Skip to main content
Top
Published in: Neurocritical Care 2/2012

01-04-2012 | Original Article

Vasospasm Shortens Cerebral Arterial Time Constant

Authors: Magdalena Kasprowicz, Marek Czosnyka, Martin Soehle, Peter Smielewski, Peter J. Kirkpatrick, John D. Pickard, Karol P. Budohoski

Published in: Neurocritical Care | Issue 2/2012

Login to get access

Abstract

Background

Cerebrovascular time constant (τ) estimates how fast cerebral blood arrives in cerebral arterial bed after each heart stroke. We investigate the pattern of changes in τ following subarachnoid hemorrhage (SAH), with specific emphasis on the temporal profile of changes in relation to the development of cerebral vasospasm.

Methods

Simultaneous recordings of arterial blood pressure (ABP) and transcranial Doppler (TCD) blood flow velocity (CBFV) in MCA were performed daily in patients after SAH. In 22 patients (10 males and 12 females; median age: 48 years, range: 34–84 years) recordings done before spasm were compared to those done during spasm. Vasospasm was confirmed with TCD (mean CBFV in MCA > 120 cm/s and Lindegaard ratio > 3). τ was estimated as a product of compliance of cerebral arteries (C a) and cerebrovascular resistance (CVR). C a and CVR were estimated using mathematical transformations of ABP and CBFV waveforms.

Results

Vasospasm caused shortening of τ on both the spastic (before: 0.20 ± 0.05 s vs. spasm: 0.14 ± 0.04 s, P < 0.0008) and contralateral side (before: 0.22 ± 0.05 s vs. spasm: 0.16 ± 0.04 s, P < 0.0008). Before TCD signs of vasospasm were detected, τ demonstrated asymmetry with lower values on ipsilateral side to aneurysm, in comparison to contralateral side (P < 0.009),

Conclusions

Cerebral vasospasm causes shortening of τ. Shorter τ at the side of aneurysm can be observed before formal TCD signs of vasospasm are observed, therefore, potentially reducing time to escalation of treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bederson JB, Connolly ES Jr, Batjer HH, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 2009;40:994–1025.PubMedCrossRef Bederson JB, Connolly ES Jr, Batjer HH, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 2009;40:994–1025.PubMedCrossRef
2.
go back to reference Lysakowski C, Walder B, Costanza MC, Tramer MR. Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: a systematic review. Stroke. 2001;32:2292–8.PubMedCrossRef Lysakowski C, Walder B, Costanza MC, Tramer MR. Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: a systematic review. Stroke. 2001;32:2292–8.PubMedCrossRef
3.
go back to reference Spencer MP, Reid JM. Quantitation of carotid stenosis with continuous-wave (C-W) Doppler ultrasound. Stroke. 1979;10:326–30.PubMedCrossRef Spencer MP, Reid JM. Quantitation of carotid stenosis with continuous-wave (C-W) Doppler ultrasound. Stroke. 1979;10:326–30.PubMedCrossRef
4.
5.
go back to reference Kim DJ, Kasprowicz M, Carrera E, et al. The monitoring of relative changes in compartmental compliances of brain. Physiol Meas. 2009;30:647–59.PubMedCrossRef Kim DJ, Kasprowicz M, Carrera E, et al. The monitoring of relative changes in compartmental compliances of brain. Physiol Meas. 2009;30:647–59.PubMedCrossRef
6.
go back to reference Carrera E, Kim DJ, Castellani G, et al. Effect of hyper- and hypocapnia on cerebral arterial compliance in normal subjects. J Neuroimaging. 2011;21:121–5.PubMedCrossRef Carrera E, Kim DJ, Castellani G, et al. Effect of hyper- and hypocapnia on cerebral arterial compliance in normal subjects. J Neuroimaging. 2011;21:121–5.PubMedCrossRef
7.
go back to reference Yundt KD, Grubb RL Jr, Diringer MN, Powers WJ. Autoregulatory vasodilation of parenchymal vessels is impaired during cerebral vasospasm. J Cereb Blood Flow Metab. 1998;18:419–24.PubMedCrossRef Yundt KD, Grubb RL Jr, Diringer MN, Powers WJ. Autoregulatory vasodilation of parenchymal vessels is impaired during cerebral vasospasm. J Cereb Blood Flow Metab. 1998;18:419–24.PubMedCrossRef
8.
go back to reference Ohkuma H, Manabe H, Tanaka M, Suzuki S. Impact of cerebral microcirculatory changes on cerebral blood flow during cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke. 2000;31:1621–7.PubMedCrossRef Ohkuma H, Manabe H, Tanaka M, Suzuki S. Impact of cerebral microcirculatory changes on cerebral blood flow during cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke. 2000;31:1621–7.PubMedCrossRef
9.
go back to reference Czosnyka M, Richards KH, Reinhard M, et al. Cerebrovascular time constant : dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurol Res. 2011; in press. Czosnyka M, Richards KH, Reinhard M, et al. Cerebrovascular time constant : dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurol Res. 2011; in press.
10.
go back to reference Kasprowicz M, Diedler J, Reinhard M, et al. Time constant of the cerebral arterial bed. Acta Neurochir Suppl. 2011; in press. Kasprowicz M, Diedler J, Reinhard M, et al. Time constant of the cerebral arterial bed. Acta Neurochir Suppl. 2011; in press.
11.
go back to reference Soehle M, Czosnyka M, Pickard JD, Kirkpatrick PJ. Continuous assessment of cerebral autoregulation in subarachnoid hemorrhage. Anesth Analg. 2004;98:1133–9. table of contents.PubMedCrossRef Soehle M, Czosnyka M, Pickard JD, Kirkpatrick PJ. Continuous assessment of cerebral autoregulation in subarachnoid hemorrhage. Anesth Analg. 2004;98:1133–9. table of contents.PubMedCrossRef
12.
go back to reference Tseng MY, Czosnyka M, Richards H, Pickard JD, Kirkpatrick PJ. Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage: a phase II randomized placebo-controlled trial. Stroke. 2005;36:1627–32.PubMedCrossRef Tseng MY, Czosnyka M, Richards H, Pickard JD, Kirkpatrick PJ. Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage: a phase II randomized placebo-controlled trial. Stroke. 2005;36:1627–32.PubMedCrossRef
13.
go back to reference Lam JM, Smielewski P, Czosnyka M, Pickard JD, Kirkpatrick PJ. Predicting delayed ischemic deficits after aneurysmal subarachnoid hemorrhage using a transient hyperemic response test of cerebral autoregulation. Neurosurgery. 2000;47:819–25. discussions 25-6.PubMedCrossRef Lam JM, Smielewski P, Czosnyka M, Pickard JD, Kirkpatrick PJ. Predicting delayed ischemic deficits after aneurysmal subarachnoid hemorrhage using a transient hyperemic response test of cerebral autoregulation. Neurosurgery. 2000;47:819–25. discussions 25-6.PubMedCrossRef
14.
go back to reference Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P. Cerebral vasospasm diagnosis by means of angiography and blood velocity measurements. Acta Neurochir. 1989;100:12–24.CrossRef Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P. Cerebral vasospasm diagnosis by means of angiography and blood velocity measurements. Acta Neurochir. 1989;100:12–24.CrossRef
15.
go back to reference Stoquart-Elsankari S, Lehmann P, Villette A, et al. A phase-contrast MRI study of physiologic cerebral venous flow. J Cereb Blood Flow Metab. 2009;29:1208–15.PubMedCrossRef Stoquart-Elsankari S, Lehmann P, Villette A, et al. A phase-contrast MRI study of physiologic cerebral venous flow. J Cereb Blood Flow Metab. 2009;29:1208–15.PubMedCrossRef
16.
go back to reference Avezaat CJ, Van Eijndhoven JH. The role of the pulsatile pressure variations in intracranial pressure monitoring. Neurosurg Rev. 1986;9:113–20.PubMedCrossRef Avezaat CJ, Van Eijndhoven JH. The role of the pulsatile pressure variations in intracranial pressure monitoring. Neurosurg Rev. 1986;9:113–20.PubMedCrossRef
17.
go back to reference Seaman DS, Newell KA, Piper JB, et al. Use of polytetrafluoroethylene patch for temporary wound closure after pediatric liver transplantation. Transplantation. 1996;62:1034–6.PubMedCrossRef Seaman DS, Newell KA, Piper JB, et al. Use of polytetrafluoroethylene patch for temporary wound closure after pediatric liver transplantation. Transplantation. 1996;62:1034–6.PubMedCrossRef
18.
go back to reference Aaslid R, Newell DW, Stooss R, Sorteberg W, Lindegaard KF. Assessment of cerebral autoregulation dynamics from simultaneous arterial and venous transcranial Doppler recordings in humans. Stroke. 1991;22:1148–54.PubMedCrossRef Aaslid R, Newell DW, Stooss R, Sorteberg W, Lindegaard KF. Assessment of cerebral autoregulation dynamics from simultaneous arterial and venous transcranial Doppler recordings in humans. Stroke. 1991;22:1148–54.PubMedCrossRef
19.
go back to reference Czosnyka M, Richards H, Pickard JD, Harris N, Iyer V. Frequency-dependent properties of cerebral blood transport—an experimental study in anaesthetized rabbits. Ultrasound Med Biol. 1994;20:391–9.PubMedCrossRef Czosnyka M, Richards H, Pickard JD, Harris N, Iyer V. Frequency-dependent properties of cerebral blood transport—an experimental study in anaesthetized rabbits. Ultrasound Med Biol. 1994;20:391–9.PubMedCrossRef
Metadata
Title
Vasospasm Shortens Cerebral Arterial Time Constant
Authors
Magdalena Kasprowicz
Marek Czosnyka
Martin Soehle
Peter Smielewski
Peter J. Kirkpatrick
John D. Pickard
Karol P. Budohoski
Publication date
01-04-2012
Publisher
Humana Press Inc
Published in
Neurocritical Care / Issue 2/2012
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-011-9653-1

Other articles of this Issue 2/2012

Neurocritical Care 2/2012 Go to the issue