Skip to main content
Top
Published in: Neurocritical Care 1/2014

01-02-2014 | Original Article

Cessation of Diastolic Cerebral Blood Flow Velocity: The Role of Critical Closing Pressure

Authors: Georgios V. Varsos, Hugh K. Richards, Magdalena Kasprowicz, Matthias Reinhard, Peter Smielewski, Ken M. Brady, John D. Pickard, Marek Czosnyka

Published in: Neurocritical Care | Issue 1/2014

Login to get access

Abstract

Background

Reducing cerebral perfusion pressure (CPP) below the lower limit of autoregulation (LLA) causes cerebral blood flow (CBF) to become pressure passive. Further reductions in CPP can cause cessation of CBF during diastole. We hypothesized that zero diastolic flow velocity (FV) occurs when diastolic blood pressure becomes less than the critical closing pressure (CrCP).

Methods

We retrospectively analyzed studies of 34 rabbits with CPP below the LLA, induced with pharmacologic sympathectomy (N = 23) or cerebrospinal fluid infusion (N = 11). Basilar artery blood FV and cortical Laser Doppler Flow (LDF) were monitored. CrCP was trended using a model of cerebrovascular impedance. The diastolic closing margin (DCM) was monitored as the difference between diastolic blood pressure and CrCP. LDF was recorded for DCM values greater than and less than zero.

Results

Arterial hypotension caused a reduction of CrCP (p < 0.001), consistent with decreased wall tension (p < 0.001) and a drop in intracranial pressure (ICP; p = 0.004). Cerebrospinal infusion caused an increase of CrCP (p = 0.002) accounted for by increasing ICP (p < 0.001). The DCM was compromised by either arterial hypotension or intracranial hypertension (p < 0.001 for both). When the DCM reached zero, diastolic FV ceased for a short period during each heart cycle (R = 0.426, p < 0.001). CBF pressure passivity accelerated when DCM decreased below zero (from 1.51 ± 0.51 to 2.17 ± 1.17 % ΔLDF/ΔmmHg; mean ± SD; p = 0.010).

Conclusions

The disappearance of diastolic CBF below LLA can be explained by DCM reaching zero or negative values. Below this point the decrease in CBF accelerates with further decrements of CPP.
Literature
1.
go back to reference Fog M. Cerebral circulation. The reaction of the pial arteries to a fall in blood pressure. Arch Neurol Psychiatry. 1937;37:351–64.CrossRef Fog M. Cerebral circulation. The reaction of the pial arteries to a fall in blood pressure. Arch Neurol Psychiatry. 1937;37:351–64.CrossRef
2.
go back to reference Lassen NA. Autoregulation of cerebral blood flow. Circ Res. 1964;15(SUPPL):201–4.PubMed Lassen NA. Autoregulation of cerebral blood flow. Circ Res. 1964;15(SUPPL):201–4.PubMed
3.
go back to reference Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20:45–52.PubMedCrossRef Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20:45–52.PubMedCrossRef
4.
go back to reference Paulson OB, Olesen J, Christensen MS. Restoration of autoregulation of cerebral blood flow by hypocapnia. J Neurol. 1972;22:286–93.CrossRef Paulson OB, Olesen J, Christensen MS. Restoration of autoregulation of cerebral blood flow by hypocapnia. J Neurol. 1972;22:286–93.CrossRef
5.
go back to reference Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol. 1978;234:H371–83.PubMed Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol. 1978;234:H371–83.PubMed
6.
go back to reference Wijdicks FME. Determining brain death in adults. J Neurol. 1995;45:1003–11.CrossRef Wijdicks FME. Determining brain death in adults. J Neurol. 1995;45:1003–11.CrossRef
7.
go back to reference Lovrenčić-Huzjan A, Vuković V, Jergović K, Demarin V. Transcranial Doppler as a confirmatory test in brain death. Acta Clin Croat. 2006;45:365–73. Lovrenčić-Huzjan A, Vuković V, Jergović K, Demarin V. Transcranial Doppler as a confirmatory test in brain death. Acta Clin Croat. 2006;45:365–73.
8.
go back to reference Kirkham FJ, Levin SD, Padayachee TS, Kyme MC, Neville BGR, Gosling RG. Transcranial pulsed Doppler ultrasound findings in brain stem death. J Neurol Neurosurg Psychiatry. 1987;50:1504–13.PubMedCrossRef Kirkham FJ, Levin SD, Padayachee TS, Kyme MC, Neville BGR, Gosling RG. Transcranial pulsed Doppler ultrasound findings in brain stem death. J Neurol Neurosurg Psychiatry. 1987;50:1504–13.PubMedCrossRef
9.
go back to reference Bouzat P, Francony G, Declety P, Genty C, Kaddour A, Bessou P, Brun J, Jacquot C, Chabardes S, Bosson JL, Payen JF. Transcranial Doppler to screen on admission patients with mild to moderate traumatic brain injury. Neurosurgery. 2011;68:1603–9.PubMedCrossRef Bouzat P, Francony G, Declety P, Genty C, Kaddour A, Bessou P, Brun J, Jacquot C, Chabardes S, Bosson JL, Payen JF. Transcranial Doppler to screen on admission patients with mild to moderate traumatic brain injury. Neurosurgery. 2011;68:1603–9.PubMedCrossRef
10.
go back to reference Astudillo R, van der Linden J, Ekroth R, Wesslen O, Hallhagen S, Scallan M, Shore D, Lincoln C. Absent diastolic cerebral blood flow velocity after circulatory arrest but not after low flow in infants. Ann Thorac Surg. 1993;56:515–9.PubMedCrossRef Astudillo R, van der Linden J, Ekroth R, Wesslen O, Hallhagen S, Scallan M, Shore D, Lincoln C. Absent diastolic cerebral blood flow velocity after circulatory arrest but not after low flow in infants. Ann Thorac Surg. 1993;56:515–9.PubMedCrossRef
11.
go back to reference Jonassen AE, Quaegebeur JM, Young WL. Cerebral blood flow velocity in pediatric patients is reduced after cardiopulmonary bypass with profound hypothermia. J Thorac Cardiovasc Surg. 1995;110:934–43.PubMedCrossRef Jonassen AE, Quaegebeur JM, Young WL. Cerebral blood flow velocity in pediatric patients is reduced after cardiopulmonary bypass with profound hypothermia. J Thorac Cardiovasc Surg. 1995;110:934–43.PubMedCrossRef
12.
go back to reference O’Hare B, Bissonnette B, Bohn D, Cox P, Williams W. Persistent low cerebral blood flow velocity following profound hypothermic circulatory arrest in infants. Can J Anaesth. 1995;42:964–71.PubMedCrossRef O’Hare B, Bissonnette B, Bohn D, Cox P, Williams W. Persistent low cerebral blood flow velocity following profound hypothermic circulatory arrest in infants. Can J Anaesth. 1995;42:964–71.PubMedCrossRef
13.
go back to reference Burton AC. Fundamental instability of the small blood vessels and critical closing pressure in vascular beds. Am J Physiol. 1951;164:330–1.PubMed Burton AC. Fundamental instability of the small blood vessels and critical closing pressure in vascular beds. Am J Physiol. 1951;164:330–1.PubMed
14.
go back to reference Dewey RC, Pierer HP, Hunt WE. Experimental cerebral hemodynamics-vasomotor tone, critical closing pressure, and vascular bed resistance. J Neurosurg. 1974;41(5):597–606.PubMedCrossRef Dewey RC, Pierer HP, Hunt WE. Experimental cerebral hemodynamics-vasomotor tone, critical closing pressure, and vascular bed resistance. J Neurosurg. 1974;41(5):597–606.PubMedCrossRef
15.
go back to reference Varsos GV, Richards H, Kasprowicz M, Budohoski KP, Brady KM, Reinhard M, Avolio M, Smielewski P, Pickard JD, Czosnyka M. Critical closing pressure determined with a model of cerebrovascular impedance. J Cereb Blood Flow Metab. 2012;33:235–43.PubMedCrossRef Varsos GV, Richards H, Kasprowicz M, Budohoski KP, Brady KM, Reinhard M, Avolio M, Smielewski P, Pickard JD, Czosnyka M. Critical closing pressure determined with a model of cerebrovascular impedance. J Cereb Blood Flow Metab. 2012;33:235–43.PubMedCrossRef
16.
go back to reference Aaslid R, Lash SR, Bardy GH, Gild WH, Newell DW. Dynamic pressure–flow velocity relationships in the human cerebral circulation. Stroke. 2003;34:1645–9.PubMedCrossRef Aaslid R, Lash SR, Bardy GH, Gild WH, Newell DW. Dynamic pressure–flow velocity relationships in the human cerebral circulation. Stroke. 2003;34:1645–9.PubMedCrossRef
17.
go back to reference Panerai RB. The critical closing pressure of the cerebral circulation. Med Eng Phys. 2003;25:621–32.PubMedCrossRef Panerai RB. The critical closing pressure of the cerebral circulation. Med Eng Phys. 2003;25:621–32.PubMedCrossRef
18.
go back to reference Michel E, Hillebrand S, von Twickel J, Zernikow B, Jorch G. Frequency dependence of cerebrovascular impedance in preterm neonates: a different view on critical closing pressure. J Cereb Blood Flow Metab. 1997;17:1127–31.PubMedCrossRef Michel E, Hillebrand S, von Twickel J, Zernikow B, Jorch G. Frequency dependence of cerebrovascular impedance in preterm neonates: a different view on critical closing pressure. J Cereb Blood Flow Metab. 1997;17:1127–31.PubMedCrossRef
19.
go back to reference Puppo C, Camacho J, Yelicich B, Moraes L, Biestro A, Gomez H. Bedside study of cerebral critical closing pressure in patients with severe traumatic brain injury: a transcranial Doppler study. Acta Neurosurg Suppl. 2012;114:283–8.CrossRef Puppo C, Camacho J, Yelicich B, Moraes L, Biestro A, Gomez H. Bedside study of cerebral critical closing pressure in patients with severe traumatic brain injury: a transcranial Doppler study. Acta Neurosurg Suppl. 2012;114:283–8.CrossRef
20.
go back to reference Richards HK, Czosnyka M, Pickard JD. Assessment of critical closing pressure in the cerebral circulation as a measure of cerebrovascular tone. Acta Neurochir (Wien). 1999;141:1221–7.CrossRef Richards HK, Czosnyka M, Pickard JD. Assessment of critical closing pressure in the cerebral circulation as a measure of cerebrovascular tone. Acta Neurochir (Wien). 1999;141:1221–7.CrossRef
21.
go back to reference Nelson RJ, Czosnyka M, Pickard JD, Maksymowicz W, Perry S, Martin JL, et al. Experimental aspects of cerebrospinal haemodynamics: the relationship between blood flow velocity waveform and cerebral autoregulation. J Neurosurg. 1992;31:705–10.CrossRef Nelson RJ, Czosnyka M, Pickard JD, Maksymowicz W, Perry S, Martin JL, et al. Experimental aspects of cerebrospinal haemodynamics: the relationship between blood flow velocity waveform and cerebral autoregulation. J Neurosurg. 1992;31:705–10.CrossRef
22.
go back to reference Harland S, Richards HK, Czosnyka M, Piechnik P, Pickard JD. Dissociation of cerebral autoregulation and CO2 reactivity following carotid occlusion in rabbits. J Cereb Blood Flow Metab. 1999;19:S636. Harland S, Richards HK, Czosnyka M, Piechnik P, Pickard JD. Dissociation of cerebral autoregulation and CO2 reactivity following carotid occlusion in rabbits. J Cereb Blood Flow Metab. 1999;19:S636.
23.
go back to reference de Riva N, Budohoski KP, Smielewski P, Kasprowicz M, Zweifel C, Luzius A, Reinhard M, Fabregas N, Pickard JD, Czosnyka M. Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care. 2012;17:58–66.PubMedCrossRef de Riva N, Budohoski KP, Smielewski P, Kasprowicz M, Zweifel C, Luzius A, Reinhard M, Fabregas N, Pickard JD, Czosnyka M. Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care. 2012;17:58–66.PubMedCrossRef
24.
go back to reference Carrera E, Kim DJ, Castellani G, Zweifel C, Smielewski P, Pickard JD, Kirkpatrick PJ, Czosnyka M. Cerebral arterial compliance in patients with internal carotid artery disease. Eur J Neurol. 2010;18:711–8.PubMedCrossRef Carrera E, Kim DJ, Castellani G, Zweifel C, Smielewski P, Pickard JD, Kirkpatrick PJ, Czosnyka M. Cerebral arterial compliance in patients with internal carotid artery disease. Eur J Neurol. 2010;18:711–8.PubMedCrossRef
25.
go back to reference Kasprowicz M, Czosnyka M, Soehle M, Smielewski P, Kirkpatrick PJ, Pickard JD, Budohoski KP. Vasospasm shortens cerebral arterial time constant. Neurocrit Care. 2011;16:213–8.CrossRef Kasprowicz M, Czosnyka M, Soehle M, Smielewski P, Kirkpatrick PJ, Pickard JD, Budohoski KP. Vasospasm shortens cerebral arterial time constant. Neurocrit Care. 2011;16:213–8.CrossRef
26.
go back to reference Reinhard M, Petrick M, Steinfurth G, Ziyeh S, Hetzel A. Acute increase in intracranial pressure revealed by transcranial Doppler sonography. J Clin Ultrasound. 2003;31:324–7.PubMedCrossRef Reinhard M, Petrick M, Steinfurth G, Ziyeh S, Hetzel A. Acute increase in intracranial pressure revealed by transcranial Doppler sonography. J Clin Ultrasound. 2003;31:324–7.PubMedCrossRef
27.
go back to reference Kempski O, Heimann A, Strecker U. On the number of measurements necessary to assess regional cerebral blood flow by local laser Doppler recordings: a simulation study with data from 45 rabbits. Int J Microcirc Clin Exp. 1995;15:37–42.PubMedCrossRef Kempski O, Heimann A, Strecker U. On the number of measurements necessary to assess regional cerebral blood flow by local laser Doppler recordings: a simulation study with data from 45 rabbits. Int J Microcirc Clin Exp. 1995;15:37–42.PubMedCrossRef
28.
go back to reference Ungersböck K, Heimann A, Kempski O. Monitoring of cortical blood flow: clinical relevance of experimental laser Doppler studies. Neurol Res. 1996;18:273–6.PubMed Ungersböck K, Heimann A, Kempski O. Monitoring of cortical blood flow: clinical relevance of experimental laser Doppler studies. Neurol Res. 1996;18:273–6.PubMed
29.
go back to reference Heimann A, Kroppenstedt S, Ulrich P, Kempski OS. Cerebral blood flow autoregulation during hypobaric hypotension assessed by laser Doppler scanning. J Cereb Blood Flow Metab. 1994;14:1100–5.PubMedCrossRef Heimann A, Kroppenstedt S, Ulrich P, Kempski OS. Cerebral blood flow autoregulation during hypobaric hypotension assessed by laser Doppler scanning. J Cereb Blood Flow Metab. 1994;14:1100–5.PubMedCrossRef
30.
go back to reference Czosnyka M, Richards HK, Reinhard M, Steiner AL, Budohoski K, Smielewski P, et al. Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurol Res. 2012;34:17–24.PubMedCrossRef Czosnyka M, Richards HK, Reinhard M, Steiner AL, Budohoski K, Smielewski P, et al. Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurol Res. 2012;34:17–24.PubMedCrossRef
31.
go back to reference Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57(6):769–74.PubMedCrossRef Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57(6):769–74.PubMedCrossRef
Metadata
Title
Cessation of Diastolic Cerebral Blood Flow Velocity: The Role of Critical Closing Pressure
Authors
Georgios V. Varsos
Hugh K. Richards
Magdalena Kasprowicz
Matthias Reinhard
Peter Smielewski
Ken M. Brady
John D. Pickard
Marek Czosnyka
Publication date
01-02-2014
Publisher
Springer US
Published in
Neurocritical Care / Issue 1/2014
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-013-9913-3

Other articles of this Issue 1/2014

Neurocritical Care 1/2014 Go to the issue