Skip to main content
Top
Published in: Journal of Gastrointestinal Cancer 1/2019

01-03-2019 | Review Article

Pancreatic Cancer and Immunotherapy: Resistance Mechanisms and Proposed Solutions

Authors: Elaine Tan, Bassel El-Rayes

Published in: Journal of Gastrointestinal Cancer | Issue 1/2019

Login to get access

Abstract

Background

Pancreatic ductal adenocarcinoma (PDAC) continues to be one of the most aggressive and lethal diseases in the world. The success of immunotherapy in other types of malignancy has led to further trials to understand better the role of immunotherapy in PDAC. However, initial studies with immunotherapy, namely, the checkpoint inhibitors, in PDAC have not been met with the same outcomes. The purpose of this review is to identify and discuss the various resistance mechanisms of PDAC to immunotherapy (pancreatic stroma, genetic predisposition/epigenetics, and the immune inhibitory cells, cytokines, soluble factors, and enzymes that comprise the tumor microenvironment) and the solutions currently being studied to overcome them.

Conclusions

Various preclinical and early clinical studies have shown that immunotherapy, especially checkpoint inhibitors, in PDAC may be efficacious as part of a multi-modal treatment, in combination with other therapies that target these resistance mechanisms. Several clinical trials are ongoing to explore this concept further.
Literature
1.
go back to reference Thind K, Padrnos LJ, Ramanathan RK, et al. Immunotherapy in pancreatic cancer treatment: a new frontier. Ther Adv Gastroenterol. 2017;10(1):168–94.CrossRef Thind K, Padrnos LJ, Ramanathan RK, et al. Immunotherapy in pancreatic cancer treatment: a new frontier. Ther Adv Gastroenterol. 2017;10(1):168–94.CrossRef
2.
go back to reference Walker EJ, Kho AH. Beyond first-line chemotherapy for advanced pancreatic cancer: an expanding array of therapeutic options? J Immunother. 2010;33(8):828–33.CrossRef Walker EJ, Kho AH. Beyond first-line chemotherapy for advanced pancreatic cancer: an expanding array of therapeutic options? J Immunother. 2010;33(8):828–33.CrossRef
3.
go back to reference Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.CrossRefPubMed Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.CrossRefPubMed
4.
go back to reference Von Hoff D, Ervin T, Arena F, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.CrossRef Von Hoff D, Ervin T, Arena F, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.CrossRef
6.
go back to reference Royal RE, Levy C, Turner K, et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother. 2010;33(8):828–33.CrossRefPubMedPubMedCentral Royal RE, Levy C, Turner K, et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother. 2010;33(8):828–33.CrossRefPubMedPubMedCentral
7.
go back to reference Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.CrossRefPubMedPubMedCentral Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.CrossRefPubMedPubMedCentral
8.
go back to reference Duluc C, Moatassim-Billah S, Chalabi-Dchar M. Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumor chemoresistance. EMBO Mol Med. 2015;7(6):735–53.CrossRefPubMedPubMedCentral Duluc C, Moatassim-Billah S, Chalabi-Dchar M. Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumor chemoresistance. EMBO Mol Med. 2015;7(6):735–53.CrossRefPubMedPubMedCentral
9.
go back to reference Hartmann N, Giese NA, Giese T, et al. Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer. Clin Cancer Res. 2014;20(13):3422–33.CrossRefPubMed Hartmann N, Giese NA, Giese T, et al. Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer. Clin Cancer Res. 2014;20(13):3422–33.CrossRefPubMed
10.
go back to reference Mei L, Du W, Ma WW. Targeting stromal microenvironment in pancreatic ductal adenocarcinoma: controversies and promises. J Gastrointest Oncol. 2016;7(3):487–94.CrossRefPubMedPubMedCentral Mei L, Du W, Ma WW. Targeting stromal microenvironment in pancreatic ductal adenocarcinoma: controversies and promises. J Gastrointest Oncol. 2016;7(3):487–94.CrossRefPubMedPubMedCentral
11.
go back to reference Jiang H, Hegde S, Knolhoff BL, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med. 2016;22(8):851–60.CrossRefPubMedPubMedCentral Jiang H, Hegde S, Knolhoff BL, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med. 2016;22(8):851–60.CrossRefPubMedPubMedCentral
12.
go back to reference Bynigeri RR, Jakkampudi A, Jangala R, et al. Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J Gastroenterol. 2017;23(3):382–405.CrossRefPubMedPubMedCentral Bynigeri RR, Jakkampudi A, Jangala R, et al. Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J Gastroenterol. 2017;23(3):382–405.CrossRefPubMedPubMedCentral
13.
go back to reference Bahrami A, Khazaei M, Bagherieh F, Ghayour-Mobarhan M, et al. Targeting stroma in pancreatic cancer: promises and failures of targeted therapies. J Cell Physiol. 2017;232(11):2931–7.CrossRefPubMed Bahrami A, Khazaei M, Bagherieh F, Ghayour-Mobarhan M, et al. Targeting stroma in pancreatic cancer: promises and failures of targeted therapies. J Cell Physiol. 2017;232(11):2931–7.CrossRefPubMed
14.
go back to reference Wong KM, Horton KJ, Coveler AL, et al. Targeting the tumor stroma: the biology and clinical development of pegylated recombinant human hyaluronidase (PEGPH20). Curr Oncol Rep. 2017;19(7):47.CrossRefPubMed Wong KM, Horton KJ, Coveler AL, et al. Targeting the tumor stroma: the biology and clinical development of pegylated recombinant human hyaluronidase (PEGPH20). Curr Oncol Rep. 2017;19(7):47.CrossRefPubMed
15.
go back to reference Hugo W, Zaretsky JM, Sun L, Song C, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165(1):35–44.CrossRefPubMedPubMedCentral Hugo W, Zaretsky JM, Sun L, Song C, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165(1):35–44.CrossRefPubMedPubMedCentral
16.
go back to reference Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 2016;6(2):202–16.CrossRefPubMed Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 2016;6(2):202–16.CrossRefPubMed
18.
go back to reference Ding G, Zhou L, Qian Y, et al. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget. 2015;6(30):29877–88.CrossRefPubMedPubMedCentral Ding G, Zhou L, Qian Y, et al. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget. 2015;6(30):29877–88.CrossRefPubMedPubMedCentral
20.
go back to reference Skelton RA, Javed A, Zheng L, et al. Overcoming the resistance of pancreatic cancer to immune checkpoint inhibitors. J Surg Oncol. 2017;116(1):55–62.CrossRefPubMed Skelton RA, Javed A, Zheng L, et al. Overcoming the resistance of pancreatic cancer to immune checkpoint inhibitors. J Surg Oncol. 2017;116(1):55–62.CrossRefPubMed
21.
go back to reference Amedei A, Niccolai E, Prisco D. Pancreatic cancer: role of the immune system in cancer progression and vaccine-based immunotherapy. Hum Vaccin Immunother. 2014;10(11):3354–68.CrossRefPubMedPubMedCentral Amedei A, Niccolai E, Prisco D. Pancreatic cancer: role of the immune system in cancer progression and vaccine-based immunotherapy. Hum Vaccin Immunother. 2014;10(11):3354–68.CrossRefPubMedPubMedCentral
22.
23.
go back to reference Steele CW, Karim SA, Leach JDG, et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell. 2016;29(6):832–45.CrossRefPubMedPubMedCentral Steele CW, Karim SA, Leach JDG, et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell. 2016;29(6):832–45.CrossRefPubMedPubMedCentral
24.
go back to reference Seo YD, Pillarisetty VG. T-cell programming in pancreatic adenocarcinoma: a review. Cancer Gene Ther. 2017;24(3):106–13.CrossRefPubMed Seo YD, Pillarisetty VG. T-cell programming in pancreatic adenocarcinoma: a review. Cancer Gene Ther. 2017;24(3):106–13.CrossRefPubMed
25.
go back to reference Mace TA, Shakya R, Pitarresi JR, et al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut. 2018;67(2):320–32.CrossRefPubMed Mace TA, Shakya R, Pitarresi JR, et al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut. 2018;67(2):320–32.CrossRefPubMed
27.
go back to reference Wolpin BM, Hezel AF, Abrams T, et al. Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol. 2009;27:193–8.CrossRefPubMedPubMedCentral Wolpin BM, Hezel AF, Abrams T, et al. Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol. 2009;27:193–8.CrossRefPubMedPubMedCentral
28.
go back to reference Javle MM, Shroff RT, Xiong H, et al. Inhibition of the mammalian target of rapamycin (mTOR) in advanced pancreatic cancer: results of two phase II studies. BMC Cancer. 2010;10:368.CrossRefPubMedPubMedCentral Javle MM, Shroff RT, Xiong H, et al. Inhibition of the mammalian target of rapamycin (mTOR) in advanced pancreatic cancer: results of two phase II studies. BMC Cancer. 2010;10:368.CrossRefPubMedPubMedCentral
29.
go back to reference Hingorani SR, Harris WP, Beck JT, et al. Phase Ib study of PEGylated recombinant human hyaluronidase and gemcitabine in patients with advanced pancreatic cancer. Clin Cancer Res. 2016;22:2848–54.CrossRefPubMedPubMedCentral Hingorani SR, Harris WP, Beck JT, et al. Phase Ib study of PEGylated recombinant human hyaluronidase and gemcitabine in patients with advanced pancreatic cancer. Clin Cancer Res. 2016;22:2848–54.CrossRefPubMedPubMedCentral
30.
go back to reference Zeitz U, Weber K, Soegiarto DW, et al. Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor. FASEB J. 2003;17:509–11.CrossRefPubMed Zeitz U, Weber K, Soegiarto DW, et al. Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor. FASEB J. 2003;17:509–11.CrossRefPubMed
31.
go back to reference Sherman M, Yu R, Dannielle D, et al. Vitamin D receptor mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159(1):80–93.CrossRefPubMedPubMedCentral Sherman M, Yu R, Dannielle D, et al. Vitamin D receptor mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159(1):80–93.CrossRefPubMedPubMedCentral
32.
go back to reference Beatty GL, Chiorean EG, Fishman MP, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331(6024):1612–6.CrossRefPubMedPubMedCentral Beatty GL, Chiorean EG, Fishman MP, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331(6024):1612–6.CrossRefPubMedPubMedCentral
33.
go back to reference Beatty GL, Torigian DA, Chiorean EG, et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin Cancer Res. 2013;19(22):6286–95.CrossRefPubMed Beatty GL, Torigian DA, Chiorean EG, et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin Cancer Res. 2013;19(22):6286–95.CrossRefPubMed
34.
go back to reference Okkenhaug K, Graupera M, Vanhaesebroeck B. Targeting PI3K in cancer: impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 2016;6(10):1090–105.CrossRefPubMedPubMedCentral Okkenhaug K, Graupera M, Vanhaesebroeck B. Targeting PI3K in cancer: impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 2016;6(10):1090–105.CrossRefPubMedPubMedCentral
35.
36.
go back to reference Bahary N, Garrido-Laguna I, Cinar P, et al. Phase 2 trial of the indoleamine 2,3-dioxygenase pathway (IDO) inhibitor indoximod plus gemcitabine/nab-paclitaxel for the treatment of metastatic pancreas cancer: interim analysis. J Clin Oncol. 34(15):3020. Bahary N, Garrido-Laguna I, Cinar P, et al. Phase 2 trial of the indoleamine 2,3-dioxygenase pathway (IDO) inhibitor indoximod plus gemcitabine/nab-paclitaxel for the treatment of metastatic pancreas cancer: interim analysis. J Clin Oncol. 34(15):3020.
37.
go back to reference Zhu Y, Knolhoff BL, Meyer MA, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74(18):5057–69.CrossRefPubMedPubMedCentral Zhu Y, Knolhoff BL, Meyer MA, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74(18):5057–69.CrossRefPubMedPubMedCentral
38.
go back to reference Ferrantini M, Capone I, Belardelli F. Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie. 2007;89:884–93.CrossRefPubMed Ferrantini M, Capone I, Belardelli F. Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie. 2007;89:884–93.CrossRefPubMed
39.
go back to reference Hara H, Kobayashi A, Narumi K, et al. Intratumoral interferon-alpha gene transfer enhances tumor immunity after allogeneic hematopoietic stem cell transplantation. Cancer Immunol Immunother. 2009;58:1007–21.CrossRefPubMed Hara H, Kobayashi A, Narumi K, et al. Intratumoral interferon-alpha gene transfer enhances tumor immunity after allogeneic hematopoietic stem cell transplantation. Cancer Immunol Immunother. 2009;58:1007–21.CrossRefPubMed
40.
go back to reference Narumi K, Udagawa T, Kondoh A, et al. In vivo delivery of interferon-alpha gene enhances tumor immunity and suppresses immunotolerance in reconstituted lymphopenic hosts. Gene Ther. 2012;19:34–48.CrossRefPubMed Narumi K, Udagawa T, Kondoh A, et al. In vivo delivery of interferon-alpha gene enhances tumor immunity and suppresses immunotolerance in reconstituted lymphopenic hosts. Gene Ther. 2012;19:34–48.CrossRefPubMed
41.
go back to reference Aida K, Miyakawa R, Suzuki K, et al. Suppression of Tregs by anti-glucocorticoid induced TNF receptor antibody enhances the antitumor immunity of interferon-α gene therapy for pancreatic cancer. Cancer Sci. 2014 Feb;105(2):159–67.CrossRefPubMedPubMedCentral Aida K, Miyakawa R, Suzuki K, et al. Suppression of Tregs by anti-glucocorticoid induced TNF receptor antibody enhances the antitumor immunity of interferon-α gene therapy for pancreatic cancer. Cancer Sci. 2014 Feb;105(2):159–67.CrossRefPubMedPubMedCentral
Metadata
Title
Pancreatic Cancer and Immunotherapy: Resistance Mechanisms and Proposed Solutions
Authors
Elaine Tan
Bassel El-Rayes
Publication date
01-03-2019
Publisher
Springer US
Published in
Journal of Gastrointestinal Cancer / Issue 1/2019
Print ISSN: 1941-6628
Electronic ISSN: 1941-6636
DOI
https://doi.org/10.1007/s12029-018-0179-z

Other articles of this Issue 1/2019

Journal of Gastrointestinal Cancer 1/2019 Go to the issue