Skip to main content
Top
Published in: Journal of Gastrointestinal Cancer 3/2017

01-09-2017 | Review Article

Angiogenesis, Invasion, and Metastasis Characteristics of Hepatocellular Carcinoma

Authors: Şirin Yüksel, Cemaliye Boylu Akyerli, M. Cengiz Yakıcıer

Published in: Journal of Gastrointestinal Cancer | Issue 3/2017

Login to get access

Excerpt

Starting with the chronic inflammation and cirrhosis, dysplastic nodules of the liver usually progresses to hepatocellular carcinoma through a series of complex multistep processes known as hepatocarcinogenesis. Even though the details of hepatocarcinogenesis still remain to be elucidated, previous studies suggest that two distinct mechanisms might be responsible in the formation of hepatocellular carcinoma. Hepatocarcinogenesis can be triggered by either exposing the liver to various chronic injuries (HBV, HCV, alcohol, aflatoxin, metabolic disease such as obesity, type II diabetes, and insulin resistance) or the presence of somatic mutations and/or genomic alterations in one or more oncogenes or tumor suppressors [1, 2]. Both of these mechanisms seem to disrupt various specific signaling pathways playing roles in various cancer hallmarks such as angiogenesis, invasion, metastasis, regulation of cell cycle, proliferation, differentiation, cell invasion, and inflammation [3]. This review focusing on the three of these major cancer hallmarks aims to discuss the roles of angiogenesis, invasion, and metastasis from the perspective of hepatocarcinogenesis. …
Literature
1.
go back to reference Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010;29(36):4989–5005.CrossRef Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010;29(36):4989–5005.CrossRef
2.
go back to reference Han ZG. Functional genomic studies: insights into the pathogenesis of liver cancer. Annu rev Genomics hum Genet. 2012;13:171–205.CrossRef Han ZG. Functional genomic studies: insights into the pathogenesis of liver cancer. Annu rev Genomics hum Genet. 2012;13:171–205.CrossRef
3.
go back to reference Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRef Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRef
4.
go back to reference Karamysheva AF. Mechanisms of angiogenesis. Biochemistry (Mosc). 2008;73(7):751–62.CrossRef Karamysheva AF. Mechanisms of angiogenesis. Biochemistry (Mosc). 2008;73(7):751–62.CrossRef
5.
go back to reference Sanz-Cameno P, Trapero-Marugán M, Chaparro M, Jones EA, Moreno-Otero R. Angiogenesis: from chronic liver inflammation to hepatocellular carcinoma. J Oncol. 2010;2010:272170.CrossRef Sanz-Cameno P, Trapero-Marugán M, Chaparro M, Jones EA, Moreno-Otero R. Angiogenesis: from chronic liver inflammation to hepatocellular carcinoma. J Oncol. 2010;2010:272170.CrossRef
6.
go back to reference McEvoy SH, McCarthy CJ, Lavelle LP, Moran DE, Cantwell CP, Skehan SJ, et al. Hepatocellular carcinoma: illustrated guide to systematic radiologic diagnosis and staging according to guidelines of the American Association for the Study of Liver Diseases. Radiographics. 2013;33(6):1653–68.CrossRef McEvoy SH, McCarthy CJ, Lavelle LP, Moran DE, Cantwell CP, Skehan SJ, et al. Hepatocellular carcinoma: illustrated guide to systematic radiologic diagnosis and staging according to guidelines of the American Association for the Study of Liver Diseases. Radiographics. 2013;33(6):1653–68.CrossRef
7.
go back to reference Iwakiri Y, Shah V, Rockey DC. Vascular pathobiology in chronic liver disease and cirrhosis—current status and future directions. J Hepatol. 2014;61(4):912–24.CrossRef Iwakiri Y, Shah V, Rockey DC. Vascular pathobiology in chronic liver disease and cirrhosis—current status and future directions. J Hepatol. 2014;61(4):912–24.CrossRef
8.
go back to reference Yang Y, Sun M, Wang L, Jiao B. HIFs, angiogenesis, and cancer. J Cell Biochem. 2013;114:967–74.CrossRef Yang Y, Sun M, Wang L, Jiao B. HIFs, angiogenesis, and cancer. J Cell Biochem. 2013;114:967–74.CrossRef
9.
go back to reference Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148:399–408.CrossRef Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148:399–408.CrossRef
10.
go back to reference Roberts LR, Gores GJ. Hepatocellular carcinoma: molecular pathways and new therapeutic targets. Semin Liver dis. 2005;25:212–25.CrossRef Roberts LR, Gores GJ. Hepatocellular carcinoma: molecular pathways and new therapeutic targets. Semin Liver dis. 2005;25:212–25.CrossRef
11.
go back to reference Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157(1):77–94.CrossRef Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157(1):77–94.CrossRef
12.
go back to reference Weiqi T, Yang L, Seng-Gee L, Theresa MCT. miR-106b-25/miR-17-92 clusters: polycistrons with oncogenic roles in hepatocellular carcinoma. World J Gastroenterol. 2014;20(20):5962–72.CrossRef Weiqi T, Yang L, Seng-Gee L, Theresa MCT. miR-106b-25/miR-17-92 clusters: polycistrons with oncogenic roles in hepatocellular carcinoma. World J Gastroenterol. 2014;20(20):5962–72.CrossRef
13.
go back to reference Van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat res. 2011;728(1–2):23–34.CrossRef Van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat res. 2011;728(1–2):23–34.CrossRef
14.
go back to reference Krakhmal NV, Zavyalova MV, Denisov EV, Vtorushin SV, Perelmuter VM. Cancer invasion: patterns and mechanisms. Acta Nat. 2015;7(2):17–28.CrossRef Krakhmal NV, Zavyalova MV, Denisov EV, Vtorushin SV, Perelmuter VM. Cancer invasion: patterns and mechanisms. Acta Nat. 2015;7(2):17–28.CrossRef
15.
go back to reference Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat rev Cancer. 2003;3:362–74.CrossRef Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat rev Cancer. 2003;3:362–74.CrossRef
16.
go back to reference Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.CrossRef Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.CrossRef
17.
go back to reference Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.CrossRef Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.CrossRef
18.
go back to reference Hegerfeldt Y, Tusch M, Bröcker EB, Friedl P. Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies. Cancer res. 2002;62(7):2125–30.PubMed Hegerfeldt Y, Tusch M, Bröcker EB, Friedl P. Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies. Cancer res. 2002;62(7):2125–30.PubMed
19.
go back to reference Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol. 2003;160(2):267–77.CrossRef Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol. 2003;160(2):267–77.CrossRef
20.
go back to reference Giannelli G, Koudelkova P, Dituri F, Mikulits W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J Hepatol. 2016;65(4):798–808.CrossRef Giannelli G, Koudelkova P, Dituri F, Mikulits W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J Hepatol. 2016;65(4):798–808.CrossRef
21.
go back to reference Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.CrossRef Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.CrossRef
22.
go back to reference Tam WL, Weinberg RA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med. 2013;11:1438–49.CrossRef Tam WL, Weinberg RA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med. 2013;11:1438–49.CrossRef
23.
go back to reference Zavadil J, Böttinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005;24(37):5764–74.CrossRef Zavadil J, Böttinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005;24(37):5764–74.CrossRef
24.
go back to reference Caja L, Bertran E, Campbell J, Fausto N, Fabregat I. The transforming growth factor beta (TGF-beta) mediates acquisition of a mesenchymal stem cell-like phenotype in human liver cells. J Cell Physiol. 2011;226:1214–23.CrossRef Caja L, Bertran E, Campbell J, Fausto N, Fabregat I. The transforming growth factor beta (TGF-beta) mediates acquisition of a mesenchymal stem cell-like phenotype in human liver cells. J Cell Physiol. 2011;226:1214–23.CrossRef
25.
go back to reference Ogunwobi OO, Liu C. Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways. Clin Exp Metastasis. 2011;28:721–31.CrossRef Ogunwobi OO, Liu C. Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways. Clin Exp Metastasis. 2011;28:721–31.CrossRef
26.
go back to reference Xu J, Zhu X, Wu L, Yang R, Yang Z, Wang Q, et al. MicroRNA-122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting Wnt/β-catenin pathway. Liver Int. 2012;32(5):752–60.CrossRef Xu J, Zhu X, Wu L, Yang R, Yang Z, Wang Q, et al. MicroRNA-122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting Wnt/β-catenin pathway. Liver Int. 2012;32(5):752–60.CrossRef
27.
go back to reference Sun J, Lu H, Wang X, Jin H. MicroRNAs in hepatocellular carcinoma: regulation, function, and clinical implications. ScientificWorldJournal. 2013;2013:924206.PubMedPubMedCentral Sun J, Lu H, Wang X, Jin H. MicroRNAs in hepatocellular carcinoma: regulation, function, and clinical implications. ScientificWorldJournal. 2013;2013:924206.PubMedPubMedCentral
28.
go back to reference Li G, Zhang H, Wan X, Yang X, Zhu C, Wang A, et al. Long noncoding RNA plays a key role in metastasis and prognosis of hepatocellular carcinoma. Biomed Res Int. 2014;2014:780521.PubMedPubMedCentral Li G, Zhang H, Wan X, Yang X, Zhu C, Wang A, et al. Long noncoding RNA plays a key role in metastasis and prognosis of hepatocellular carcinoma. Biomed Res Int. 2014;2014:780521.PubMedPubMedCentral
29.
go back to reference Dhanasekaran R, Bandoh S, Roberts LR (2016) Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Research 2016, 5(F1000 Faculty Rev):879. Dhanasekaran R, Bandoh S, Roberts LR (2016) Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Research 2016, 5(F1000 Faculty Rev):879.
30.
go back to reference Nault JC, De Reyniès A, Villanueva A, Calderaro J, Rebouissou S, et al. A hepatocellular carcinoma 5-gene score associated with survival of patients after liver resection. Gastroenterology. 2013;145:176–87.CrossRef Nault JC, De Reyniès A, Villanueva A, Calderaro J, Rebouissou S, et al. A hepatocellular carcinoma 5-gene score associated with survival of patients after liver resection. Gastroenterology. 2013;145:176–87.CrossRef
31.
go back to reference Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J med. 2009;361:1437–47.CrossRef Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J med. 2009;361:1437–47.CrossRef
32.
go back to reference Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J med. 2008;359:1995–2004.CrossRef Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J med. 2008;359:1995–2004.CrossRef
33.
go back to reference Berretta M, Rinaldi L, Di Benedetto F, Lleshi A, De Re V, Facchini G, et al. Angiogenesis inhibitors for the treatment of hepatocellular carcinoma. Front Pharmacol. 2016;9(7):428. Berretta M, Rinaldi L, Di Benedetto F, Lleshi A, De Re V, Facchini G, et al. Angiogenesis inhibitors for the treatment of hepatocellular carcinoma. Front Pharmacol. 2016;9(7):428.
34.
go back to reference Chen C, Wang G. Mechanisms of hepatocellular carcinoma and challenges and opportunities for molecular targeted therapy. World J Hepatol. 2015;7(15):1964–70.CrossRef Chen C, Wang G. Mechanisms of hepatocellular carcinoma and challenges and opportunities for molecular targeted therapy. World J Hepatol. 2015;7(15):1964–70.CrossRef
Metadata
Title
Angiogenesis, Invasion, and Metastasis Characteristics of Hepatocellular Carcinoma
Authors
Şirin Yüksel
Cemaliye Boylu Akyerli
M. Cengiz Yakıcıer
Publication date
01-09-2017
Publisher
Springer US
Published in
Journal of Gastrointestinal Cancer / Issue 3/2017
Print ISSN: 1941-6628
Electronic ISSN: 1941-6636
DOI
https://doi.org/10.1007/s12029-017-9962-5

Other articles of this Issue 3/2017

Journal of Gastrointestinal Cancer 3/2017 Go to the issue