Soom A, Peelman L, Deforce D. Laser capture microdissection: should an ultraviolet or infrared laser be used? Anal Biochem 2013;439:88–98CrossRefPubMed
13.
go back to reference Gallagher RI, Blakely SR, Liotta LA, Espina V. Laser capture microdissection: ArcturusXT infrared capture and UV cutting methods. New York: Humana Press; 2012. pp. 157–178 Gallagher RI, Blakely SR, Liotta LA, Espina V. Laser capture microdissection: ArcturusXT infrared capture and UV cutting methods. New York: Humana Press; 2012. pp. 157–178
14.
go back to reference Yi L, Liang Z-T, Peng Y, Yao X, Chen H-B, Zhao Z-Z. Tissue-specific metabolite profiling of alkaloids in Sinomenii Caulis using laser microdissection and liquid chromatography–quadrupole/time of flight-mass spectrometry. J Chromatogr A 2012;1248:93–103 (Elsevier) CrossRefPubMed Yi L, Liang Z-T, Peng Y, Yao X, Chen H-B, Zhao Z-Z. Tissue-specific metabolite profiling of alkaloids in Sinomenii Caulis using laser microdissection and liquid chromatography–quadrupole/time of flight-mass spectrometry. J Chromatogr A 2012;1248:93–103 (Elsevier) CrossRefPubMed
15.
go back to reference Schad M, Mungur R, Fiehn O, Kehr J. Metabolic profiling of laser microdissected vascular bundles of Arabidopsis thaliana. Plant Methods 2005;1:2 (BioMed Central) CrossRefPubMedPubMedCentral Schad M, Mungur R, Fiehn O, Kehr J. Metabolic profiling of laser microdissected vascular bundles of Arabidopsis thaliana. Plant Methods 2005;1:2 (BioMed Central) CrossRefPubMedPubMedCentral
16.
go back to reference Dilillo M, Pellegrini D, Ait-Belkacem R, de Graaf EL, Caleo M, McDonnell LA. Mass spectrometry imaging, laser capture microdissection, and LC-MS/MS of the same tissue section. J Proteome Res 2017;16:2993–3001CrossRefPubMed Dilillo M, Pellegrini D, Ait-Belkacem R, de Graaf EL, Caleo M, McDonnell LA. Mass spectrometry imaging, laser capture microdissection, and LC-MS/MS of the same tissue section. J Proteome Res 2017;16:2993–3001CrossRefPubMed
17.
go back to reference Hutchinson RW, Cox AG, McLeod CW, Marshall PS, Harper A, Dawson EL, et al. Imaging and spatial distribution of β-amyloid peptide and metal ions in Alzheimer’s plaques by laser ablation—inductively coupled plasma—mass spectrometry. Anal Biochem 2005;346:225–233CrossRefPubMed Hutchinson RW, Cox AG, McLeod CW, Marshall PS, Harper A, Dawson EL, et al. Imaging and spatial distribution of β-amyloid peptide and metal ions in Alzheimer’s plaques by laser ablation—inductively coupled plasma—mass spectrometry. Anal Biochem 2005;346:225–233CrossRefPubMed
18.
go back to reference Wu B, Becker JS. Bioimaging of metals in rat brain hippocampus by laser microdissection inductively coupled plasma mass spectrometry (LMD-ICP-MS) using high-efficiency laser ablation chambers. Int J Mass Spectrom 2012;323–324:34–40 (Elsevier) CrossRef Wu B, Becker JS. Bioimaging of metals in rat brain hippocampus by laser microdissection inductively coupled plasma mass spectrometry (LMD-ICP-MS) using high-efficiency laser ablation chambers. Int J Mass Spectrom 2012;323–324:34–40 (Elsevier) CrossRef
19.
go back to reference Honda M, Nakamura M, Tateno M, Sakai A, Shimakami T, Shirasaki T, et al. Differential interferon signaling in liver lobule and portal area cells under treatment for chronic hepatitis C. J Hepatol 2010;53:817–826CrossRefPubMed Honda M, Nakamura M, Tateno M, Sakai A, Shimakami T, Shirasaki T, et al. Differential interferon signaling in liver lobule and portal area cells under treatment for chronic hepatitis C. J Hepatol 2010;53:817–826CrossRefPubMed
20.
go back to reference Sansonno D, Tucci FA, De Re V, Lauletta G, Montrone M, Libra M, et al. HCV-associated B cell clonalities in the liver do not carry the t(14;18) chromosomal translocation. Hepatology 2005;42:1019–1027CrossRefPubMed Sansonno D, Tucci FA, De Re V, Lauletta G, Montrone M, Libra M, et al. HCV-associated B cell clonalities in the liver do not carry the t(14;18) chromosomal translocation. Hepatology 2005;42:1019–1027CrossRefPubMed
21.
go back to reference Honda M, Shirasaki T, Shimakami T, Sakai A, Horii R, Arai K, et al. Hepatic interferon-stimulated genes are differentially regulated in the liver of chronic hepatitis C patients with different interleukin-28B genotypes. Hepatology 2014;59:828–838CrossRefPubMed Honda M, Shirasaki T, Shimakami T, Sakai A, Horii R, Arai K, et al. Hepatic interferon-stimulated genes are differentially regulated in the liver of chronic hepatitis C patients with different interleukin-28B genotypes. Hepatology 2014;59:828–838CrossRefPubMed
22.
go back to reference Chiu K-W, Nakano T, Chen K-D, Hu T-H, Lin C-C, Hsu L-W, et al. Identification of IL-28B genotype modification in hepatocytes after living donor liver transplantation by laser capture microdissection and pyrosequencing analysis. Biomed Res Int 2018;2018:1–8 Chiu K-W, Nakano T, Chen K-D, Hu T-H, Lin C-C, Hsu L-W, et al. Identification of IL-28B genotype modification in hepatocytes after living donor liver transplantation by laser capture microdissection and pyrosequencing analysis. Biomed Res Int 2018;2018:1–8
23.
go back to reference Munshaw S, Hwang HS, Torbenson M, Quinn J, Hansen KD, Astemborski J, et al. Laser captured hepatocytes show association of butyrylcholinesterase gene loss and fibrosis progression in hepatitis C-infected drug users. Hepatology 2012;56:544–554CrossRefPubMedPubMedCentral Munshaw S, Hwang HS, Torbenson M, Quinn J, Hansen KD, Astemborski J, et al. Laser captured hepatocytes show association of butyrylcholinesterase gene loss and fibrosis progression in hepatitis C-infected drug users. Hepatology 2012;56:544–554CrossRefPubMedPubMedCentral
24.
go back to reference Wang H, Gao Y, Jin X, Xiao J. Expression of contactin associated protein-like 2 in a subset of hepatic progenitor cell compartment identified by gene expression profiling in hepatitis B virus-positive cirrhosis. Liver Int 2010;30:126–138CrossRefPubMed Wang H, Gao Y, Jin X, Xiao J. Expression of contactin associated protein-like 2 in a subset of hepatic progenitor cell compartment identified by gene expression profiling in hepatitis B virus-positive cirrhosis. Liver Int 2010;30:126–138CrossRefPubMed
25.
go back to reference Deng H, Gao Y-B, Wang H-F, Jin X-L, Xiao J-C. Expression of deleted in malignant brain tumours 1 (DMBT1) relates to the proliferation and malignant transformation of hepatic progenitor cells in hepatitis B virus-related liver diseases. Histopathology 2012;60:249–260CrossRefPubMed Deng H, Gao Y-B, Wang H-F, Jin X-L, Xiao J-C. Expression of deleted in malignant brain tumours 1 (DMBT1) relates to the proliferation and malignant transformation of hepatic progenitor cells in hepatitis B virus-related liver diseases. Histopathology 2012;60:249–260CrossRefPubMed
26.
go back to reference Mishiro T, Hamamoto S, Furuta K, Ishimura N, Rumi MAK, Miyake T, et al. Quantitative measurement of hepatitis B virus DNA in different areas of hepatic lobules in patients with chronic hepatitis B. J Med Virol 2006;78:37–43CrossRefPubMed Mishiro T, Hamamoto S, Furuta K, Ishimura N, Rumi MAK, Miyake T, et al. Quantitative measurement of hepatitis B virus DNA in different areas of hepatic lobules in patients with chronic hepatitis B. J Med Virol 2006;78:37–43CrossRefPubMed
27.
go back to reference Tu T, Mason WS, Clouston AD, Shackel NA, McCaughan GW, Yeh MM, et al. Clonal expansion of hepatocytes with a selective advantage occurs during all stages of chronic hepatitis B virus infection. J Viral Hepat 2015;22:737–753CrossRefPubMed Tu T, Mason WS, Clouston AD, Shackel NA, McCaughan GW, Yeh MM, et al. Clonal expansion of hepatocytes with a selective advantage occurs during all stages of chronic hepatitis B virus infection. J Viral Hepat 2015;22:737–753CrossRefPubMed
28.
go back to reference Xu W, Wang N-R, Wang H-F, Feng Q, Deng J, Gong Z-Q, et al. Analysis of epithelial-mesenchymal transition markers in the histogenesis of hepatic progenitor cell in HBV-related liver diseases. Diagn Pathol 2016;11:136CrossRefPubMedPubMedCentral Xu W, Wang N-R, Wang H-F, Feng Q, Deng J, Gong Z-Q, et al. Analysis of epithelial-mesenchymal transition markers in the histogenesis of hepatic progenitor cell in HBV-related liver diseases. Diagn Pathol 2016;11:136CrossRefPubMedPubMedCentral
29.
go back to reference McDaniel K, Huang L, Sato K, Wu N, Annable T, Zhou T, et al. The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury. J Biol Chem 2017;292:11336–11347CrossRefPubMedPubMedCentral McDaniel K, Huang L, Sato K, Wu N, Annable T, Zhou T, et al. The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury. J Biol Chem 2017;292:11336–11347CrossRefPubMedPubMedCentral
30.
go back to reference Ceulemans A, Verhulst S, Van Haele M, Govaere O, Ventura J-J, van Grunsven LA, et al. RNA-sequencing-based comparative analysis of human hepatic progenitor cells and their niche from alcoholic steatohepatitis livers. Cell Death Dis 2017;8:e3164CrossRefPubMedPubMedCentral Ceulemans A, Verhulst S, Van Haele M, Govaere O, Ventura J-J, van Grunsven LA, et al. RNA-sequencing-based comparative analysis of human hepatic progenitor cells and their niche from alcoholic steatohepatitis livers. Cell Death Dis 2017;8:e3164CrossRefPubMedPubMedCentral
32.
go back to reference Hardy T, Zeybel M, Day CP, Dipper C, Masson S, McPherson S, et al. Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut 2017;66:1321–1328CrossRefPubMed Hardy T, Zeybel M, Day CP, Dipper C, Masson S, McPherson S, et al. Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut 2017;66:1321–1328CrossRefPubMed
33.
go back to reference Baba N, Kobashi H, Yamamoto K, Terada R, Suzuki T, Hakoda T, et al. Gene expression profiling in biliary epithelial cells of primary biliary cirrhosis using laser capture microdissection and cDNA microarray. Transl Res 2006;148:103–113CrossRefPubMed Baba N, Kobashi H, Yamamoto K, Terada R, Suzuki T, Hakoda T, et al. Gene expression profiling in biliary epithelial cells of primary biliary cirrhosis using laser capture microdissection and cDNA microarray. Transl Res 2006;148:103–113CrossRefPubMed
34.
go back to reference Gehring S, Dickson EM, San Martin ME, van Rooijen N, Papa EF, Harty MW, et al. Kupffer cells abrogate cholestatic liver injury in mice. Gastroenterology 2006;130:810–822CrossRefPubMed Gehring S, Dickson EM, San Martin ME, van Rooijen N, Papa EF, Harty MW, et al. Kupffer cells abrogate cholestatic liver injury in mice. Gastroenterology 2006;130:810–822CrossRefPubMed
35.
go back to reference McDaniel K, Meng F, Wu N, Sato K, Venter J, Bernuzzi F, et al. Forkhead box A2 regulates biliary heterogeneity and senescence during cholestatic liver injury in mice‡. Hepatology 2017;65:544–559 (NIH Public Access) CrossRefPubMed McDaniel K, Meng F, Wu N, Sato K, Venter J, Bernuzzi F, et al. Forkhead box A2 regulates biliary heterogeneity and senescence during cholestatic liver injury in mice‡. Hepatology 2017;65:544–559 (NIH Public Access) CrossRefPubMed
36.
go back to reference Katsumi T, Ninomiya M, Nishina T, Mizuno K, Tomita K, Haga H, et al. MiR-139-5p is associated with inflammatory regulation through c-FOS suppression, and contributes to the progression of primary biliary cholangitis. Lab Investig 2016;96:1165–1177CrossRefPubMed Katsumi T, Ninomiya M, Nishina T, Mizuno K, Tomita K, Haga H, et al. MiR-139-5p is associated with inflammatory regulation through c-FOS suppression, and contributes to the progression of primary biliary cholangitis. Lab Investig 2016;96:1165–1177CrossRefPubMed
37.
go back to reference Spee B, Carpino G, Schotanus BA, Katoonizadeh A, Borght SV, Gaudio E, et al. Characterisation of the liver progenitor cell niche in liver diseases: potential involvement of Wnt and Notch signalling. Gut 2010;59:247–257CrossRefPubMed Spee B, Carpino G, Schotanus BA, Katoonizadeh A, Borght SV, Gaudio E, et al. Characterisation of the liver progenitor cell niche in liver diseases: potential involvement of Wnt and Notch signalling. Gut 2010;59:247–257CrossRefPubMed
38.
go back to reference Adam AC, Faudou V, Paschen SA, Adam OM, Kahl P, Drebber U, et al. Hepatocarcinogenesis in non-cirrhotic liver is associated with a reduced number of clonal hepatocellular patches in non-tumorous liver parenchyma. J Pathol 2012;228:333–340CrossRefPubMed Adam AC, Faudou V, Paschen SA, Adam OM, Kahl P, Drebber U, et al. Hepatocarcinogenesis in non-cirrhotic liver is associated with a reduced number of clonal hepatocellular patches in non-tumorous liver parenchyma. J Pathol 2012;228:333–340CrossRefPubMed
39.
go back to reference Melis M, Diaz G, Kleiner DE, Zamboni F, Kabat J, Lai J, et al. Viral expression and molecular profiling in liver tissue versus microdissected hepatocytes in hepatitis B virus—associated hepatocellular carcinoma. J Transl Med 2014;12:230CrossRefPubMedPubMedCentral Melis M, Diaz G, Kleiner DE, Zamboni F, Kabat J, Lai J, et al. Viral expression and molecular profiling in liver tissue versus microdissected hepatocytes in hepatitis B virus—associated hepatocellular carcinoma. J Transl Med 2014;12:230CrossRefPubMedPubMedCentral
40.
go back to reference Yang Y, Lin X, Lu X, Luo G, Zeng T, Tang J, et al. Interferon-microRNA signalling drives liver precancerous lesion formation and hepatocarcinogenesis. Gut 2016;65:1186–1201CrossRefPubMedPubMedCentral Yang Y, Lin X, Lu X, Luo G, Zeng T, Tang J, et al. Interferon-microRNA signalling drives liver precancerous lesion formation and hepatocarcinogenesis. Gut 2016;65:1186–1201CrossRefPubMedPubMedCentral
41.
go back to reference Michael AOA, Ahsan N, Zabala V, Francois-Vaughan H, Post S, Brilliant KE, et al. Proteomic analysis of laser capture microdissected focal lesions in a rat model of progenitor marker-positive hepatocellular carcinoma. Oncotarget 2017;8:26041–26056CrossRefPubMedCentral Michael AOA, Ahsan N, Zabala V, Francois-Vaughan H, Post S, Brilliant KE, et al. Proteomic analysis of laser capture microdissected focal lesions in a rat model of progenitor marker-positive hepatocellular carcinoma. Oncotarget 2017;8:26041–26056CrossRefPubMedCentral
42.
go back to reference Taniai M, Higuchi H, Burgart LJ, Gores GJ. p16INK4a promoter mutations are frequent in primary sclerosing cholangitis (PSC) and PSC-associated cholangiocarcinoma. Gastroenterology 2002;123:1090–1098CrossRefPubMed Taniai M, Higuchi H, Burgart LJ, Gores GJ. p16INK4a promoter mutations are frequent in primary sclerosing cholangitis (PSC) and PSC-associated cholangiocarcinoma. Gastroenterology 2002;123:1090–1098CrossRefPubMed
43.
go back to reference Chen L, Yan H-X, Yang W, Hu L, Yu L-X, Liu Q, et al. The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma. J Hepatol 2009;50:358–369 (Elsevier) CrossRefPubMed Chen L, Yan H-X, Yang W, Hu L, Yu L-X, Liu Q, et al. The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma. J Hepatol 2009;50:358–369 (Elsevier) CrossRefPubMed
44.
go back to reference Andersen JB, Spee B, Blechacz BR, Avital I, Komuta M, Barbour A, et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology 2012;142(1021–1031):e15 (NIH Public Access) Andersen JB, Spee B, Blechacz BR, Avital I, Komuta M, Barbour A, et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology 2012;142(1021–1031):e15 (NIH Public Access)
45.
go back to reference Hsu M, Sasaki M, Igarashi S, Sato Y, Nakanuma Y. KRAS and GNAS mutations and p53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas. Cancer 2013;119:1669–1674CrossRefPubMed Hsu M, Sasaki M, Igarashi S, Sato Y, Nakanuma Y. KRAS and GNAS mutations and p53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas. Cancer 2013;119:1669–1674CrossRefPubMed
46.
go back to reference Sulpice L, Rayar M, Desille M, Turlin B, Fautrel A, Boucher E, et al. Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma. Hepatology 2013;58:1992–2000CrossRefPubMed Sulpice L, Rayar M, Desille M, Turlin B, Fautrel A, Boucher E, et al. Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma. Hepatology 2013;58:1992–2000CrossRefPubMed
47.
go back to reference Asukai K, Kawamoto K, Eguchi H, Konno M, Asai A, Iwagami Y, et al. Micro-RNA-130a-3p regulates gemcitabine resistance via PPARG in cholangiocarcinoma. Ann Surg Oncol 2017;24:2344–2352CrossRefPubMed Asukai K, Kawamoto K, Eguchi H, Konno M, Asai A, Iwagami Y, et al. Micro-RNA-130a-3p regulates gemcitabine resistance via PPARG in cholangiocarcinoma. Ann Surg Oncol 2017;24:2344–2352CrossRefPubMed
48.
go back to reference Iida M, Hazama S, Tsunedomi R, Tanaka H, Takenouchi H, Kanekiyo S, et al. Overexpression of miR-221 and miR-222 in the cancer stroma is associated with malignant potential in colorectal cancer. Oncol Rep 2018;40:1621–1631PubMed Iida M, Hazama S, Tsunedomi R, Tanaka H, Takenouchi H, Kanekiyo S, et al. Overexpression of miR-221 and miR-222 in the cancer stroma is associated with malignant potential in colorectal cancer. Oncol Rep 2018;40:1621–1631PubMed
49.
go back to reference Iino I, Kikuchi H, Miyazaki S, Hiramatsu Y, Ohta M, Kamiya K, et al. Effect of miR-122 and its target gene cationic amino acid transporter 1 on colorectal liver metastasis. Cancer Sci 2013;104:624–630CrossRefPubMed Iino I, Kikuchi H, Miyazaki S, Hiramatsu Y, Ohta M, Kamiya K, et al. Effect of miR-122 and its target gene cationic amino acid transporter 1 on colorectal liver metastasis. Cancer Sci 2013;104:624–630CrossRefPubMed
50.
go back to reference Murakami T, Kikuchi H, Ishimatsu H, Iino I, Hirotsu A, Matsumoto T, et al. Tenascin C in colorectal cancer stroma is a predictive marker for liver metastasis and is a potent target of miR-198 as identified by microRNA analysis. Br J Cancer 2017;117(9):1360CrossRefPubMedPubMedCentral Murakami T, Kikuchi H, Ishimatsu H, Iino I, Hirotsu A, Matsumoto T, et al. Tenascin C in colorectal cancer stroma is a predictive marker for liver metastasis and is a potent target of miR-198 as identified by microRNA analysis. Br J Cancer 2017;117(9):1360CrossRefPubMedPubMedCentral
51.
go back to reference Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res 1996;68:67–108CrossRefPubMed Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res 1996;68:67–108CrossRefPubMed
Metadata
Title
Laser capture microdissection: techniques and applications in liver diseases
Authors
Beatriz Aguilar-Bravo
Pau Sancho-Bru
Publication date
01-03-2019
Publisher
Springer India
Keyword
Laser
Published in
Hepatology International / Issue 2/2019
Print ISSN: 1936-0533
Electronic ISSN: 1936-0541
DOI
https://doi.org/10.1007/s12072-018-9917-3

Other articles of this Issue 2/2019

Hepatology International 2/2019 Go to the issue