Skip to main content
Top
Published in: Neurocritical Care 1/2014

01-02-2014 | Review Article

Model-based Indices Describing Cerebrovascular Dynamics

Authors: Georgios V. Varsos, Magdalena Kasprowicz, Peter Smielewski, Marek Czosnyka

Published in: Neurocritical Care | Issue 1/2014

Login to get access

Abstract

Understanding the dynamic relationship between cerebral blood flow (CBF) and the circulation of cerebrospinal fluid (CSF) can facilitate management of cerebral pathologies. For this reason, various hydrodynamic models have been introduced in order to simulate the phenomena governing the interaction between CBF and CSF. The identification of hydrodynamic models requires an array of signals as input, with the most common of them being arterial blood pressure, intracranial pressure, and cerebral blood flow velocity; monitoring all of them is considered as a standard practice in neurointensive care. Based on these signals, physiological parameters like cerebrovascular resistance, compliances of cerebrovascular bed, and CSF space could then be estimated. Various secondary model-based indices describing cerebrovascular dynamics have been introduced, like the cerebral arterial time constant or critical closing pressure. This review presents model-derived indices that describe cerebrovascular phenomena, the nature of which is both physiological (carbon dioxide reactivity and arterial hypotension) and pathological (cerebral artery stenosis, intracranial hypertension, and cerebral vasospasm). In a neurointensive environment, real-time monitoring of a patient with these indices may be able to provide a detection of the onset of a cerebrovascular phenomenon, which could have otherwise been missed. This potentially “early warning” indicator may then prove to be important for the therapeutic management of the patient.
Literature
1.
go back to reference Krammer SP. On the function of the circle of Willis. J Exp Med. 1912;15:348–54.CrossRef Krammer SP. On the function of the circle of Willis. J Exp Med. 1912;15:348–54.CrossRef
2.
go back to reference Rogers L. A dynamic model of the circle of Willis. J Biomech. 1947;4:141–7. Rogers L. A dynamic model of the circle of Willis. J Biomech. 1947;4:141–7.
3.
go back to reference Avman N, Bering EA. A plastic model for the study of pressure changes in the circle of Willis and major cerebral arteries following arterial occlusion. J Neurosurg. 1961;21:361–5.CrossRef Avman N, Bering EA. A plastic model for the study of pressure changes in the circle of Willis and major cerebral arteries following arterial occlusion. J Neurosurg. 1961;21:361–5.CrossRef
4.
go back to reference Himwich WA, Knapp FM, Wenglarz RA, et al. The circle of Willis as simulated by an engineering model. Arch Neurol. 1965;13:164–72.PubMedCrossRef Himwich WA, Knapp FM, Wenglarz RA, et al. The circle of Willis as simulated by an engineering model. Arch Neurol. 1965;13:164–72.PubMedCrossRef
5.
go back to reference Agarwal G, Berman B, Stark L. A lumped parameter model of the cerebrospinal system. IEEE Trans Biomed Eng BME. 1969;16:45–53.CrossRef Agarwal G, Berman B, Stark L. A lumped parameter model of the cerebrospinal system. IEEE Trans Biomed Eng BME. 1969;16:45–53.CrossRef
6.
go back to reference Murray KD. Dimensions of the circle of Willis and dynamic studies using electrical analogy. J Neurosurg. 1964;21:26–34.PubMedCrossRef Murray KD. Dimensions of the circle of Willis and dynamic studies using electrical analogy. J Neurosurg. 1964;21:26–34.PubMedCrossRef
7.
go back to reference Sorek S, Bear J, Karni Z. Resistances and compliances of a compartmental model of the cerebrovascular system. Ann Biomed Eng. 1989;17:1–12.PubMedCrossRef Sorek S, Bear J, Karni Z. Resistances and compliances of a compartmental model of the cerebrovascular system. Ann Biomed Eng. 1989;17:1–12.PubMedCrossRef
8.
go back to reference Takemae T, Kosugi Y, Ikebe J, et al. A simulation study of intracranial-pressure increment using an electrical circuit model of cerebral-circulation. IEEE Trans Biomed Eng. 1987;34:958–62.PubMedCrossRef Takemae T, Kosugi Y, Ikebe J, et al. A simulation study of intracranial-pressure increment using an electrical circuit model of cerebral-circulation. IEEE Trans Biomed Eng. 1987;34:958–62.PubMedCrossRef
9.
go back to reference Bekker A, Wolk S, Turndorf H, et al. Computer simulation of cerebrovascular circulation: assessment of intracranial hemodynamics during induction of anesthesia. J Clin Monit. 1996;12:433–44.PubMedCrossRef Bekker A, Wolk S, Turndorf H, et al. Computer simulation of cerebrovascular circulation: assessment of intracranial hemodynamics during induction of anesthesia. J Clin Monit. 1996;12:433–44.PubMedCrossRef
10.
go back to reference Czosnyka M, Harris NG, Pickard JD, et al. CO2 cerebrovascular reactivity as a function of perfusion pressure—a modeling study. Acta Neurochir Wien. 1993;121:159–65.PubMedCrossRef Czosnyka M, Harris NG, Pickard JD, et al. CO2 cerebrovascular reactivity as a function of perfusion pressure—a modeling study. Acta Neurochir Wien. 1993;121:159–65.PubMedCrossRef
11.
go back to reference Czosnyka M, Pickard J, Whitehouse H, et al. The hyperemic response to a transient reduction in cerebral perfusion-pressure—a modelling study. Acta Neurochir Wien. 1992;115:90–7.PubMedCrossRef Czosnyka M, Pickard J, Whitehouse H, et al. The hyperemic response to a transient reduction in cerebral perfusion-pressure—a modelling study. Acta Neurochir Wien. 1992;115:90–7.PubMedCrossRef
12.
go back to reference Hoffmann O. Biomathematics of intracranial CSF and haemodynamics. Simulation and analysis with the aid of a mathematical model. Acta Neurochir Suppl Wien. 1987;40:117–30.PubMed Hoffmann O. Biomathematics of intracranial CSF and haemodynamics. Simulation and analysis with the aid of a mathematical model. Acta Neurochir Suppl Wien. 1987;40:117–30.PubMed
13.
go back to reference Piechnik S, Czosnyka M, Richards H, et al. Effects of decreasing cerebral perfusion pressure on pulsatility of cerebral blood flow velocity—a modelling study. In: Nagai H, Kamiya K, Ishii S, editors. Intracranial pressure IX. Berlin: Springer; 1994. p. 496–7. Piechnik S, Czosnyka M, Richards H, et al. Effects of decreasing cerebral perfusion pressure on pulsatility of cerebral blood flow velocity—a modelling study. In: Nagai H, Kamiya K, Ishii S, editors. Intracranial pressure IX. Berlin: Springer; 1994. p. 496–7.
14.
go back to reference Ursino M. A mathematical study of human intracranial hydrodynamics. Part 1—the cerebrospinal fluid pulse pressure. Ann Biomed Eng. 1988;16:379–401.PubMedCrossRef Ursino M. A mathematical study of human intracranial hydrodynamics. Part 1—the cerebrospinal fluid pulse pressure. Ann Biomed Eng. 1988;16:379–401.PubMedCrossRef
15.
go back to reference Ursino M. Computer analysis of the main parameters extrapolated from the human intracranial basal artery blood flow. Comput Biomed Res. 1990;23:542–59.PubMedCrossRef Ursino M. Computer analysis of the main parameters extrapolated from the human intracranial basal artery blood flow. Comput Biomed Res. 1990;23:542–59.PubMedCrossRef
16.
go back to reference Ursino M. A mathematical model of overall cerebral blood flow regulation in the rat. IEEE Trans Biomed Eng. 1991;38:795–807.PubMedCrossRef Ursino M. A mathematical model of overall cerebral blood flow regulation in the rat. IEEE Trans Biomed Eng. 1991;38:795–807.PubMedCrossRef
17.
go back to reference Ursino M, Cristalli C. Mathematical modeling of noninvasive blood pressure estimation techniques—part I: pressure transmission across the arm tissue. J Biomech Eng. 1995;117:107–16.PubMedCrossRef Ursino M, Cristalli C. Mathematical modeling of noninvasive blood pressure estimation techniques—part I: pressure transmission across the arm tissue. J Biomech Eng. 1995;117:107–16.PubMedCrossRef
18.
go back to reference Ursino M, Di Giammarco P. A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: the generation of plateau waves. Ann Biomed Eng. 1991;19:15–42.PubMedCrossRef Ursino M, Di Giammarco P. A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: the generation of plateau waves. Ann Biomed Eng. 1991;19:15–42.PubMedCrossRef
19.
go back to reference Ursino M, Lodi CA. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J Appl Physiol. 1997;82:1256–69.PubMed Ursino M, Lodi CA. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J Appl Physiol. 1997;82:1256–69.PubMed
20.
go back to reference Ursino M, Lodi CA, Rossi S, et al. Intracranial pressure dynamics in patients with acute brain damage. J Appl Physiol. 1997;82:1270–82.PubMed Ursino M, Lodi CA, Rossi S, et al. Intracranial pressure dynamics in patients with acute brain damage. J Appl Physiol. 1997;82:1270–82.PubMed
21.
go back to reference Tym R, Lichtenstein S, Leutheusser J. The Munro-Kellie doctrine and the intracranial venous space at the ‘limit’ of raised intracranial pressure—an hydrodynamic experimental approach. In: Brock M, Dietz H, editors. Intracranial pressure—experimental and clinical aspects. Berlin: Springer; 1972. p. 139–43. Tym R, Lichtenstein S, Leutheusser J. The Munro-Kellie doctrine and the intracranial venous space at the ‘limit’ of raised intracranial pressure—an hydrodynamic experimental approach. In: Brock M, Dietz H, editors. Intracranial pressure—experimental and clinical aspects. Berlin: Springer; 1972. p. 139–43.
22.
go back to reference Hoffmann O, Zierski JT. Analysis of the ICP pulse-pressure relationship as a function of arterial blood pressure. Clinical validation of a mathematical model. Acta Neurochir Wien. 1982;66:1–21.PubMedCrossRef Hoffmann O, Zierski JT. Analysis of the ICP pulse-pressure relationship as a function of arterial blood pressure. Clinical validation of a mathematical model. Acta Neurochir Wien. 1982;66:1–21.PubMedCrossRef
23.
go back to reference Nishimura H, Yasui N. A simulation study of wave transformation using a nonlinear model of artery and a physical model of intracranial vascular bed. Berlin: Springer; 1993. p. 390–393. Nishimura H, Yasui N. A simulation study of wave transformation using a nonlinear model of artery and a physical model of intracranial vascular bed. Berlin: Springer; 1993. p. 390–393.
24.
go back to reference Chopp M, Portnoy HD, Branch C. Hydraulic model of the cerebrovascular bed: an aid to understanding the volume–pressure test. J Neurosurg. 1983;13:5–11.CrossRef Chopp M, Portnoy HD, Branch C. Hydraulic model of the cerebrovascular bed: an aid to understanding the volume–pressure test. J Neurosurg. 1983;13:5–11.CrossRef
25.
go back to reference Giulioni M, Ursino M. Impact of cerebral perfusion pressure and autoregulation on intracranial dynamics: a modeling study. J Neurosurg. 1996;39:1005–14. Giulioni M, Ursino M. Impact of cerebral perfusion pressure and autoregulation on intracranial dynamics: a modeling study. J Neurosurg. 1996;39:1005–14.
26.
go back to reference Ursino M, Di Giammarco P, Belardinelli E. A mathematical model of cerebral blood flow chemical regulation—part II: reactivity of cerebral vascular bed. IEEE Trans Biomed Eng. 1989;36:192–201.PubMedCrossRef Ursino M, Di Giammarco P, Belardinelli E. A mathematical model of cerebral blood flow chemical regulation—part II: reactivity of cerebral vascular bed. IEEE Trans Biomed Eng. 1989;36:192–201.PubMedCrossRef
27.
go back to reference Czosnyka M, Piechnik S, Richards HK, et al. Contribution of mathematical modelling to the interpretation of bedside tests of cerebrovascular autoregulation. J Neurol Neurosurg Psychiatry. 1997;63:721–31.PubMedCrossRef Czosnyka M, Piechnik S, Richards HK, et al. Contribution of mathematical modelling to the interpretation of bedside tests of cerebrovascular autoregulation. J Neurol Neurosurg Psychiatry. 1997;63:721–31.PubMedCrossRef
28.
go back to reference Czosnyka M, Smielewski P, Timofeev I, et al. Intracranial pressure: more than a number. Neurosurg Focus. 2007;22(5):E10.PubMedCrossRef Czosnyka M, Smielewski P, Timofeev I, et al. Intracranial pressure: more than a number. Neurosurg Focus. 2007;22(5):E10.PubMedCrossRef
29.
go back to reference Sorrentino E, Budohoski KP, Kasprowicz M, et al. Critical thresholds for Transcranial Doppler indices of cerebral autoregulation in traumatic brain injury. Neurocrit Care. 2010;14(2):188–93.CrossRef Sorrentino E, Budohoski KP, Kasprowicz M, et al. Critical thresholds for Transcranial Doppler indices of cerebral autoregulation in traumatic brain injury. Neurocrit Care. 2010;14(2):188–93.CrossRef
30.
go back to reference Zweifel C, Lavinio A, Steiner LA, et al. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25(4):E2.PubMedCrossRef Zweifel C, Lavinio A, Steiner LA, et al. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25(4):E2.PubMedCrossRef
31.
go back to reference Balestreri M, Czosnyka M, Hutchinson P, et al. Impact of intracranial pressure and cerebral perfusion pressure on severe disability and mortality after head injury. Neurocrit Care. 2006;04:8–13.CrossRef Balestreri M, Czosnyka M, Hutchinson P, et al. Impact of intracranial pressure and cerebral perfusion pressure on severe disability and mortality after head injury. Neurocrit Care. 2006;04:8–13.CrossRef
32.
go back to reference Gopinath SP, Robertson CS, Narayan RG, et al. Evaluation of a microsensor intracranial pressure transducer. In: Nagai H, Kamiya K, Ishii S, editors. Intracranial pressure IX. Berlin: Springer; 1994. p. 2–5. Gopinath SP, Robertson CS, Narayan RG, et al. Evaluation of a microsensor intracranial pressure transducer. In: Nagai H, Kamiya K, Ishii S, editors. Intracranial pressure IX. Berlin: Springer; 1994. p. 2–5.
33.
go back to reference Czosnyka M, Czosnyka Z, Pickard JD. Laboratory testing of three intracranial pressure microtransducers: technical report. J Neurosurg. 1996;38(1):219–24.CrossRef Czosnyka M, Czosnyka Z, Pickard JD. Laboratory testing of three intracranial pressure microtransducers: technical report. J Neurosurg. 1996;38(1):219–24.CrossRef
34.
go back to reference Kirkpatrick PJ, Czosnyka M, Pickard JD. Multimodal monitoring in neurointensive care. J Neurol Neurosurg Psychiatry. 1996;60:131–9.PubMedCrossRef Kirkpatrick PJ, Czosnyka M, Pickard JD. Multimodal monitoring in neurointensive care. J Neurol Neurosurg Psychiatry. 1996;60:131–9.PubMedCrossRef
35.
go back to reference Carrera E, Kim DJ, Castellani G, et al. Effect of hyper- and hypocapnia on cerebral arterial compliance in normal subjects. J Neuroimaging. 2009;21(2):121–5.CrossRef Carrera E, Kim DJ, Castellani G, et al. Effect of hyper- and hypocapnia on cerebral arterial compliance in normal subjects. J Neuroimaging. 2009;21(2):121–5.CrossRef
36.
go back to reference Sloan MA, Alexandrov AV, Tegeler CH, et al. Transcranial Doppler ultrasonography in 2004: a comprehensive evidence-based update. Report of the American Academy of Neurology Therapeutics and Technology Assessment Subcommittee: Transcranial Doppler. J Neurol. 1990;40:680–1.CrossRef Sloan MA, Alexandrov AV, Tegeler CH, et al. Transcranial Doppler ultrasonography in 2004: a comprehensive evidence-based update. Report of the American Academy of Neurology Therapeutics and Technology Assessment Subcommittee: Transcranial Doppler. J Neurol. 1990;40:680–1.CrossRef
37.
go back to reference Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57:769–74 Class II–III.PubMedCrossRef Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57:769–74 Class II–III.PubMedCrossRef
38.
go back to reference Matta B, Czosnyka M. Transcranial Doppler ultrasonography in anesthesia and neurosurgery. Cottrell and Young’s Neuroanesthesia, Chapter 8. Philadelphia: Elsevier; 2010. Matta B, Czosnyka M. Transcranial Doppler ultrasonography in anesthesia and neurosurgery. Cottrell and Young’s Neuroanesthesia, Chapter 8. Philadelphia: Elsevier; 2010.
39.
go back to reference Aaslid R. Transcranial Doppler examination techniques. In: Aaslid R, editor. Transcranial Doppler sonography. New York: Springer; 1986. p. 39.CrossRef Aaslid R. Transcranial Doppler examination techniques. In: Aaslid R, editor. Transcranial Doppler sonography. New York: Springer; 1986. p. 39.CrossRef
40.
go back to reference Nelson RJ, Czosnyka M, Pickard JD, et al. Experimental aspects of cerebrospinal haemodynamics: the relationship between blood flow velocity waveform and cerebral autoregulation. J Neurosurg. 1992;31:705–10.CrossRef Nelson RJ, Czosnyka M, Pickard JD, et al. Experimental aspects of cerebrospinal haemodynamics: the relationship between blood flow velocity waveform and cerebral autoregulation. J Neurosurg. 1992;31:705–10.CrossRef
41.
go back to reference Czosnyka M, Richards HK, Reinhard M, et al. Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurol Res. 2012;34(1):17–24.PubMedCrossRef Czosnyka M, Richards HK, Reinhard M, et al. Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurol Res. 2012;34(1):17–24.PubMedCrossRef
42.
go back to reference Kasprowicz M, Diedler J, Reinhard M, et al. Time constant of the cerebral arterial bed. Acta Neurochir Suppl. 2012;114:17–21.PubMedCrossRef Kasprowicz M, Diedler J, Reinhard M, et al. Time constant of the cerebral arterial bed. Acta Neurochir Suppl. 2012;114:17–21.PubMedCrossRef
43.
go back to reference Czosnyka M, Richards H, Pickard JD, Harris N, Iyer V. Frequency-dependent properties of cerebral blood transport-an experimental study in anaesthetized rabbits. Ultrasound Med Biol. 1994;20:391–9.PubMedCrossRef Czosnyka M, Richards H, Pickard JD, Harris N, Iyer V. Frequency-dependent properties of cerebral blood transport-an experimental study in anaesthetized rabbits. Ultrasound Med Biol. 1994;20:391–9.PubMedCrossRef
44.
go back to reference Kim DJ, Kasprowicz M, Carrera E, et al. The monitoring of relative changes in compartmental compliances of brain. Physiol Meas. 2009;30(7):647–59.PubMedCrossRef Kim DJ, Kasprowicz M, Carrera E, et al. The monitoring of relative changes in compartmental compliances of brain. Physiol Meas. 2009;30(7):647–59.PubMedCrossRef
45.
go back to reference Kasprowicz M, Diedler J, Reinhard M, et al. Time constant of the cerebral arterial bed in normal subjects. Ultrasound Med Biol. 2012;38(7):1129–37.PubMedCrossRef Kasprowicz M, Diedler J, Reinhard M, et al. Time constant of the cerebral arterial bed in normal subjects. Ultrasound Med Biol. 2012;38(7):1129–37.PubMedCrossRef
46.
go back to reference Kasprowicz M, Czosnyka M, Soehle M, et al. Vasospasm shortens cerebral arterial time constant. Neurocrit Care. 2011;16(2):213–8.CrossRef Kasprowicz M, Czosnyka M, Soehle M, et al. Vasospasm shortens cerebral arterial time constant. Neurocrit Care. 2011;16(2):213–8.CrossRef
47.
go back to reference Czosnyka M, Smielewski P, Piechnik S, et al. Hemodynamic characterization of intracranial pressure plateau waves in head-injury patients. J Neurosurg. 1999;91(1):11–9.PubMedCrossRef Czosnyka M, Smielewski P, Piechnik S, et al. Hemodynamic characterization of intracranial pressure plateau waves in head-injury patients. J Neurosurg. 1999;91(1):11–9.PubMedCrossRef
48.
go back to reference Avezaat CJJ, van Eijndhoven JHM. Cerebrospinal fluid pulse pressure and craniospinal dynamics. A theoretical clinical and experimental study. Thesis. The Hague: A Jongbloed, 1984 Avezaat CJJ, van Eijndhoven JHM. Cerebrospinal fluid pulse pressure and craniospinal dynamics. A theoretical clinical and experimental study. Thesis. The Hague: A Jongbloed, 1984
49.
go back to reference Toth M, Nadasy GL, Nyar I, Kerenyi T, Monos E. Are there systemic changes in the arterial biomechanics of intracranial aneurysm patients? Pflugers Arch. 2000;439:573–8.PubMedCrossRef Toth M, Nadasy GL, Nyar I, Kerenyi T, Monos E. Are there systemic changes in the arterial biomechanics of intracranial aneurysm patients? Pflugers Arch. 2000;439:573–8.PubMedCrossRef
50.
go back to reference Alperin N, Lee SH, Sivaramakrishnan A, Hushek SG. Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. J Magn Reson Imaging. 2005;22:591–6.PubMedCrossRef Alperin N, Lee SH, Sivaramakrishnan A, Hushek SG. Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. J Magn Reson Imaging. 2005;22:591–6.PubMedCrossRef
51.
go back to reference Carrera E, Kim DJ, Castellani G, et al. What shapes pulse amplitude of intracranial pressure? J Neurotrauma. 2010;27:317–24.PubMedCrossRef Carrera E, Kim DJ, Castellani G, et al. What shapes pulse amplitude of intracranial pressure? J Neurotrauma. 2010;27:317–24.PubMedCrossRef
52.
go back to reference Eide PK, Sorteberg A, Bentsen G, Marthinsen PB, Stubhaug A, Sorteberg W. Pressure-derived versus pressure wave amplitude-derived indices of cerebrovascular pressure reactivity in relation to early clinical state and 12-month outcome following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2012;116(5):961–71.PubMedCrossRef Eide PK, Sorteberg A, Bentsen G, Marthinsen PB, Stubhaug A, Sorteberg W. Pressure-derived versus pressure wave amplitude-derived indices of cerebrovascular pressure reactivity in relation to early clinical state and 12-month outcome following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2012;116(5):961–71.PubMedCrossRef
53.
go back to reference Eide PK. Assessment of childhood intracranial pressure recordings using a new method of processing intracranial pressure signals. Pediatr Neurosurg. 2005;41(3):122–30.PubMedCrossRef Eide PK. Assessment of childhood intracranial pressure recordings using a new method of processing intracranial pressure signals. Pediatr Neurosurg. 2005;41(3):122–30.PubMedCrossRef
54.
go back to reference Radolovich DK, Aries MJ, Castellani G, et al. Pulsatile intracranial pressure and cerebral autoregulation after traumatic brain injury. Neurocrit Care. 2011;15(3):379–86.PubMedCrossRef Radolovich DK, Aries MJ, Castellani G, et al. Pulsatile intracranial pressure and cerebral autoregulation after traumatic brain injury. Neurocrit Care. 2011;15(3):379–86.PubMedCrossRef
55.
go back to reference Czosnyka M, Richards HK, Whitehouse HE, Pickard JD. Relationship between transcranial Doppler-determined pulsatility index and cerebrovascular resistance: an experimental study. J Neurosurg. 1996;84(1):79–84.PubMedCrossRef Czosnyka M, Richards HK, Whitehouse HE, Pickard JD. Relationship between transcranial Doppler-determined pulsatility index and cerebrovascular resistance: an experimental study. J Neurosurg. 1996;84(1):79–84.PubMedCrossRef
56.
57.
go back to reference Michel E, Zernikow B. Goslig’s Doppler pulsatility index revisited. Ultrasound Med Biol. 1998;24(4):597–9.PubMedCrossRef Michel E, Zernikow B. Goslig’s Doppler pulsatility index revisited. Ultrasound Med Biol. 1998;24(4):597–9.PubMedCrossRef
58.
go back to reference de Riva N, Budohoski KP, Smielewski P, et al. Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care. 2012;17(1):58–66.PubMedCrossRef de Riva N, Budohoski KP, Smielewski P, et al. Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care. 2012;17(1):58–66.PubMedCrossRef
59.
go back to reference O’Rourke MF, Taylor MG. Input impedance of the systemic circulation. Circ Res. 1967;20(4):365–80.PubMedCrossRef O’Rourke MF, Taylor MG. Input impedance of the systemic circulation. Circ Res. 1967;20(4):365–80.PubMedCrossRef
60.
go back to reference Giller CA, Hodges K, Batjer HH. Transcranial Doppler pulsatility in vasodilation and stenosis. J Neurosurg. 1990;72(6):901–6.PubMedCrossRef Giller CA, Hodges K, Batjer HH. Transcranial Doppler pulsatility in vasodilation and stenosis. J Neurosurg. 1990;72(6):901–6.PubMedCrossRef
61.
go back to reference Behrens A, Lenfeldt N, Ambarki K, Malm J, Eklund A, Koskinen LO. Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure. J Neurosurg. 2010;66(6):1050–7.CrossRef Behrens A, Lenfeldt N, Ambarki K, Malm J, Eklund A, Koskinen LO. Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure. J Neurosurg. 2010;66(6):1050–7.CrossRef
62.
go back to reference Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol. 2004;62(1):45–51.PubMedCrossRef Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol. 2004;62(1):45–51.PubMedCrossRef
63.
go back to reference Burton AC. Fundamental instability of the small blood vessels and critical closing pressure in vascular beds. Am J Physiol. 1951;164:330–1.PubMed Burton AC. Fundamental instability of the small blood vessels and critical closing pressure in vascular beds. Am J Physiol. 1951;164:330–1.PubMed
64.
go back to reference Brunner MJ, Greene AS, Sagawa K, Shoukas AA. Determinants of systemic zero-flow arterial pressure. Am J Physiol. 1983;245:H453–9.PubMed Brunner MJ, Greene AS, Sagawa K, Shoukas AA. Determinants of systemic zero-flow arterial pressure. Am J Physiol. 1983;245:H453–9.PubMed
65.
go back to reference Czosnyka M, Smielewski P, Piechnik S, et al. Critical closing pressure in cerebrovascular circulation. J Neurol Neurosurg Psychiatry. 1999;66:606–11.PubMedCrossRef Czosnyka M, Smielewski P, Piechnik S, et al. Critical closing pressure in cerebrovascular circulation. J Neurol Neurosurg Psychiatry. 1999;66:606–11.PubMedCrossRef
66.
go back to reference Panerai RB. The critical closing pressure of the cerebral circulation. Med Eng Phys. 2003;25:621–32.PubMedCrossRef Panerai RB. The critical closing pressure of the cerebral circulation. Med Eng Phys. 2003;25:621–32.PubMedCrossRef
67.
go back to reference Dewey RC, Pierer HP, Hunt WE. Experimental cerebral hemodynamics. Vasomotor tone, critical closing pressure, and vascular bed resistance. J Neurosurg. 1974;41:597–606.PubMedCrossRef Dewey RC, Pierer HP, Hunt WE. Experimental cerebral hemodynamics. Vasomotor tone, critical closing pressure, and vascular bed resistance. J Neurosurg. 1974;41:597–606.PubMedCrossRef
68.
go back to reference Panerai RB, Moody M, Eames PJ, Potter JF. Cerebral blood flow velocity during mental activation: interpretation with different models of the passive pressure–velocity relationship. J Appl Physiol. 2005;99:2352–62.PubMedCrossRef Panerai RB, Moody M, Eames PJ, Potter JF. Cerebral blood flow velocity during mental activation: interpretation with different models of the passive pressure–velocity relationship. J Appl Physiol. 2005;99:2352–62.PubMedCrossRef
69.
go back to reference Aaslid R, Lash SR, Bardy GH, Gild WH, Newell DW. Dynamic pressure-flow velocity relationships in the human cerebral circulation. Stroke. 2003;34(7):1645–9.PubMedCrossRef Aaslid R, Lash SR, Bardy GH, Gild WH, Newell DW. Dynamic pressure-flow velocity relationships in the human cerebral circulation. Stroke. 2003;34(7):1645–9.PubMedCrossRef
70.
go back to reference Newell DW, Aaslid R. Transcranial Doppler: clinical and experimental uses. Cerebrovasc Brain Metab Rev. 1992;4(2):122–43.PubMed Newell DW, Aaslid R. Transcranial Doppler: clinical and experimental uses. Cerebrovasc Brain Metab Rev. 1992;4(2):122–43.PubMed
71.
go back to reference López-Magaña JA, Richards HK, Radolovich DK, et al. Critical closing pressure: comparison of three methods. J Cereb Blood Flow Metab. 2009;29:987–93.PubMedCrossRef López-Magaña JA, Richards HK, Radolovich DK, et al. Critical closing pressure: comparison of three methods. J Cereb Blood Flow Metab. 2009;29:987–93.PubMedCrossRef
72.
go back to reference Panerai RB, et al. Influence of calculation method on estimates of cerebral critical closing pressure. Physiol Meas. 2011;32:1–16.CrossRef Panerai RB, et al. Influence of calculation method on estimates of cerebral critical closing pressure. Physiol Meas. 2011;32:1–16.CrossRef
73.
go back to reference Michel E, Hillebrand S, von Twickel J, et al. Frequency dependence of cerebrovascular impedance in preterm neonates: a different view on critical closing pressure. J Cereb Blood Flow Metab. 1997;17:1127–31.PubMedCrossRef Michel E, Hillebrand S, von Twickel J, et al. Frequency dependence of cerebrovascular impedance in preterm neonates: a different view on critical closing pressure. J Cereb Blood Flow Metab. 1997;17:1127–31.PubMedCrossRef
74.
go back to reference Puppo C, Camacho J, Yelicich B, Moraes L, Biestro A, Gomez H. Bedside study of cerebral critical closing pressure in patients with severe traumatic brain injury: a Transcranial Doppler study. Acta Neurosurg Suppl. 2012;114:283–8.CrossRef Puppo C, Camacho J, Yelicich B, Moraes L, Biestro A, Gomez H. Bedside study of cerebral critical closing pressure in patients with severe traumatic brain injury: a Transcranial Doppler study. Acta Neurosurg Suppl. 2012;114:283–8.CrossRef
75.
go back to reference Soehle M, Czosnyka M, Pickard JD, Kirkpatrick PJ. Critical closing pressure in subarachnoid hemorrhage: effect of cerebral vasospasm and limitations of a transcranial Doppler-derived estimation. Stroke. 2004;35(6):1393–8.PubMedCrossRef Soehle M, Czosnyka M, Pickard JD, Kirkpatrick PJ. Critical closing pressure in subarachnoid hemorrhage: effect of cerebral vasospasm and limitations of a transcranial Doppler-derived estimation. Stroke. 2004;35(6):1393–8.PubMedCrossRef
76.
go back to reference Varsos GV, Richards H, Kasprowicz M, et al. Critical closing pressure determined with a model of cerebrovascular impedance. J Cereb Blood Flow Metab. 2012;33(2):235–43.PubMedCrossRef Varsos GV, Richards H, Kasprowicz M, et al. Critical closing pressure determined with a model of cerebrovascular impedance. J Cereb Blood Flow Metab. 2012;33(2):235–43.PubMedCrossRef
77.
go back to reference Richards HK, Czosnyka M, Pickard JD. Assessment of critical closing pressure in the cerebral circulation as a measure of cerebrovascular tone. Acta Neurochir Wien. 1999;141(11):1221–7.PubMedCrossRef Richards HK, Czosnyka M, Pickard JD. Assessment of critical closing pressure in the cerebral circulation as a measure of cerebrovascular tone. Acta Neurochir Wien. 1999;141(11):1221–7.PubMedCrossRef
78.
go back to reference Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol. 1978;234(4):H371–83.PubMed Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol. 1978;234(4):H371–83.PubMed
79.
go back to reference Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL. MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke. 2000;31(7):1672–8.PubMedCrossRef Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL. MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke. 2000;31(7):1672–8.PubMedCrossRef
80.
go back to reference Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. J Neurosurg. 1993;32(5):737–42.CrossRef Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. J Neurosurg. 1993;32(5):737–42.CrossRef
81.
go back to reference Newell DW, Aaslid R, Lam A, Mayberg TS, Winn HR. Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke. 1994;25(4):793–7.PubMedCrossRef Newell DW, Aaslid R, Lam A, Mayberg TS, Winn HR. Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke. 1994;25(4):793–7.PubMedCrossRef
82.
go back to reference Müller HR, Brunhölzl C, Radü EW, Buser M. Sex and side differences of cerebral arterial caliber. Neuroradiology. 1991;33(3):212–6.PubMedCrossRef Müller HR, Brunhölzl C, Radü EW, Buser M. Sex and side differences of cerebral arterial caliber. Neuroradiology. 1991;33(3):212–6.PubMedCrossRef
83.
go back to reference Caekebeke JF, Ferrari MD, Zwetsloot CP, Jansen J, Saxena PR. Antimigraine drug sumatriptan increases blood flow velocity in large cerebral arteries during migraine attacks. J Neurology. 1992;42(8):1522–6.CrossRef Caekebeke JF, Ferrari MD, Zwetsloot CP, Jansen J, Saxena PR. Antimigraine drug sumatriptan increases blood flow velocity in large cerebral arteries during migraine attacks. J Neurology. 1992;42(8):1522–6.CrossRef
84.
go back to reference Giller CA, Giller AM, Cooper CR, Hatab MR. Evaluation of the cerebral hemodynamic response to rhythmic handgrip. J Appl Physiol. 2000;88(6):2205–13.PubMed Giller CA, Giller AM, Cooper CR, Hatab MR. Evaluation of the cerebral hemodynamic response to rhythmic handgrip. J Appl Physiol. 2000;88(6):2205–13.PubMed
85.
go back to reference Giller CA, Mueller M. Linearity and non-linearity in cerebral hemodynamics. Med Eng Phys. 2003;25(8):633–46.PubMedCrossRef Giller CA, Mueller M. Linearity and non-linearity in cerebral hemodynamics. Med Eng Phys. 2003;25(8):633–46.PubMedCrossRef
86.
go back to reference Mitsis GD, Zhang R, Levine BD, Marmarelis VZ. Cerebral hemodynamics during orthostatic stress assessed by nonlinear modeling. J Appl Physiol. 2006;101(1):354–66.PubMedCrossRef Mitsis GD, Zhang R, Levine BD, Marmarelis VZ. Cerebral hemodynamics during orthostatic stress assessed by nonlinear modeling. J Appl Physiol. 2006;101(1):354–66.PubMedCrossRef
Metadata
Title
Model-based Indices Describing Cerebrovascular Dynamics
Authors
Georgios V. Varsos
Magdalena Kasprowicz
Peter Smielewski
Marek Czosnyka
Publication date
01-02-2014
Publisher
Springer US
Published in
Neurocritical Care / Issue 1/2014
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-013-9868-4

Other articles of this Issue 1/2014

Neurocritical Care 1/2014 Go to the issue