Skip to main content
Top
Published in: Medical Oncology 9/2018

01-09-2018 | Short Communication

Splenic marginal zone lymphomas in acquired C1-inhibitor deficiency: clinical and molecular characterization

Authors: Matteo Sbattella, Andrea Zanichelli, Paolo Ghia, Valter Gattei, Chiara Suffritti, Thomas Teatini, Marco Cicardi, Roberto Castelli

Published in: Medical Oncology | Issue 9/2018

Login to get access

Abstract

Angioedema due to acquired deficiency of the inhibitor of the first component of complement (C1-INH) is a rare disease known as acquired angioedema (AAE). About 70% of patients with AEE display autoantibodies to C1-INH, the remaining patients have no antibodies to C1-INH. The clinical features of C1-INH deficiency include recurrent, self-limiting local swellings involving the skin, the gastrointestinal tract, and the upper respiratory tract. Swelling is due to accumulation of bradykinin released from high molecular weight kininogen. Patients with angioedema due to acquired C1 inhibitor deficiency (AEE) often have an associated lymphoproliferative disease including Non-Hodgkin Lymphomas (NHL). Among AAE patients with NHL, splenic marginal zone lymphoma (SMZL) has a higher prevalence (66%) compared to general population (2%) In the present study, we focused on patients with SMZL in AAE. We found 24 AAE patients with NHL and, among them 15 SMZL (62.5% of all NHL). We found NOTCH 2 activation in 4 /15 patients (26.6%) with SMZL, while no patients carried MYD 88 or BIRC3 mutations. Restricted immunoglobulin gene repertoire analysis showed that the IGHV1-2*04 allele was found to be over-represented in the group of patients with or without lymphoproliferative disease presenting with autoantibodies to C1-INH (41 of 55 (75%) of patients; p value 0.011) when compared to the control group of patients with AEE without antibodies to C1-INH, (7 of 27 (26%) of patients). Immunophenotyping failed to demonstrate the presence of autoreactive clones against C1-inhibitor. Taken together, these findings suggest a role for antigenic stimulation in the pathogenesis of lymphomas associated with AEE.
Literature
1.
go back to reference Castelli R, Zanichelli A, Cicardi M, et al. Acquired C1-inhibitor deficiency and lymphoproliferative disorders: a tight relationship. Crit. Rev. Oncol. Hematol. 2013;87(3):323–332.CrossRef Castelli R, Zanichelli A, Cicardi M, et al. Acquired C1-inhibitor deficiency and lymphoproliferative disorders: a tight relationship. Crit. Rev. Oncol. Hematol. 2013;87(3):323–332.CrossRef
2.
go back to reference Castelli R, Zanichelli A, Cugno M. Therapeutic options for patients with angioedema due to C1-inhibitor deficiencies: from pathophysiology to the clinic. Imm unopharmacol. Immunotoxicol. 2013;35:181–190 Castelli R, Zanichelli A, Cugno M. Therapeutic options for patients with angioedema due to C1-inhibitor deficiencies: from pathophysiology to the clinic. Imm unopharmacol. Immunotoxicol. 2013;35:181–190
3.
go back to reference Suffritti C, Zanichelli A, Maggioni L, et al. High-molecular-weight kininogen cleavage correlates with disease states in the bradykinin-mediated angioedema due to hereditary C1-inhibitor deficiency. Clin Exp Allergy. 2014;44:1503–14.CrossRefPubMed Suffritti C, Zanichelli A, Maggioni L, et al. High-molecular-weight kininogen cleavage correlates with disease states in the bradykinin-mediated angioedema due to hereditary C1-inhibitor deficiency. Clin Exp Allergy. 2014;44:1503–14.CrossRefPubMed
4.
go back to reference Caccia S, Castelli R, Maiocchi D, et al. Interaction of C1 inhibitor with thrombin on the endothelial surface. Blood Coagul Fibrinolysis. 2011;22:571–5.CrossRefPubMed Caccia S, Castelli R, Maiocchi D, et al. Interaction of C1 inhibitor with thrombin on the endothelial surface. Blood Coagul Fibrinolysis. 2011;22:571–5.CrossRefPubMed
5.
go back to reference Cugno M, Castelli R, Cicardi M. Angioedema due to acquired C1-inhibitor deficiency: a bridging condition between autoimmunity and lymphoproliferation. Autoimmun. Rev. 2008;8(2) 156–159.CrossRefPubMed Cugno M, Castelli R, Cicardi M. Angioedema due to acquired C1-inhibitor deficiency: a bridging condition between autoimmunity and lymphoproliferation. Autoimmun. Rev. 2008;8(2) 156–159.CrossRefPubMed
6.
go back to reference Castelli R, Wu MA, Arquati M, et al. High prevalence of splenic marginal zone lymphoma among patients with acquired C1 inhibtor deficiency. Br. J. Haematol. 2016;172:902–908CrossRefPubMed Castelli R, Wu MA, Arquati M, et al. High prevalence of splenic marginal zone lymphoma among patients with acquired C1 inhibtor deficiency. Br. J. Haematol. 2016;172:902–908CrossRefPubMed
7.
go back to reference Teixeira Mendes LS, Wotherspoon A. Marginal zone lymphoma: Associated autoimmunity and auto-immune disorders. Best Pract. Res. Clin. Haematol. 2017;30:65–76.CrossRefPubMed Teixeira Mendes LS, Wotherspoon A. Marginal zone lymphoma: Associated autoimmunity and auto-immune disorders. Best Pract. Res. Clin. Haematol. 2017;30:65–76.CrossRefPubMed
8.
go back to reference Castelli R, Bergamaschini L, Deliliers GL. First-line treatment with bendamustine and rituximab, in patients with intermediate-/high-risk splenic marginal zone lymphomas. Med. Oncol. 2018;35;15.CrossRef Castelli R, Bergamaschini L, Deliliers GL. First-line treatment with bendamustine and rituximab, in patients with intermediate-/high-risk splenic marginal zone lymphomas. Med. Oncol. 2018;35;15.CrossRef
9.
go back to reference Castelli R, Gidaro A, Deliliers GL. Bendamustine and rituximab, as first line treatment, in intermediate, high risk splenic marginal zone lymphomas of elderly patients. Mediterr J Hematol Infect Dis. 2016;8:e2016030.CrossRefPubMedPubMedCentral Castelli R, Gidaro A, Deliliers GL. Bendamustine and rituximab, as first line treatment, in intermediate, high risk splenic marginal zone lymphomas of elderly patients. Mediterr J Hematol Infect Dis. 2016;8:e2016030.CrossRefPubMedPubMedCentral
10.
go back to reference Alsenz J, Loos M. A rapid and simple ELISA for the determination of duplicate monoclonal antibodies during epitope analysis of antigens and its application to the study of C1(-)-INH. J Immunol Methods. 1988;109:75–84.CrossRefPubMed Alsenz J, Loos M. A rapid and simple ELISA for the determination of duplicate monoclonal antibodies during epitope analysis of antigens and its application to the study of C1(-)-INH. J Immunol Methods. 1988;109:75–84.CrossRefPubMed
11.
go back to reference Parsons DW, Li M, Zhang X, et al. The genetic landscape of the childhood cancer medulloblastoma. Science. 2011;331:435–9.CrossRefPubMed Parsons DW, Li M, Zhang X, et al. The genetic landscape of the childhood cancer medulloblastoma. Science. 2011;331:435–9.CrossRefPubMed
12.
go back to reference Gattei V, Degan M, Gloghini A, et al. CD30 ligand is frequently expressed in human hematopoietic malignancies of myeloid and lymphoid origin. Blood. 1997;89:2048–59.PubMed Gattei V, Degan M, Gloghini A, et al. CD30 ligand is frequently expressed in human hematopoietic malignancies of myeloid and lymphoid origin. Blood. 1997;89:2048–59.PubMed
13.
go back to reference Wu MA, Castelli R. The Janus faces of acquired angioedema: C1-inhibitor deficiency, lymphoproliferation and autoimmunity. Clin. Chem. Lab. Med. 2016;54:207–214.PubMed Wu MA, Castelli R. The Janus faces of acquired angioedema: C1-inhibitor deficiency, lymphoproliferation and autoimmunity. Clin. Chem. Lab. Med. 2016;54:207–214.PubMed
14.
go back to reference Spina V, Rossi D. Molecular pathogenesis of splenic and nodal marginal zone lymphoma. Best Pract. Res. Clin. Haematol. 2017;30:5–12.CrossRefPubMed Spina V, Rossi D. Molecular pathogenesis of splenic and nodal marginal zone lymphoma. Best Pract. Res. Clin. Haematol. 2017;30:5–12.CrossRefPubMed
15.
go back to reference Brisou G, Verney A, Wenner T, et al. Letters to the editor: a restricted IGHV gene repertoire in splenic marginal zone lymphoma is associated with autoimmune disorders. Haematologica. 2014;99(e198):197–8.CrossRef Brisou G, Verney A, Wenner T, et al. Letters to the editor: a restricted IGHV gene repertoire in splenic marginal zone lymphoma is associated with autoimmune disorders. Haematologica. 2014;99(e198):197–8.CrossRef
16.
go back to reference Arcaini L, Rossi D, Lucioni M, et al. The NOTCH pathway is recurrently mutated in diffuse large B-cell lymphoma associated with hepatitis C virus infection. Haematologica. 2015;100:246–52.CrossRefPubMedPubMedCentral Arcaini L, Rossi D, Lucioni M, et al. The NOTCH pathway is recurrently mutated in diffuse large B-cell lymphoma associated with hepatitis C virus infection. Haematologica. 2015;100:246–52.CrossRefPubMedPubMedCentral
17.
go back to reference Bikos V, Karypidou M, Stalika E, et al. An immunogenetic signature of ongoing antigen interactions in splenic marginal zone lymphoma expressing IGHV1-2*04 receptors. Clin Cancer Res. 2016;22:2032–40.CrossRefPubMed Bikos V, Karypidou M, Stalika E, et al. An immunogenetic signature of ongoing antigen interactions in splenic marginal zone lymphoma expressing IGHV1-2*04 receptors. Clin Cancer Res. 2016;22:2032–40.CrossRefPubMed
18.
go back to reference Fonte E, Agathangelidis A, Reverberi D, et al. Toll-like receptor stimulation in splenic marginal zone lymphoma can modulate cell signaling, activation and proliferation. Haematologica. 2015;100:1460–8.CrossRefPubMedPubMedCentral Fonte E, Agathangelidis A, Reverberi D, et al. Toll-like receptor stimulation in splenic marginal zone lymphoma can modulate cell signaling, activation and proliferation. Haematologica. 2015;100:1460–8.CrossRefPubMedPubMedCentral
19.
go back to reference Visentini M, Conti V, Cristofoletti C, et al. Clonal expansion and functional exhaustion of monoclonal marginal zone B cells in mixed cryoglobulinemia: the yin and yang of HCV-driven lymphoproliferation and autoimmunity. Autoimmun Rev. 2013;12:430–5.CrossRefPubMed Visentini M, Conti V, Cristofoletti C, et al. Clonal expansion and functional exhaustion of monoclonal marginal zone B cells in mixed cryoglobulinemia: the yin and yang of HCV-driven lymphoproliferation and autoimmunity. Autoimmun Rev. 2013;12:430–5.CrossRefPubMed
Metadata
Title
Splenic marginal zone lymphomas in acquired C1-inhibitor deficiency: clinical and molecular characterization
Authors
Matteo Sbattella
Andrea Zanichelli
Paolo Ghia
Valter Gattei
Chiara Suffritti
Thomas Teatini
Marco Cicardi
Roberto Castelli
Publication date
01-09-2018
Publisher
Springer US
Published in
Medical Oncology / Issue 9/2018
Print ISSN: 1357-0560
Electronic ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-018-1183-7

Other articles of this Issue 9/2018

Medical Oncology 9/2018 Go to the issue