Skip to main content
Top
Published in: Neurocritical Care 1/2015

01-08-2015 | Original Article

Optimal Cerebral Perfusion Pressure Management at Bedside: A Single-Center Pilot Study

Authors: Celeste Dias, Maria João Silva, Eduarda Pereira, Elisabete Monteiro, Isabel Maia, Silvina Barbosa, Sofia Silva, Teresa Honrado, António Cerejo, Marcel J. H. Aries, Peter Smielewski, José-Artur Paiva, Marek Czosnyka

Published in: Neurocritical Care | Issue 1/2015

Login to get access

Abstract

Background

Guidelines recommend cerebral perfusion pressure (CPP) values of 50–70 mmHg and intracranial pressure lower than 20 mmHg for the management of acute traumatic brain injury (TBI). However, adequate individual targets are still poorly addressed, since patients have different perfusion thresholds. Bedside assessment of cerebral autoregulation may help to optimize individual CPP-guided treatment.

Objective

To assess staff compliance and outcome impact of a new method of autoregulation-guided treatment (CPPopt) based on continuous evaluation of cerebrovascular reactivity (PRx).

Methods

Prospective pilot study of severe TBI adult patients managed with continuous multimodal brain monitoring in a single Neurocritical Care Unit (NCCU). Every minute CPPopt was automatically estimated, based on the previous 4-h window, as the CPP with the lowest PRx indicating the best cerebrovascular pressure reactivity. Patients were managed with CPPopt targets whenever possible and otherwise CPP was managed following general/international guidelines. In addition, other offline CPPopt estimates were calculated using cerebral oximetry (COx-CPPopt), brain tissue oxygenation (ORxs-CPPopt), and cerebral blood flow (CBFx-CPPopt).

Results

Eighteen patients with a total multimodal brain monitoring time of 5,520 h were enrolled. During the total monitoring period, 11 patients (61 %) had a CPPopt U-shaped curve, 5 patients (28 %) had either ascending or descending curves, and only 2 patients (11 %) had no fitted curve. Real CPP correlated significantly with calculated CPPopt (r = 0.83, p < 0.0001). Preserved autoregulation was associated with greater Glasgow coma score on admission (p = 0.01) and better outcome (p = 0.01). We demonstrated that patients with the larger discrepancy (>10 mm Hg) between real CPP and CPPopt more likely have had adverse outcome (p = 0.04). Comparison between CPPopt and the other estimates revealed similar limits of precision. The lowest bias (−0.1 mmHg) was obtained with COx-CPPopt (NIRS).

Conclusion

Targeted individual CPP management at the bedside using cerebrovascular pressure reactivity seems feasible. Large deviation from CPPopt seems to be associated with adverse outcome. The COx-CPPopt methodology using non-invasive CO (NIRS) warrants further evaluation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stahel PF, Smith WR, Moore EE. Hypoxia and hypotension, the “lethal duo” in traumatic brain injury: implications for prehospital care. Intensive Care Med. 2008;34:402–4.PubMedCrossRef Stahel PF, Smith WR, Moore EE. Hypoxia and hypotension, the “lethal duo” in traumatic brain injury: implications for prehospital care. Intensive Care Med. 2008;34:402–4.PubMedCrossRef
2.
go back to reference Jeremitsky E, Omert L, Dunham CM, Protetch J, Rodriguez A. Harbingers of poor outcome the day after severe brain injury: hypothermia, hypoxia, and hypoperfusion. J Trauma. 2003;54:312–9.PubMedCrossRef Jeremitsky E, Omert L, Dunham CM, Protetch J, Rodriguez A. Harbingers of poor outcome the day after severe brain injury: hypothermia, hypoxia, and hypoperfusion. J Trauma. 2003;54:312–9.PubMedCrossRef
3.
go back to reference Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. VIII. Intracranial pressure thresholds. J Neurotrauma. 2007;24(Suppl 1):S55–8.PubMed Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. VIII. Intracranial pressure thresholds. J Neurotrauma. 2007;24(Suppl 1):S55–8.PubMed
4.
go back to reference Trauma F, American Association of Neurological S, Congress of Neurological S, et al. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma. 2007;24(Suppl 1):S59–64. Trauma F, American Association of Neurological S, Congress of Neurological S, et al. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma. 2007;24(Suppl 1):S59–64.
5.
go back to reference Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83:949–62.PubMedCrossRef Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83:949–62.PubMedCrossRef
6.
go back to reference Grande PO. The Lund concept for the treatment of patients with severe traumatic brain injury. J Neurosurg Anesthesiol. 2011;23:358–62.PubMedCrossRef Grande PO. The Lund concept for the treatment of patients with severe traumatic brain injury. J Neurosurg Anesthesiol. 2011;23:358–62.PubMedCrossRef
8.
9.
11.
go back to reference Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2:161–92.PubMed Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2:161–92.PubMed
12.
go back to reference Czosnyka M, Brady K, Reinhard M, Smielewski P, Steiner LA. Monitoring of cerebrovascular autoregulation: facts, myths, and missing links. Neurocrit Care. 2009;10:373–86.PubMedCrossRef Czosnyka M, Brady K, Reinhard M, Smielewski P, Steiner LA. Monitoring of cerebrovascular autoregulation: facts, myths, and missing links. Neurocrit Care. 2009;10:373–86.PubMedCrossRef
13.
go back to reference Rangel-Castilla L, Gasco J, Nauta HJ, Okonkwo DO, Robertson CS. Cerebral pressure autoregulation in traumatic brain injury. Neurosurg Focus. 2008;25:E7.PubMedCrossRef Rangel-Castilla L, Gasco J, Nauta HJ, Okonkwo DO, Robertson CS. Cerebral pressure autoregulation in traumatic brain injury. Neurosurg Focus. 2008;25:E7.PubMedCrossRef
14.
go back to reference Zweifel C, Dias C, Smielewski P, Czosnyka M. Continuous time-domain monitoring of cerebral autoregulation in neurocritical care. Med Eng Phys. 2014;36:638–45.PubMedCrossRef Zweifel C, Dias C, Smielewski P, Czosnyka M. Continuous time-domain monitoring of cerebral autoregulation in neurocritical care. Med Eng Phys. 2014;36:638–45.PubMedCrossRef
15.
go back to reference Steiner LA, Czosnyka M, Piechnik SK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8.PubMedCrossRef Steiner LA, Czosnyka M, Piechnik SK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8.PubMedCrossRef
16.
go back to reference Zweifel C, Lavinio A, Steiner LA, et al. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25:E2.PubMedCrossRef Zweifel C, Lavinio A, Steiner LA, et al. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25:E2.PubMedCrossRef
17.
go back to reference Aries MJ, Czosnyka M, Budohoski KP, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456–63.PubMedCrossRef Aries MJ, Czosnyka M, Budohoski KP, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456–63.PubMedCrossRef
18.
go back to reference Rasulo FA, Girardini A, Lavinio A, et al. Are optimal cerebral perfusion pressure and cerebrovascular autoregulation related to long-term outcome in patients with aneurysmal subarachnoid hemorrhage? J Neurosurg Anesthesiol. 2012;24:3–8.PubMedCrossRef Rasulo FA, Girardini A, Lavinio A, et al. Are optimal cerebral perfusion pressure and cerebrovascular autoregulation related to long-term outcome in patients with aneurysmal subarachnoid hemorrhage? J Neurosurg Anesthesiol. 2012;24:3–8.PubMedCrossRef
19.
go back to reference Diedler J, Sykora M, Rupp A, et al. Impaired cerebral vasomotor activity in spontaneous intracerebral hemorrhage. Stroke. 2009;40:815–9.PubMedCrossRef Diedler J, Sykora M, Rupp A, et al. Impaired cerebral vasomotor activity in spontaneous intracerebral hemorrhage. Stroke. 2009;40:815–9.PubMedCrossRef
20.
go back to reference Jaeger M, Schuhmann MU, Soehle M, Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med. 2006;34:1783–8.PubMedCrossRef Jaeger M, Schuhmann MU, Soehle M, Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med. 2006;34:1783–8.PubMedCrossRef
21.
go back to reference Jaeger M, Schuhmann MU, Soehle M, Nagel C, Meixensberger J. Continuous monitoring of cerebrovascular autoregulation after subarachnoid hemorrhage by brain tissue oxygen pressure reactivity and its relation to delayed cerebral infarction. Stroke. 2007;38:981–6.PubMedCrossRef Jaeger M, Schuhmann MU, Soehle M, Nagel C, Meixensberger J. Continuous monitoring of cerebrovascular autoregulation after subarachnoid hemorrhage by brain tissue oxygen pressure reactivity and its relation to delayed cerebral infarction. Stroke. 2007;38:981–6.PubMedCrossRef
22.
go back to reference Maas AI, Hukkelhoven CW, Marshall LF, Steyerberg EW. Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery. 2005;57:1173–82 discussion -82.PubMedCrossRef Maas AI, Hukkelhoven CW, Marshall LF, Steyerberg EW. Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery. 2005;57:1173–82 discussion -82.PubMedCrossRef
23.
go back to reference Jennett B. Assessment of outcome after severe brain damage: a practical scale. The Lancet. 1975;305:480–4.CrossRef Jennett B. Assessment of outcome after severe brain damage: a practical scale. The Lancet. 1975;305:480–4.CrossRef
24.
go back to reference Smielewski P, Czosnyka M, Steiner L, Belestri M, Piechnik S, Pickard JD. ICM+: software for on-line analysis of bedside monitoring data after severe head trauma. Acta Neurochir Suppl. 2005;95:43–9.PubMedCrossRef Smielewski P, Czosnyka M, Steiner L, Belestri M, Piechnik S, Pickard JD. ICM+: software for on-line analysis of bedside monitoring data after severe head trauma. Acta Neurochir Suppl. 2005;95:43–9.PubMedCrossRef
25.
go back to reference Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–7 discussion 7-9.PubMedCrossRef Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–7 discussion 7-9.PubMedCrossRef
26.
go back to reference Sorrentino E, Diedler J, Kasprowicz M, et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16:258–66.PubMedCrossRef Sorrentino E, Diedler J, Kasprowicz M, et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16:258–66.PubMedCrossRef
27.
go back to reference Sessler CN, Gosnell MS, Grap MJ, et al. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166:1338–44.PubMedCrossRef Sessler CN, Gosnell MS, Grap MJ, et al. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166:1338–44.PubMedCrossRef
28.
go back to reference Rao V, Klepstad P, Losvik OK, Solheim O. Confusion with cerebral perfusion pressure in a literature review of current guidelines and survey of clinical practise. Scand J Trauma Resusc Emerg Med. 2013;21:78.PubMedCentralPubMedCrossRef Rao V, Klepstad P, Losvik OK, Solheim O. Confusion with cerebral perfusion pressure in a literature review of current guidelines and survey of clinical practise. Scand J Trauma Resusc Emerg Med. 2013;21:78.PubMedCentralPubMedCrossRef
29.
go back to reference Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma. 2007;24(Suppl 1):S59–64.PubMed Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma. 2007;24(Suppl 1):S59–64.PubMed
30.
31.
go back to reference Team RDC. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2012. Team RDC. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2012.
32.
go back to reference Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;8476:307–10.CrossRef Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;8476:307–10.CrossRef
33.
go back to reference Cecconi M, Rhodes A, Poloniecki J, Della Rocca G, Grounds RM. Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies–with specific reference to the measurement of cardiac output. Crit Care. 2009;13:201.PubMedCentralPubMedCrossRef Cecconi M, Rhodes A, Poloniecki J, Della Rocca G, Grounds RM. Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies–with specific reference to the measurement of cardiac output. Crit Care. 2009;13:201.PubMedCentralPubMedCrossRef
34.
go back to reference Czosnyka M, Smielewski P, Kirkpatrick P, Piechnik S, Laing R, Pickard JD. Continuous monitoring of cerebrovascular pressure-reactivity in head injury. Acta Neurochir Suppl. 1998;71:74–7.PubMed Czosnyka M, Smielewski P, Kirkpatrick P, Piechnik S, Laing R, Pickard JD. Continuous monitoring of cerebrovascular pressure-reactivity in head injury. Acta Neurochir Suppl. 1998;71:74–7.PubMed
35.
go back to reference Lang EW, Lagopoulos J, Griffith J, et al. Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow. J Neurol Neurosurg Psychiatry. 2003;74:1053–9.PubMedCentralPubMedCrossRef Lang EW, Lagopoulos J, Griffith J, et al. Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow. J Neurol Neurosurg Psychiatry. 2003;74:1053–9.PubMedCentralPubMedCrossRef
36.
go back to reference Budohoski KP, Czosnyka M, de Riva N, et al. The relationship between cerebral blood flow autoregulation and cerebrovascular pressure reactivity after traumatic brain injury. Neurosurgery. 2012;71:652–60 discussion 60-1.PubMedCrossRef Budohoski KP, Czosnyka M, de Riva N, et al. The relationship between cerebral blood flow autoregulation and cerebrovascular pressure reactivity after traumatic brain injury. Neurosurgery. 2012;71:652–60 discussion 60-1.PubMedCrossRef
37.
go back to reference Zweifel C, Castellani G, Czosnyka M, et al. Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients. J Neurotrauma. 2010;27:1951–8.PubMedCrossRef Zweifel C, Castellani G, Czosnyka M, et al. Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients. J Neurotrauma. 2010;27:1951–8.PubMedCrossRef
38.
go back to reference Weerakkody RA, Czosnyka M, Zweifel C, et al. Slow vasogenic fluctuations of intracranial pressure and cerebral near infrared spectroscopy—an observational study. Acta Neurochir (Wien). 2010;152:1763–9.CrossRef Weerakkody RA, Czosnyka M, Zweifel C, et al. Slow vasogenic fluctuations of intracranial pressure and cerebral near infrared spectroscopy—an observational study. Acta Neurochir (Wien). 2010;152:1763–9.CrossRef
39.
go back to reference Steiner LA, Pfister D, Strebel SP, Radolovich D, Smielewski P, Czosnyka M. Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit Care. 2009;10:122–8.PubMedCrossRef Steiner LA, Pfister D, Strebel SP, Radolovich D, Smielewski P, Czosnyka M. Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit Care. 2009;10:122–8.PubMedCrossRef
40.
go back to reference Brady KM, Lee JK, Kibler KK, et al. Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke. 2007;38:2818–25.PubMedCentralPubMedCrossRef Brady KM, Lee JK, Kibler KK, et al. Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke. 2007;38:2818–25.PubMedCentralPubMedCrossRef
41.
go back to reference Brady K, Joshi B, Zweifel C, et al. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke. 2010;41:1951–6.PubMedCrossRef Brady K, Joshi B, Zweifel C, et al. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke. 2010;41:1951–6.PubMedCrossRef
42.
go back to reference Diedler J, Zweifel C, Budohoski KP, et al. The limitations of near-infrared spectroscopy to assess cerebrovascular reactivity: the role of slow frequency oscillations. Anesth Analg. 2011;113:849–57.PubMed Diedler J, Zweifel C, Budohoski KP, et al. The limitations of near-infrared spectroscopy to assess cerebrovascular reactivity: the role of slow frequency oscillations. Anesth Analg. 2011;113:849–57.PubMed
43.
go back to reference Lazaridis C, Smielewski P, Steiner LA, et al. Optimal cerebral perfusion pressure: are we ready for it? Neurol Res. 2013;35:138–48.PubMedCrossRef Lazaridis C, Smielewski P, Steiner LA, et al. Optimal cerebral perfusion pressure: are we ready for it? Neurol Res. 2013;35:138–48.PubMedCrossRef
Metadata
Title
Optimal Cerebral Perfusion Pressure Management at Bedside: A Single-Center Pilot Study
Authors
Celeste Dias
Maria João Silva
Eduarda Pereira
Elisabete Monteiro
Isabel Maia
Silvina Barbosa
Sofia Silva
Teresa Honrado
António Cerejo
Marcel J. H. Aries
Peter Smielewski
José-Artur Paiva
Marek Czosnyka
Publication date
01-08-2015
Publisher
Springer US
Published in
Neurocritical Care / Issue 1/2015
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-014-0103-8

Other articles of this Issue 1/2015

Neurocritical Care 1/2015 Go to the issue