Skip to main content
Top
Published in: Immunologic Research 6/2021

01-12-2021 | SARS-CoV-2 | Original Article

COVID-19: the CaMKII-like system of S protein drives membrane fusion and induces syncytial multinucleated giant cells

Authors: Liu Wenzhong, Li Hualan

Published in: Immunologic Research | Issue 6/2021

Login to get access

Abstract

The SARS-CoV-2 S protein on the membrane of infected cells can promote receptor-dependent syncytia formation, relating to extensive tissue damage and lymphocyte elimination. In this case, it is challenging to obtain neutralizing antibodies and prevent them through antibodies effectively. Considering that, in the current study, structural domain search methods are adopted to analyze the SARS-CoV-2 S protein to find the fusion mechanism. The results show that after the EF-hand domain of S protein bound to calcium ions, S2 protein had CaMKII protein activities. Besides, the CaMKII_AD domain of S2 changed S2 conformation, facilitating the formation of HR1-HR2 six-helix bundles. Apart from that, the Ca2+-ATPase of S2 pumped calcium ions from the virus cytoplasm to help membrane fusion, while motor structures of S drove the CaATP_NAI and CaMKII_AD domains to extend to the outside and combined the viral membrane and the cell membrane, thus forming a calcium bridge. Furthermore, the phospholipid-flipping-ATPase released water, triggering lipid mixing and fusion and generating fusion pores. Then, motor structures promoted fusion pore extension, followed by the cytoplasmic contents of the virus being discharged into the cell cytoplasm. After that, the membrane of the virus slid onto the cell membrane along the flowing membrane on the gap of the three CaATP_NAI. At last, the HR1-HR2 hexamer would fall into the cytoplasm or stay on the cell membrane. Therefore, the CaMKII_like system of S protein facilitated membrane fusion for further inducing syncytial multinucleated giant cells.
Literature
1.
go back to reference Bussani R, Schneider E, Zentilin L, Collesi C, Ali H, Braga L, Volpe MC, Colliva A, Zanconati F, Berlot G, Silvestri F, Zacchigna S, Giacca M. Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine. 2020;61:103104.PubMedPubMedCentralCrossRef Bussani R, Schneider E, Zentilin L, Collesi C, Ali H, Braga L, Volpe MC, Colliva A, Zanconati F, Berlot G, Silvestri F, Zacchigna S, Giacca M. Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine. 2020;61:103104.PubMedPubMedCentralCrossRef
2.
go back to reference Santana MF, Pinto RAdA, Marcon RAdA, Medeiros LCASd, Morais TBdNd, Dias LC, Souza LPd, Melo GCd, Monteiro WM, Lacerda MVG. Pathological findings and morphologic correlation of the lungs of autopsied patients with SARS-CoV-2 infection in the Brazilian Amazon using transmission electron microscopy. Revista da Sociedade Brasileira de Medicina Tropical. 2021;54. Santana MF, Pinto RAdA, Marcon RAdA, Medeiros LCASd, Morais TBdNd, Dias LC, Souza LPd, Melo GCd, Monteiro WM, Lacerda MVG. Pathological findings and morphologic correlation of the lungs of autopsied patients with SARS-CoV-2 infection in the Brazilian Amazon using transmission electron microscopy. Revista da Sociedade Brasileira de Medicina Tropical. 2021;54.
3.
go back to reference Keresztesi A-A, Perde F, Ghita-Nanu A, Radu C-C, Negrea M, Keresztesi G. Post-Mortem Diagnosis and Autopsy Findings in SARS-CoV-2 Infection: Forensic Case Series. Diagnostics. 2020;10:1070.PubMedCentralCrossRef Keresztesi A-A, Perde F, Ghita-Nanu A, Radu C-C, Negrea M, Keresztesi G. Post-Mortem Diagnosis and Autopsy Findings in SARS-CoV-2 Infection: Forensic Case Series. Diagnostics. 2020;10:1070.PubMedCentralCrossRef
4.
go back to reference Calabrese F, Pezzuto F, Fortarezza F, Hofman P, Kern I, Panizo A, von der Thüsen J, Timofeev S, Gorkiewicz G, Lunardi F. Pulmonary pathology and COVID-19: lessons from autopsy. The experience of European Pulmonary Pathologists. Virchows Archiv. 2020;477(3):359–372. Calabrese F, Pezzuto F, Fortarezza F, Hofman P, Kern I, Panizo A, von der Thüsen J, Timofeev S, Gorkiewicz G, Lunardi F. Pulmonary pathology and COVID-19: lessons from autopsy. The experience of European Pulmonary Pathologists. Virchows Archiv. 2020;477(3):359–372.
5.
go back to reference Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420–2.PubMedPubMedCentralCrossRef Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420–2.PubMedPubMedCentralCrossRef
6.
go back to reference Duarte-Neto AN, Caldini EG, Gomes-Gouvêa MS, Kanamura CT, de Almeida Monteiro RA, Ferranti JF, Ventura AMC, Regalio FA, Fiorenzano DM, Gibelli MABC, Carvalho WBd, Leal GN, Pinho JRR, Delgado AF, Carneiro-Sampaio M, Mauad T, Ferraz da Silva LF, Saldiva PHN, Dolhnikoff M. An autopsy study of the spectrum of severe COVID-19 in children: From SARS to different phenotypes of MIS-C. E Clinical Medicine. 2021;35:100850. Duarte-Neto AN, Caldini EG, Gomes-Gouvêa MS, Kanamura CT, de Almeida Monteiro RA, Ferranti JF, Ventura AMC, Regalio FA, Fiorenzano DM, Gibelli MABC, Carvalho WBd, Leal GN, Pinho JRR, Delgado AF, Carneiro-Sampaio M, Mauad T, Ferraz da Silva LF, Saldiva PHN, Dolhnikoff M. An autopsy study of the spectrum of severe COVID-19 in children: From SARS to different phenotypes of MIS-C. E Clinical Medicine. 2021;35:100850.
7.
go back to reference Wang X, Chen C-H, Badeti S, Cho JH, Naghizadeh A, Wang Z, Liu D. Deletion of ER-retention motif on SARS-CoV-2 spike protein reduces cell hybrid during cell–cell fusion. Cell & Bioscience. 2021;11(1):114. Wang X, Chen C-H, Badeti S, Cho JH, Naghizadeh A, Wang Z, Liu D. Deletion of ER-retention motif on SARS-CoV-2 spike protein reduces cell hybrid during cell–cell fusion. Cell & Bioscience. 2021;11(1):114.
8.
go back to reference Zhang Z, Zheng Y, Niu Z, Zhang B, Wang C, Yao X, Peng H, Franca DN, Wang Y, Zhu Y, Su Y, Tang M, Jiang X, Ren H, He M, Wang Y, Gao L, Zhao P, Shi H, Chen Z, Wang X, Piacentini M, Bian X, Melino G, Liu L, Huang H, Sun Q. SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination. Cell Death & Differentiation. 2021:1–213 Zhang Z, Zheng Y, Niu Z, Zhang B, Wang C, Yao X, Peng H, Franca DN, Wang Y, Zhu Y, Su Y, Tang M, Jiang X, Ren H, He M, Wang Y, Gao L, Zhao P, Shi H, Chen Z, Wang X, Piacentini M, Bian X, Melino G, Liu L, Huang H, Sun Q. SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination. Cell Death & Differentiation. 2021:1–213
9.
go back to reference Theuerkauf SA, Michels A, Riechert V, Maier TJ, Flory E, Cichutek K, Buchholz CJ. Quantitative assays reveal cell fusion at minimal levels of SARS-CoV-2 spike protein and fusion from without. iScience. 2021;24(3):102170. Theuerkauf SA, Michels A, Riechert V, Maier TJ, Flory E, Cichutek K, Buchholz CJ. Quantitative assays reveal cell fusion at minimal levels of SARS-CoV-2 spike protein and fusion from without. iScience. 2021;24(3):102170.
12.
go back to reference Miner JJ. Gamete fusion gone viral. Sci Trans Med. 2017;9(381):eaam9866. Miner JJ. Gamete fusion gone viral. Sci Trans Med. 2017;9(381):eaam9866.
14.
go back to reference Valansi C, Moi D, Leikina E, Matveev E, Graña M, Chernomordik LV, Romero H, Aguilar PS, Podbilewicz B. Arabidopsis HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens. J Cell Biol. 2017;216:571–81.PubMedPubMedCentralCrossRef Valansi C, Moi D, Leikina E, Matveev E, Graña M, Chernomordik LV, Romero H, Aguilar PS, Podbilewicz B. Arabidopsis HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens. J Cell Biol. 2017;216:571–81.PubMedPubMedCentralCrossRef
15.
go back to reference Modis, Y. Class II Fusion Proteins. In Viral Entry into Host Cells. Edited by Pöhlmann S, Simmons G. New York, NY. Springer New York. 2013: 150–166. Modis, Y. Class II Fusion Proteins. In Viral Entry into Host Cells. Edited by Pöhlmann S, Simmons G. New York, NY. Springer New York. 2013: 150–166.
16.
go back to reference Fédry J, Liu Y, Péhau-Arnaudet G, Pei J, Li W, Tortorici MA, Traincard F, Meola A, Bricogne G, Grishin NV. The ancient gamete fusogen HAP2 is a eukaryotic class II fusion protein. Cell. 2017;168:904–15.PubMedPubMedCentralCrossRef Fédry J, Liu Y, Péhau-Arnaudet G, Pei J, Li W, Tortorici MA, Traincard F, Meola A, Bricogne G, Grishin NV. The ancient gamete fusogen HAP2 is a eukaryotic class II fusion protein. Cell. 2017;168:904–15.PubMedPubMedCentralCrossRef
17.
go back to reference Pinello JF, Lai AL, Millet JK, Cassidy-Hanley D, Freed JH, Clark TG. Structure-function studies link class II viral fusogens with the ancestral gamete fusion protein HAP2. Curr Biol. 2017;27:651–60.PubMedPubMedCentralCrossRef Pinello JF, Lai AL, Millet JK, Cassidy-Hanley D, Freed JH, Clark TG. Structure-function studies link class II viral fusogens with the ancestral gamete fusion protein HAP2. Curr Biol. 2017;27:651–60.PubMedPubMedCentralCrossRef
18.
go back to reference Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11:1620.PubMedPubMedCentralCrossRef Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11:1620.PubMedPubMedCentralCrossRef
19.
go back to reference Navarese EP, Musci RL, Frediani L, Gurbel PA, Kubica J. Ion channel inhibition against COVID-19: A novel target for clinical investigation. Cardiol J. 2020;27:421–4.PubMedPubMedCentralCrossRef Navarese EP, Musci RL, Frediani L, Gurbel PA, Kubica J. Ion channel inhibition against COVID-19: A novel target for clinical investigation. Cardiol J. 2020;27:421–4.PubMedPubMedCentralCrossRef
20.
go back to reference Luzio J, Bright N, Pryor P. The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem Soc Trans. 2007;35:1088–91.PubMedCrossRef Luzio J, Bright N, Pryor P. The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem Soc Trans. 2007;35:1088–91.PubMedCrossRef
21.
go back to reference Tulsiani DR, Abou-Haila A. Is sperm capacitation analogous to early phases of Ca2+-triggered membrane fusion in somatic cells and viruses? Bio Essays. 2004;26:281–90. Tulsiani DR, Abou-Haila A. Is sperm capacitation analogous to early phases of Ca2+-triggered membrane fusion in somatic cells and viruses? Bio Essays. 2004;26:281–90.
23.
go back to reference Jaffe LA. Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature. 1976;261:68–71.PubMedCrossRef Jaffe LA. Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature. 1976;261:68–71.PubMedCrossRef
24.
go back to reference Paul M, Epel D. Formation of fertilization acid by sea urchin eggs does not require specific cations. Exp Cell Res. 1975;94:1–6.PubMedCrossRef Paul M, Epel D. Formation of fertilization acid by sea urchin eggs does not require specific cations. Exp Cell Res. 1975;94:1–6.PubMedCrossRef
25.
go back to reference Boldt J, Schuel H, Schuel R, Dandekar PV, Troll W. Reaction of sperm with egg-derived hydrogen peroxide helps prevent polyspermy during fertilization in the sea urchin. Gamete Res. 1981;4:365–77.CrossRef Boldt J, Schuel H, Schuel R, Dandekar PV, Troll W. Reaction of sperm with egg-derived hydrogen peroxide helps prevent polyspermy during fertilization in the sea urchin. Gamete Res. 1981;4:365–77.CrossRef
26.
go back to reference Epel D, Patton C, Wallace RW, Cheung WY. Calmodulin activates NAD kinase of sea urchin eggs: an early event of fertilization. Cell. 1981;23:543–9.PubMedCrossRef Epel D, Patton C, Wallace RW, Cheung WY. Calmodulin activates NAD kinase of sea urchin eggs: an early event of fertilization. Cell. 1981;23:543–9.PubMedCrossRef
27.
go back to reference Perry G, Epel D. Characterization of a Ca2+-stimulated lipid peroxidizing system in the sea urchin egg. Dev Biol. 1985;107:47–57.PubMedCrossRef Perry G, Epel D. Characterization of a Ca2+-stimulated lipid peroxidizing system in the sea urchin egg. Dev Biol. 1985;107:47–57.PubMedCrossRef
28.
go back to reference Johnson JD, Epel D, Paul M. Intracellular p H and activation of sea urchin eggs after fertilisation. Nature. 1976;262:661–4.PubMedCrossRef Johnson JD, Epel D, Paul M. Intracellular p H and activation of sea urchin eggs after fertilisation. Nature. 1976;262:661–4.PubMedCrossRef
29.
go back to reference Matasic DS, Yoon J-Y, McLendon JM, Mehdi H, Schmidt MS, Greiner AM, Quinones P, Morgan GM, Boudreau RL, Irani K. Modulation of the cardiac sodium channel NaV1. 5 peak and late currents by NAD+ precursors. J Mol Cell Cardiol. 2020;141:70–81.PubMedPubMedCentralCrossRef Matasic DS, Yoon J-Y, McLendon JM, Mehdi H, Schmidt MS, Greiner AM, Quinones P, Morgan GM, Boudreau RL, Irani K. Modulation of the cardiac sodium channel NaV1. 5 peak and late currents by NAD+ precursors. J Mol Cell Cardiol. 2020;141:70–81.PubMedPubMedCentralCrossRef
30.
go back to reference Antzelevitch C. Electrical heterogeneity, cardiac arrhythmias, and the sodium channel. Circ Res. 2000;87:964–5.PubMedCrossRef Antzelevitch C. Electrical heterogeneity, cardiac arrhythmias, and the sodium channel. Circ Res. 2000;87:964–5.PubMedCrossRef
31.
go back to reference Tondas AE, Mulawarman R, Trifitriana M, Nurmaini S, Irfannuddin I. Arrhythmia risk profile and ventricular repolarization indices in COVID-19 patients: a systematic review and meta-analysis. J Infect Dev Count. 2021;15:224–9.CrossRef Tondas AE, Mulawarman R, Trifitriana M, Nurmaini S, Irfannuddin I. Arrhythmia risk profile and ventricular repolarization indices in COVID-19 patients: a systematic review and meta-analysis. J Infect Dev Count. 2021;15:224–9.CrossRef
32.
go back to reference Alareedh M, Nafakhi H, Shaghee F, Nafakhi A. Electrocardiographic markers of increased risk of sudden cardiac death in patients with COVID-19 pneumonia. Annals of Noninvasive Electrocardiology. 2021;26(3):e12824. Alareedh M, Nafakhi H, Shaghee F, Nafakhi A. Electrocardiographic markers of increased risk of sudden cardiac death in patients with COVID-19 pneumonia. Annals of Noninvasive Electrocardiology. 2021;26(3):e12824.
33.
go back to reference Anand P, Puranik A, Aravamudan M, Venkatakrishnan AJ, Soundararajan V. SARS-CoV-2 strategically mimics proteolytic activation of human ENaC. eLife. 2020;9:e58603. Anand P, Puranik A, Aravamudan M, Venkatakrishnan AJ, Soundararajan V. SARS-CoV-2 strategically mimics proteolytic activation of human ENaC. eLife. 2020;9:e58603.
34.
go back to reference Ji H-L, Song W, Gao Z, Su X-F, Nie H-G, Jiang Y, Peng J-B, He Y-X, Liao Y, Zhou Y-J. SARS-CoV proteins decrease levels and activity of human ENaC via activation of distinct PKC isoforms. Am J Physiol-Lung Cell Mol Physiol. 2009;296:L372–83.PubMedCrossRef Ji H-L, Song W, Gao Z, Su X-F, Nie H-G, Jiang Y, Peng J-B, He Y-X, Liao Y, Zhou Y-J. SARS-CoV proteins decrease levels and activity of human ENaC via activation of distinct PKC isoforms. Am J Physiol-Lung Cell Mol Physiol. 2009;296:L372–83.PubMedCrossRef
35.
36.
go back to reference Undrovinas AI, Maltsev VA, Kyle JW, Silverman N, Sabbah HN. Gating of the late Na+ channel in normal and failing human myocardium. J Mol Cell Cardiol. 2002;34:1477–89.PubMedCrossRef Undrovinas AI, Maltsev VA, Kyle JW, Silverman N, Sabbah HN. Gating of the late Na+ channel in normal and failing human myocardium. J Mol Cell Cardiol. 2002;34:1477–89.PubMedCrossRef
37.
go back to reference Imahashi K, Kusuoka H, Hashimoto K, Yoshioka J, Yamaguchi H, Nishimura T. Intracellular sodium accumulation during ischemia as the substrate for reperfusion injury. Circ Res. 1999;84:1401–6.PubMedCrossRef Imahashi K, Kusuoka H, Hashimoto K, Yoshioka J, Yamaguchi H, Nishimura T. Intracellular sodium accumulation during ischemia as the substrate for reperfusion injury. Circ Res. 1999;84:1401–6.PubMedCrossRef
38.
go back to reference Luo A-T, Cao Z-Z, Xiang Y, Zhang S, Qian C-P, Fu C, Zhang P-H, Ma J-H. Ketamine attenuates the Na+-dependent Ca 2+ overload in rabbit ventricular myocytes in vitro by inhibiting late Na+ and L-type Ca 2+ currents. Acta Pharmacol Sin. 2015;36:1327–36.PubMedPubMedCentralCrossRef Luo A-T, Cao Z-Z, Xiang Y, Zhang S, Qian C-P, Fu C, Zhang P-H, Ma J-H. Ketamine attenuates the Na+-dependent Ca 2+ overload in rabbit ventricular myocytes in vitro by inhibiting late Na+ and L-type Ca 2+ currents. Acta Pharmacol Sin. 2015;36:1327–36.PubMedPubMedCentralCrossRef
39.
go back to reference Souza E Souza KFC, Moraes BPT, Paixão ICNdP, Burth P, Silva AR, Gonçalves-de-Albuquerque CF. Na(+)/K(+)-ATPase as a Target of Cardiac Glycosides for the Treatment of SARS-CoV-2 Infection. Front Pharmacol. 2021;12:624704–624704. Souza E Souza KFC, Moraes BPT, Paixão ICNdP, Burth P, Silva AR, Gonçalves-de-Albuquerque CF. Na(+)/K(+)-ATPase as a Target of Cardiac Glycosides for the Treatment of SARS-CoV-2 Infection. Front Pharmacol. 2021;12:624704–624704.
40.
41.
go back to reference Rogers JC, Qu Y, Tanada TN, Scheuer T, Catterall WA. Molecular determinants of high affinity binding of α-Scorpion toxin and sea anemone toxin in the S3–S4 extracellular loop in domain IV of the Na+ channel α subunit. J Biol Chem. 1996;271(27):15950–62.PubMedCrossRef Rogers JC, Qu Y, Tanada TN, Scheuer T, Catterall WA. Molecular determinants of high affinity binding of α-Scorpion toxin and sea anemone toxin in the S3–S4 extracellular loop in domain IV of the Na+ channel α subunit. J Biol Chem. 1996;271(27):15950–62.PubMedCrossRef
42.
go back to reference Yang C, Pan X, Huang Y, Cheng C, Xu X, Wu Y, Xu Y, Shang W, Niu X, Wan Y, Li Z, Zhang R, Liu S, Xiao G, Xu W. Drug repurposing of itraconazole and estradiol benzoate against COVID-19 by blocking SARS-CoV-2 spike protein-mediated membrane fusion. Adv Ther. 2021;4(5):2000224. Yang C, Pan X, Huang Y, Cheng C, Xu X, Wu Y, Xu Y, Shang W, Niu X, Wan Y, Li Z, Zhang R, Liu S, Xiao G, Xu W. Drug repurposing of itraconazole and estradiol benzoate against COVID-19 by blocking SARS-CoV-2 spike protein-mediated membrane fusion. Adv Ther. 2021;4(5):2000224.
43.
go back to reference Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, Ying T, Liu S, Shi Z, Jiang S. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol. 2020;17(7):765–7.PubMedPubMedCentralCrossRef Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, Ying T, Liu S, Shi Z, Jiang S. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol. 2020;17(7):765–7.PubMedPubMedCentralCrossRef
44.
go back to reference Borkotoky S, Dey D, Banerjee M. Computational Insight Into the Mechanism of SARS-CoV-2 Membrane Fusion. J Chem Inf Model. 2021;61:423–31.PubMedCrossRef Borkotoky S, Dey D, Banerjee M. Computational Insight Into the Mechanism of SARS-CoV-2 Membrane Fusion. J Chem Inf Model. 2021;61:423–31.PubMedCrossRef
45.
go back to reference Ramachandran VS. Encyclopedia of human behavior. Academic Press; 2012. Ramachandran VS. Encyclopedia of human behavior. Academic Press; 2012.
46.
go back to reference Cashman D. Dominance of SARS-CoV-2 D614G variant explained by the requirement of COVID-19 for calcium; proximate therapeutic implication (s) for COVID-19. J Clin Immunol Immunother. 2020;6:2.CrossRef Cashman D. Dominance of SARS-CoV-2 D614G variant explained by the requirement of COVID-19 for calcium; proximate therapeutic implication (s) for COVID-19. J Clin Immunol Immunother. 2020;6:2.CrossRef
47.
go back to reference Davidson AD, Williamson MK, Lewis S, Shoemark D, Carroll MW, Heesom KJ, Zambon M, Ellis J, Lewis PA, Hiscox JA. Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. Genome medicine. 2020;12:1–15.CrossRef Davidson AD, Williamson MK, Lewis S, Shoemark D, Carroll MW, Heesom KJ, Zambon M, Ellis J, Lewis PA, Hiscox JA. Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. Genome medicine. 2020;12:1–15.CrossRef
48.
go back to reference Khelashvili G, Plante A, Doktorova M, Weinstein H. Ca2+-dependent mechanism of membrane insertion and destabilization by the SARS-CoV-2 fusion peptide. Biophys J . 2021;120:1105–19.PubMedPubMedCentralCrossRef Khelashvili G, Plante A, Doktorova M, Weinstein H. Ca2+-dependent mechanism of membrane insertion and destabilization by the SARS-CoV-2 fusion peptide. Biophys J . 2021;120:1105–19.PubMedPubMedCentralCrossRef
49.
go back to reference Lai AL, Freed JH. SARS-CoV-2 fusion peptide has a greater membrane perturbating effect than SARS-CoV with highly specific dependence on Ca2+. J Mol Biol. 2021;433(10). Lai AL, Freed JH. SARS-CoV-2 fusion peptide has a greater membrane perturbating effect than SARS-CoV with highly specific dependence on Ca2+. J Mol Biol. 2021;433(10).
50.
go back to reference Charlton FW, Pearson HM, Hover S, Lippiat JD, Fontana J, Barr JN, Mankouri J. Ion channels as therapeutic targets for viral infections: further discoveries and future perspectives. Viruses. 2020;12:844.PubMedCentralCrossRef Charlton FW, Pearson HM, Hover S, Lippiat JD, Fontana J, Barr JN, Mankouri J. Ion channels as therapeutic targets for viral infections: further discoveries and future perspectives. Viruses. 2020;12:844.PubMedCentralCrossRef
51.
go back to reference Hover S, Foster B, Fontana J, Kohl A, Goldstein SA, Barr JN, Mankouri J. Bunyavirus requirement for endosomal K+ reveals new roles of cellular ion channels during infection. PLoS Path. 2018;14:e1006845.CrossRef Hover S, Foster B, Fontana J, Kohl A, Goldstein SA, Barr JN, Mankouri J. Bunyavirus requirement for endosomal K+ reveals new roles of cellular ion channels during infection. PLoS Path. 2018;14:e1006845.CrossRef
52.
go back to reference Steinberg BE, Huynh KK, Brodovitch A, Jabs S, Stauber T, Jentsch TJ, Grinstein S. A cation counterflux supports lysosomal acidification. J Cell Biol. 2010;189:1171–86.PubMedPubMedCentralCrossRef Steinberg BE, Huynh KK, Brodovitch A, Jabs S, Stauber T, Jentsch TJ, Grinstein S. A cation counterflux supports lysosomal acidification. J Cell Biol. 2010;189:1171–86.PubMedPubMedCentralCrossRef
53.
go back to reference Wang X, Zhang X, Dong X-P, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J. TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell. 2012;151:372–83.PubMedPubMedCentralCrossRef Wang X, Zhang X, Dong X-P, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J. TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell. 2012;151:372–83.PubMedPubMedCentralCrossRef
54.
go back to reference Zheng K, Chen M, Xiang Y, Ma K, Jin F, Wang X, Wang X, Wang S, Wang Y. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB. Biochem Biophys Res Commun. 2014;446:990–6.PubMedCrossRef Zheng K, Chen M, Xiang Y, Ma K, Jin F, Wang X, Wang X, Wang S, Wang Y. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB. Biochem Biophys Res Commun. 2014;446:990–6.PubMedCrossRef
55.
go back to reference Galione A, Morgan AJ, Arredouani A, Davis LC, Rietdorf K, Ruas M, Parrington J. NAADP as an intracellular messenger regulating lysosomal calcium-release channels. Portland Press Ltd; 2010.CrossRef Galione A, Morgan AJ, Arredouani A, Davis LC, Rietdorf K, Ruas M, Parrington J. NAADP as an intracellular messenger regulating lysosomal calcium-release channels. Portland Press Ltd; 2010.CrossRef
56.
go back to reference Filippini A, D’Amore A, Palombi F, Carpaneto A. Could the inhibition of endo-lysosomal two-pore channels (TPCs) by the natural flavonoid naringenin represent an option to fight SARS-CoV-2 infection? Front Microbiol. 2020;11:970.PubMedPubMedCentralCrossRef Filippini A, D’Amore A, Palombi F, Carpaneto A. Could the inhibition of endo-lysosomal two-pore channels (TPCs) by the natural flavonoid naringenin represent an option to fight SARS-CoV-2 infection? Front Microbiol. 2020;11:970.PubMedPubMedCentralCrossRef
58.
go back to reference Li H, Zhang L-K, Li S-F, Zhang S-F, Wan W-W, Zhang Y-L, Xin Q-L, Dai K, Hu Y-Y, Wang Z-B. Calcium channel blockers reduce severe fever with thrombocytopenia syndrome virus (SFTSV) related fatality. Cell Res. 2019;29:739–53.PubMedPubMedCentralCrossRef Li H, Zhang L-K, Li S-F, Zhang S-F, Wan W-W, Zhang Y-L, Xin Q-L, Dai K, Hu Y-Y, Wang Z-B. Calcium channel blockers reduce severe fever with thrombocytopenia syndrome virus (SFTSV) related fatality. Cell Res. 2019;29:739–53.PubMedPubMedCentralCrossRef
59.
go back to reference Gunaratne GS, Yang Y, Li F, Walseth TF, Marchant JS. NAADP-dependent Ca2+ signaling regulates Middle East respiratory syndrome-coronavirus pseudovirus translocation through the endolysosomal system. Cell Calcium. 2018;75:30–41.PubMedPubMedCentralCrossRef Gunaratne GS, Yang Y, Li F, Walseth TF, Marchant JS. NAADP-dependent Ca2+ signaling regulates Middle East respiratory syndrome-coronavirus pseudovirus translocation through the endolysosomal system. Cell Calcium. 2018;75:30–41.PubMedPubMedCentralCrossRef
60.
go back to reference Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11:1–12.CrossRef Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11:1–12.CrossRef
61.
go back to reference Gunaratne GS, Brailoiu E, He S, Unterwald EM, Patel S, Slama JT, Walseth TF, Marchant JS. Essential requirement for JPT2 in NAADP-evoked Ca2+ signaling. Sci. Signal. 2021;14(675):eabd5605. Gunaratne GS, Brailoiu E, He S, Unterwald EM, Patel S, Slama JT, Walseth TF, Marchant JS. Essential requirement for JPT2 in NAADP-evoked Ca2+ signaling. Sci. Signal. 2021;14(675):eabd5605.
62.
go back to reference Petersen OH, Gerasimenko OV, Gerasimenko JV. Endocytic uptake of SARS-CoV-2: the critical roles of pH, Ca2+, and NAADP. Function. 2020;1(1):zqaa003. Petersen OH, Gerasimenko OV, Gerasimenko JV. Endocytic uptake of SARS-CoV-2: the critical roles of pH, Ca2+, and NAADP. Function. 2020;1(1):zqaa003.
63.
go back to reference Lee HC, Aarhus R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose (∗). J Biol Chem. 1995;270:2152–7.PubMedCrossRef Lee HC, Aarhus R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose (∗). J Biol Chem. 1995;270:2152–7.PubMedCrossRef
64.
go back to reference Churchill GC, Okada Y, Thomas JM, Genazzani AA, Patel S, Galione A. NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell. 2002;111:703–8.PubMedCrossRef Churchill GC, Okada Y, Thomas JM, Genazzani AA, Patel S, Galione A. NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell. 2002;111:703–8.PubMedCrossRef
65.
go back to reference Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res. 2020;178:104792.PubMedPubMedCentralCrossRef Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res. 2020;178:104792.PubMedPubMedCentralCrossRef
66.
go back to reference Winstone H, Lista MJ, Reid AC, Bouton C, Pickering S, Galao RP, Kerridge C, Doores KJ, Swanson CM, Neil SJD. The polybasic cleavage site in SARS-CoV-2 spike modulates viral sensitivity to type I interferon and IFITM2. J Virol. 2021;95(9):e02422–02420. Winstone H, Lista MJ, Reid AC, Bouton C, Pickering S, Galao RP, Kerridge C, Doores KJ, Swanson CM, Neil SJD. The polybasic cleavage site in SARS-CoV-2 spike modulates viral sensitivity to type I interferon and IFITM2. J Virol. 2021;95(9):e02422–02420.
67.
go back to reference Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K, Zhuang M, Hattori T, Sugamura K. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J Virol. 2007;81:8722–9.PubMedPubMedCentralCrossRef Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K, Zhuang M, Hattori T, Sugamura K. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J Virol. 2007;81:8722–9.PubMedPubMedCentralCrossRef
68.
go back to reference Zhao Z, Qin P, Huang Y-W. Lysosomal ion channels involved in cellular entry and uncoating of enveloped viruses: Implications for therapeutic strategies against SARS-CoV-2. Cell Calcium. 2021;94. Zhao Z, Qin P, Huang Y-W. Lysosomal ion channels involved in cellular entry and uncoating of enveloped viruses: Implications for therapeutic strategies against SARS-CoV-2. Cell Calcium. 2021;94.
69.
go back to reference Johnson DE, Ostrowski P, Jaumouillé V, Grinstein S. The position of lysosomes within the cell determines their luminal pH. J Cell Biol. 2016;212:677–92.PubMedPubMedCentralCrossRef Johnson DE, Ostrowski P, Jaumouillé V, Grinstein S. The position of lysosomes within the cell determines their luminal pH. J Cell Biol. 2016;212:677–92.PubMedPubMedCentralCrossRef
70.
go back to reference Zhao Z, Qin P, Huang Y-W. Lysosomal ion channels involved in cellular entry and uncoating of enveloped viruses: Implications for therapeutic strategies against SARS-CoV-2. Cell Calcium. 2021;94:102360.PubMedPubMedCentralCrossRef Zhao Z, Qin P, Huang Y-W. Lysosomal ion channels involved in cellular entry and uncoating of enveloped viruses: Implications for therapeutic strategies against SARS-CoV-2. Cell Calcium. 2021;94:102360.PubMedPubMedCentralCrossRef
71.
go back to reference Pryor PR, Mullock BM, Bright NA, Gray SR, Luzio JP. The role of intraorganellar Ca2+ in late endosome–lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J Cell Biol. 2000;149:1053–62.PubMedPubMedCentralCrossRef Pryor PR, Mullock BM, Bright NA, Gray SR, Luzio JP. The role of intraorganellar Ca2+ in late endosome–lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J Cell Biol. 2000;149:1053–62.PubMedPubMedCentralCrossRef
72.
go back to reference Martens S, McMahon HT. Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol. 2008;9:543–56.PubMedCrossRef Martens S, McMahon HT. Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol. 2008;9:543–56.PubMedCrossRef
73.
go back to reference Kolokoltsov AA, Saeed MF, Freiberg AN, Holbrook MR, Davey RA. Identification of novel cellular targets for therapeutic intervention against Ebola virus infection by siRNA screening. Drug Dev Res. 2009;70:255–65.PubMedPubMedCentralCrossRef Kolokoltsov AA, Saeed MF, Freiberg AN, Holbrook MR, Davey RA. Identification of novel cellular targets for therapeutic intervention against Ebola virus infection by siRNA screening. Drug Dev Res. 2009;70:255–65.PubMedPubMedCentralCrossRef
75.
go back to reference Zhao Y, Kappes B, Yang J, Franklin RM. Molecular cloning, stage-specific expression and cellular distribution of a putative protein kinase from Plasmodium falciparum. Eur J Biochem. 1992;207:305–13.PubMedCrossRef Zhao Y, Kappes B, Yang J, Franklin RM. Molecular cloning, stage-specific expression and cellular distribution of a putative protein kinase from Plasmodium falciparum. Eur J Biochem. 1992;207:305–13.PubMedCrossRef
76.
go back to reference Kato K, Sugi T, Takemae H, Takano R, Gong H, Ishiwa A, Horimoto T, Akashi H. Characterization of a Toxoplasma gondii calcium calmodulin-dependent protein kinase homolog. Parasit Vectors. 2016;9:405.PubMedPubMedCentralCrossRef Kato K, Sugi T, Takemae H, Takano R, Gong H, Ishiwa A, Horimoto T, Akashi H. Characterization of a Toxoplasma gondii calcium calmodulin-dependent protein kinase homolog. Parasit Vectors. 2016;9:405.PubMedPubMedCentralCrossRef
77.
go back to reference Colombo MI, Beron W, Stahl PD. Calmodulin regulates endosome fusion. J Biol Chem. 1997;272:7707–12.PubMedCrossRef Colombo MI, Beron W, Stahl PD. Calmodulin regulates endosome fusion. J Biol Chem. 1997;272:7707–12.PubMedCrossRef
78.
go back to reference Chao LH, Stratton MM, Lee I-H, Rosenberg OS, Levitz J, Mandell DJ, Kortemme T, Groves JT, Schulman H, Kuriyan J. A mechanism for tunable autoinhibition in the structure of a human Ca2+/calmodulin-dependent kinase II holoenzyme. Cell. 2011;146:732–45.PubMedPubMedCentralCrossRef Chao LH, Stratton MM, Lee I-H, Rosenberg OS, Levitz J, Mandell DJ, Kortemme T, Groves JT, Schulman H, Kuriyan J. A mechanism for tunable autoinhibition in the structure of a human Ca2+/calmodulin-dependent kinase II holoenzyme. Cell. 2011;146:732–45.PubMedPubMedCentralCrossRef
79.
go back to reference Hudmon A, Schulman H. Structure–function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochemical Journal. 2002;364:593–611.PubMedCentralCrossRef Hudmon A, Schulman H. Structure–function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochemical Journal. 2002;364:593–611.PubMedCentralCrossRef
80.
go back to reference Hwang I, Sze H, Harper JF. A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc Natl Acad Sci. 2000;97:6224–9.PubMedPubMedCentralCrossRef Hwang I, Sze H, Harper JF. A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc Natl Acad Sci. 2000;97:6224–9.PubMedPubMedCentralCrossRef
81.
go back to reference Falke JJ, Drake SK, Hazard AL, Peersen OB. Molecular tuning of ion binding to calcium signaling proteins. Q Rev Biophys. 1994;27:219–90.PubMedCrossRef Falke JJ, Drake SK, Hazard AL, Peersen OB. Molecular tuning of ion binding to calcium signaling proteins. Q Rev Biophys. 1994;27:219–90.PubMedCrossRef
83.
go back to reference De Haro L, Quetglas S, Iborra C, Lévêque C, Seagar M. Calmodulin-dependent regulation of a lipid binding domain in the v-SNARE synaptobrevin and its role in vesicular fusion. Biol Cell. 2003;95:459–64.PubMedCrossRef De Haro L, Quetglas S, Iborra C, Lévêque C, Seagar M. Calmodulin-dependent regulation of a lipid binding domain in the v-SNARE synaptobrevin and its role in vesicular fusion. Biol Cell. 2003;95:459–64.PubMedCrossRef
84.
go back to reference Leabu M. Membrane fusion in cells: molecular machinery and mechanisms. J Cell Mol Med. 2006;10:423–7.PubMedCrossRef Leabu M. Membrane fusion in cells: molecular machinery and mechanisms. J Cell Mol Med. 2006;10:423–7.PubMedCrossRef
85.
86.
go back to reference Tiggemann R, Plattner H. Possible involvement of a calmodulin regulated Ca2+-ATPase in exocytosis performance in Paramecium tetraurelia cells. FEBS Lett. 1982;148:226–30.PubMedCrossRef Tiggemann R, Plattner H. Possible involvement of a calmodulin regulated Ca2+-ATPase in exocytosis performance in Paramecium tetraurelia cells. FEBS Lett. 1982;148:226–30.PubMedCrossRef
87.
go back to reference Miner GE, Sullivan KD, Zhang C, Rivera-Kohr D, Guo A, Hurst LR, Ellis EC, Starr ML, Jones BC, Fratti RA. Phosphatidylinositol 3,5-bisphosphate regulates Ca2+ transport during yeast vacuolar fusion through the Ca2+ ATPase Pmc1. Traffic. 2020;21(7):503–17.PubMedPubMedCentralCrossRef Miner GE, Sullivan KD, Zhang C, Rivera-Kohr D, Guo A, Hurst LR, Ellis EC, Starr ML, Jones BC, Fratti RA. Phosphatidylinositol 3,5-bisphosphate regulates Ca2+ transport during yeast vacuolar fusion through the Ca2+ ATPase Pmc1. Traffic. 2020;21(7):503–17.PubMedPubMedCentralCrossRef
88.
go back to reference Bonza MC, Martin H, Kang M, Lewis G, Greiner T, Giacometti S, Van Etten JL, De Michelis MI, Thiel G, Moroni A. A functional calcium-transporting ATPase encoded by chlorella viruses. J Gen Virol. 2010;91:2620–9.PubMedPubMedCentralCrossRef Bonza MC, Martin H, Kang M, Lewis G, Greiner T, Giacometti S, Van Etten JL, De Michelis MI, Thiel G, Moroni A. A functional calcium-transporting ATPase encoded by chlorella viruses. J Gen Virol. 2010;91:2620–9.PubMedPubMedCentralCrossRef
89.
go back to reference Gunaratne HJ, Vacquier VD. Evidence for a secretory pathway Ca2+-ATPase in sea urchin spermatozoa. FEBS Lett. 2006;580:3900–4.PubMedCrossRef Gunaratne HJ, Vacquier VD. Evidence for a secretory pathway Ca2+-ATPase in sea urchin spermatozoa. FEBS Lett. 2006;580:3900–4.PubMedCrossRef
90.
go back to reference Gunaratne HJ, Neill AT, Vacquier VD. Plasma membrane calcium ATPase is concentrated in the head of sea urchin spermatozoa. J Cell Physiol. 2006;207:413–9.PubMedCrossRef Gunaratne HJ, Neill AT, Vacquier VD. Plasma membrane calcium ATPase is concentrated in the head of sea urchin spermatozoa. J Cell Physiol. 2006;207:413–9.PubMedCrossRef
91.
go back to reference Roldan E, Fleming A. Is a Ca2+-ATPase involved in Ca2+ regulation during capacitation and the acrosome reaction of guinea-pig spermatozoa? Reproduction. 1989;85:297–308.CrossRef Roldan E, Fleming A. Is a Ca2+-ATPase involved in Ca2+ regulation during capacitation and the acrosome reaction of guinea-pig spermatozoa? Reproduction. 1989;85:297–308.CrossRef
92.
go back to reference Feng H, Hershlag A, Han Y, Zheng L. Localizations of intracellular calcium and Ca2+-ATPase in hamster spermatogenic cells and spermatozoa. Microsc Res Tech. 2006;69:618–23.PubMedCrossRef Feng H, Hershlag A, Han Y, Zheng L. Localizations of intracellular calcium and Ca2+-ATPase in hamster spermatogenic cells and spermatozoa. Microsc Res Tech. 2006;69:618–23.PubMedCrossRef
93.
go back to reference Vijayasarathy S, Shivaji S, Balaram P. Plasma membrane bound Ca2+-ATPase activity in bull sperm. FEBS Lett. 1980;114:45–7.PubMedCrossRef Vijayasarathy S, Shivaji S, Balaram P. Plasma membrane bound Ca2+-ATPase activity in bull sperm. FEBS Lett. 1980;114:45–7.PubMedCrossRef
94.
go back to reference Lucca N, León G. ArabidopsisACA7, encoding a putative auto-regulated Ca2+-ATPase, is required for normal pollen development. Plant Cell Rep. 2012;31:651–9.PubMedCrossRef Lucca N, León G. ArabidopsisACA7, encoding a putative auto-regulated Ca2+-ATPase, is required for normal pollen development. Plant Cell Rep. 2012;31:651–9.PubMedCrossRef
95.
go back to reference Gordon M, Morris EG, Young RJ. The localization of Ca2+-ATPase and Ca2+ binding proteins in the flagellum of guinea pig sperm. Gamete Res. 1983;8:49–55.CrossRef Gordon M, Morris EG, Young RJ. The localization of Ca2+-ATPase and Ca2+ binding proteins in the flagellum of guinea pig sperm. Gamete Res. 1983;8:49–55.CrossRef
96.
go back to reference Cunningham KW, Fink GR. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J Cell Biol. 1994;124:351–63.PubMedCrossRef Cunningham KW, Fink GR. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J Cell Biol. 1994;124:351–63.PubMedCrossRef
97.
go back to reference Takita Y, Engstrom L, Ungermann C, Cunningham KW. Inhibition of the Ca2+-ATPase Pmc1p by the v-SNARE protein Nyv1p. J Biol Chem. 2001;276:6200–6.PubMedCrossRef Takita Y, Engstrom L, Ungermann C, Cunningham KW. Inhibition of the Ca2+-ATPase Pmc1p by the v-SNARE protein Nyv1p. J Biol Chem. 2001;276:6200–6.PubMedCrossRef
98.
go back to reference Penniston J, Enyedi A. Modulation of the plasma membrane Ca 2+ pump. J Membr Biol. 1998;165:101–9.PubMedCrossRef Penniston J, Enyedi A. Modulation of the plasma membrane Ca 2+ pump. J Membr Biol. 1998;165:101–9.PubMedCrossRef
99.
go back to reference Geisler M, Axelsen KB, Harper JF, Palmgren MG. Molecular aspects of higher plant P-type Ca2+-ATPases. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2000;1465(1):52–78. Geisler M, Axelsen KB, Harper JF, Palmgren MG. Molecular aspects of higher plant P-type Ca2+-ATPases. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2000;1465(1):52–78.
100.
go back to reference Harper JF, Hong B, Hwang I, Guo HQ, Stoddard R, Huang JF, Palmgren MG, Sze H. A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain. J Biol Chem. 1998;273:1099–106.PubMedCrossRef Harper JF, Hong B, Hwang I, Guo HQ, Stoddard R, Huang JF, Palmgren MG, Sze H. A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain. J Biol Chem. 1998;273:1099–106.PubMedCrossRef
101.
102.
go back to reference Hwang I, Sze H, Harper JF. A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc Natl Acad Sci. 2000;97:6224–9.PubMedPubMedCentralCrossRef Hwang I, Sze H, Harper JF. A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc Natl Acad Sci. 2000;97:6224–9.PubMedPubMedCentralCrossRef
103.
go back to reference Bonza MC, Luoni L. Plant and animal type 2B Ca2+-ATPases: evidence for a common auto-inhibitory mechanism. FEBS Lett. 2010;584:4783–8.PubMedCrossRef Bonza MC, Luoni L. Plant and animal type 2B Ca2+-ATPases: evidence for a common auto-inhibitory mechanism. FEBS Lett. 2010;584:4783–8.PubMedCrossRef
104.
go back to reference Luoni L, Meneghelli S, Bonza MC, DeMichelis MI. Auto-inhibition of Arabidopsis thaliana plasma membrane Ca2+-ATPase involves an interaction of the N-terminus with the small cytoplasmic loop. FEBS Lett. 2004;574:20–4.PubMedCrossRef Luoni L, Meneghelli S, Bonza MC, DeMichelis MI. Auto-inhibition of Arabidopsis thaliana plasma membrane Ca2+-ATPase involves an interaction of the N-terminus with the small cytoplasmic loop. FEBS Lett. 2004;574:20–4.PubMedCrossRef
105.
go back to reference Bose J, Pottosin I, Shabala SSS, Palmgren MG, Shabala S. Calcium efflux systems in stress signaling and adaptation in plants. Front Plant Sci. 2011;2:85.PubMedPubMedCentralCrossRef Bose J, Pottosin I, Shabala SSS, Palmgren MG, Shabala S. Calcium efflux systems in stress signaling and adaptation in plants. Front Plant Sci. 2011;2:85.PubMedPubMedCentralCrossRef
106.
go back to reference Møller JV, Olesen C, Winther A-ML, Nissen P. The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. Q Rev Biophys. 2010;43:501–66.PubMedCrossRef Møller JV, Olesen C, Winther A-ML, Nissen P. The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. Q Rev Biophys. 2010;43:501–66.PubMedCrossRef
107.
go back to reference Enyedi A, Verma AK, Filoteo AG, Penniston JT. Protein kinase C activates the plasma membrane Ca2+ pump isoform 4b by phosphorylation of an inhibitory region downstream of the calmodulin-binding domain. J Biol Chem. 1996;271:32461–7.PubMedCrossRef Enyedi A, Verma AK, Filoteo AG, Penniston JT. Protein kinase C activates the plasma membrane Ca2+ pump isoform 4b by phosphorylation of an inhibitory region downstream of the calmodulin-binding domain. J Biol Chem. 1996;271:32461–7.PubMedCrossRef
108.
go back to reference Odermatt A, Kurzydlowski K, MacLennan DH. The vmax of the Ca2+-ATPase of cardiac sarcoplasmic reticulum (SERCA2a) is not altered by Ca2+/calmodulin-dependent phosphorylation or by interaction with phospholamban. J Biol Chem. 1996;271:14206–13.PubMedCrossRef Odermatt A, Kurzydlowski K, MacLennan DH. The vmax of the Ca2+-ATPase of cardiac sarcoplasmic reticulum (SERCA2a) is not altered by Ca2+/calmodulin-dependent phosphorylation or by interaction with phospholamban. J Biol Chem. 1996;271:14206–13.PubMedCrossRef
109.
go back to reference Banerjee A, Barry VA, DasGupta BR, Martin TF. N-Ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. J Biol Chem. 1996;271:20223–6.PubMedCrossRef Banerjee A, Barry VA, DasGupta BR, Martin TF. N-Ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. J Biol Chem. 1996;271:20223–6.PubMedCrossRef
111.
go back to reference Singh Tomar PP, Arkin IT. SARS-CoV-2 E protein is a potential ion channel that can be inhibited by Gliclazide and Memantine. Biochem Biophys Res Commun. 2020;530:10–4.PubMedPubMedCentralCrossRef Singh Tomar PP, Arkin IT. SARS-CoV-2 E protein is a potential ion channel that can be inhibited by Gliclazide and Memantine. Biochem Biophys Res Commun. 2020;530:10–4.PubMedPubMedCentralCrossRef
112.
go back to reference McClenaghan C, Hanson A, Lee SJ, Nichols CG. Coronavirus proteins as ion channels: current and potential research. Front Immunol. 2020;11. McClenaghan C, Hanson A, Lee SJ, Nichols CG. Coronavirus proteins as ion channels: current and potential research. Front Immunol. 2020;11.
113.
go back to reference Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, Ying T, Liu S, Shi Z, Jiang S. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immun. 2020;17(7):765–7.CrossRef Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, Ying T, Liu S, Shi Z, Jiang S. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immun. 2020;17(7):765–7.CrossRef
114.
go back to reference Clustal W, Clustal X. version 2.0. Bioinformatics. 2007;23:2947–8. Clustal W, Clustal X. version 2.0. Bioinformatics. 2007;23:2947–8.
115.
116.
go back to reference Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S, Qin C, Sun F, Shi Z, Zhu Y, Jiang S, Lu L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020;30:343–55.PubMedPubMedCentralCrossRef Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S, Qin C, Sun F, Shi Z, Zhu Y, Jiang S, Lu L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020;30:343–55.PubMedPubMedCentralCrossRef
117.
go back to reference Liu C, Feng Y, Gao F, Zhang Q, Wang M. Characterization of HCoV-229E fusion core: implications for structure basis of coronavirus membrane fusion. Biochem Biophys Res Commun. 2006;345:1108–15.PubMedPubMedCentralCrossRef Liu C, Feng Y, Gao F, Zhang Q, Wang M. Characterization of HCoV-229E fusion core: implications for structure basis of coronavirus membrane fusion. Biochem Biophys Res Commun. 2006;345:1108–15.PubMedPubMedCentralCrossRef
118.
go back to reference Buonvino S, Melino S. New Consensus pattern in Spike CoV-2: potential implications in coagulation process and cell–cell fusion. Cell Death Discovery. 2020;6:134.PubMedPubMedCentralCrossRef Buonvino S, Melino S. New Consensus pattern in Spike CoV-2: potential implications in coagulation process and cell–cell fusion. Cell Death Discovery. 2020;6:134.PubMedPubMedCentralCrossRef
119.
go back to reference Sultana A, Kallio P, Jansson A, Wang J-S, Niemi J, Mäntsälä P, Schneider G. Structure of the polyketide cyclase SnoaL reveals a novel mechanism for enzymatic aldol condensation. EMBO J. 2004;23:1911–21.PubMedPubMedCentralCrossRef Sultana A, Kallio P, Jansson A, Wang J-S, Niemi J, Mäntsälä P, Schneider G. Structure of the polyketide cyclase SnoaL reveals a novel mechanism for enzymatic aldol condensation. EMBO J. 2004;23:1911–21.PubMedPubMedCentralCrossRef
120.
go back to reference Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988;241:42–52.PubMedCrossRef Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988;241:42–52.PubMedCrossRef
121.
go back to reference Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Marrero MC, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM. The global phosphorylation landscape of SARS-CoV-2 infection. Cell. 2020;182:685-712.e619.PubMedPubMedCentralCrossRef Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Marrero MC, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM. The global phosphorylation landscape of SARS-CoV-2 infection. Cell. 2020;182:685-712.e619.PubMedPubMedCentralCrossRef
122.
go back to reference Davidson AD, Williamson MK, Lewis S, Shoemark D, Carroll MW, Heesom KJ, Zambon M, Ellis J, Lewis PA, Hiscox JA, Matthews DA. Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. Genome Med. 2020;12:68.PubMedPubMedCentralCrossRef Davidson AD, Williamson MK, Lewis S, Shoemark D, Carroll MW, Heesom KJ, Zambon M, Ellis J, Lewis PA, Hiscox JA, Matthews DA. Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. Genome Med. 2020;12:68.PubMedPubMedCentralCrossRef
123.
go back to reference Lopez-Marques RL, Theorin L, Palmgren MG, Pomorski TG. P4-ATPases: lipid flippases in cell membranes. Pflugers Arch. 2014;466:1227–40.PubMedCrossRef Lopez-Marques RL, Theorin L, Palmgren MG, Pomorski TG. P4-ATPases: lipid flippases in cell membranes. Pflugers Arch. 2014;466:1227–40.PubMedCrossRef
125.
go back to reference Rubinstein E, Ziyyat A, Wolf JP, Le Naour F, Boucheix C. The molecular players of sperm-egg fusion in mammals. Semin Cell Dev Biol. 2006;17:254–63.PubMedCrossRef Rubinstein E, Ziyyat A, Wolf JP, Le Naour F, Boucheix C. The molecular players of sperm-egg fusion in mammals. Semin Cell Dev Biol. 2006;17:254–63.PubMedCrossRef
126.
go back to reference Liu W, Xie Y, Ma J, Luo X, Nie P, Zuo Z, Lahrmann U, Zhao Q, Zheng Y, Zhao Y. IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics. 2015;31:3359–61.PubMedPubMedCentralCrossRef Liu W, Xie Y, Ma J, Luo X, Nie P, Zuo Z, Lahrmann U, Zhao Q, Zheng Y, Zhao Y. IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics. 2015;31:3359–61.PubMedPubMedCentralCrossRef
127.
go back to reference Meis Ld. Energy interconversion by the sarcoplasmic reticulum Ca2+-ATPase: ATP hydrolysis, Ca2+ transport, ATP synthesis and heat production. An Acad Bras Ciênc. 2000;72:365–79. Meis Ld. Energy interconversion by the sarcoplasmic reticulum Ca2+-ATPase: ATP hydrolysis, Ca2+ transport, ATP synthesis and heat production. An Acad Bras Ciênc. 2000;72:365–79.
128.
go back to reference de Meis L. Role of the sarcoplasmic reticulum Ca2+-ATPase on heat production and thermogenesis. Biosci Rep. 2001;21:113–37.PubMedCrossRef de Meis L. Role of the sarcoplasmic reticulum Ca2+-ATPase on heat production and thermogenesis. Biosci Rep. 2001;21:113–37.PubMedCrossRef
129.
go back to reference Roberts K, Alberts B, Johnson A, Walter P, Hunt T. Molecular biology of the cell. New York: Garland Science; 2002. Roberts K, Alberts B, Johnson A, Walter P, Hunt T. Molecular biology of the cell. New York: Garland Science; 2002.
131.
go back to reference van Kuppeveld FJ, de Jong AS, Melchers WJ, Willems PH. Enterovirus protein 2B po (u) res out the calcium: a viral strategy to survive? Trends Microbiol. 2005;13:41–4.PubMedCrossRef van Kuppeveld FJ, de Jong AS, Melchers WJ, Willems PH. Enterovirus protein 2B po (u) res out the calcium: a viral strategy to survive? Trends Microbiol. 2005;13:41–4.PubMedCrossRef
132.
go back to reference Carretero M, Gómez-Gonzalo M, Lara-Pezzi E, Benedicto I, Aramburu J, Martinez-Martinez S, Redondo JM, López-Cabrera M. The hepatitis B virus X protein binds to and activates the NH2-terminal trans-activation domain of nuclear factor of activated T cells-1. Virology. 2002;299:288–300.PubMedCrossRef Carretero M, Gómez-Gonzalo M, Lara-Pezzi E, Benedicto I, Aramburu J, Martinez-Martinez S, Redondo JM, López-Cabrera M. The hepatitis B virus X protein binds to and activates the NH2-terminal trans-activation domain of nuclear factor of activated T cells-1. Virology. 2002;299:288–300.PubMedCrossRef
133.
go back to reference Kruman II, Nath A, Mattson MP. HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol. 1998;154:276–88.PubMedCrossRef Kruman II, Nath A, Mattson MP. HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol. 1998;154:276–88.PubMedCrossRef
135.
go back to reference Austin LA, Heath H III. Calcitonin: physiology and pathophysiology. N Engl J Med. 1981;304:269–78.PubMedCrossRef Austin LA, Heath H III. Calcitonin: physiology and pathophysiology. N Engl J Med. 1981;304:269–78.PubMedCrossRef
137.
go back to reference Cappellini F, Brivio R, Casati M, Cavallero A, Contro E, Brambilla P. Low levels of total and ionized calcium in blood of COVID-19 patients. Clin Chem Lab Med (CCLM). 2020;58:e171–3.CrossRef Cappellini F, Brivio R, Casati M, Cavallero A, Contro E, Brambilla P. Low levels of total and ionized calcium in blood of COVID-19 patients. Clin Chem Lab Med (CCLM). 2020;58:e171–3.CrossRef
138.
go back to reference Elham AS, Azam K, Azam J, Mostafa L, Nasrin B, Marzieh N. Serum vitamin D, calcium, and zinc levels in patients with COVID-19. Clinical Nutrition ESPEN. 2021;43:276–82.PubMedPubMedCentralCrossRef Elham AS, Azam K, Azam J, Mostafa L, Nasrin B, Marzieh N. Serum vitamin D, calcium, and zinc levels in patients with COVID-19. Clinical Nutrition ESPEN. 2021;43:276–82.PubMedPubMedCentralCrossRef
139.
go back to reference Osman W, Al Fahdi F, Al Salmi I, Al Khalili H, Gokhale A, Khamis F. Serum Calcium and Vitamin D levels. Correlation with severity of COVID-19 in hospitalized patients in Royal Hospital, Oman. International Journal of Infectious Diseases. 2021;107:153–163. Osman W, Al Fahdi F, Al Salmi I, Al Khalili H, Gokhale A, Khamis F. Serum Calcium and Vitamin D levels. Correlation with severity of COVID-19 in hospitalized patients in Royal Hospital, Oman. International Journal of Infectious Diseases. 2021;107:153–163.
140.
go back to reference Gittoes NJ, Criseno S, Appelman-Dijkstra NM, Bollerslev J, Canalis E, Rejnmark L, Hassan-Smith Z. ENDOCRINOLOGY IN THE TIME OF COVID-19: management of calcium metabolic disorders and osteoporosis. Eur J Endocrinol. 2020;183:G57–65.PubMedPubMedCentralCrossRef Gittoes NJ, Criseno S, Appelman-Dijkstra NM, Bollerslev J, Canalis E, Rejnmark L, Hassan-Smith Z. ENDOCRINOLOGY IN THE TIME OF COVID-19: management of calcium metabolic disorders and osteoporosis. Eur J Endocrinol. 2020;183:G57–65.PubMedPubMedCentralCrossRef
141.
go back to reference Tai C-Y, Smith QR, Rapoport SI. Calcium influxes into brain and cerebrospinal fluid are linearly related to plasma ionized calcium concentration. Brain Res. 1986;385:227–36.PubMedCrossRef Tai C-Y, Smith QR, Rapoport SI. Calcium influxes into brain and cerebrospinal fluid are linearly related to plasma ionized calcium concentration. Brain Res. 1986;385:227–36.PubMedCrossRef
142.
go back to reference Kozik-Jaromin J, Nier V, Heemann U, Kreymann B, Böhler J. Citrate pharmacokinetics and calcium levels during high-flux dialysis with regional citrate anticoagulation. Nephrol Dial Transplant. 2009;24:2244–51.PubMedPubMedCentralCrossRef Kozik-Jaromin J, Nier V, Heemann U, Kreymann B, Böhler J. Citrate pharmacokinetics and calcium levels during high-flux dialysis with regional citrate anticoagulation. Nephrol Dial Transplant. 2009;24:2244–51.PubMedPubMedCentralCrossRef
143.
go back to reference Zweifach BW. The structural basis of permeability and other functions of blood capillaries. In Cold Spring Harbor Symposia on Quantitative Biology. Cold Spring Harbor Laboratory Press. 1940:216–223. Zweifach BW. The structural basis of permeability and other functions of blood capillaries. In Cold Spring Harbor Symposia on Quantitative Biology. Cold Spring Harbor Laboratory Press. 1940:216–223.
144.
go back to reference Means AR. Calcium and calmodulin-mediated regulatory mechanisms. In Principles of Molecular Regulation. Edited by Conn PM, Means AR. Totowa, NJ. Humana Press. 2000:187–204. Means AR. Calcium and calmodulin-mediated regulatory mechanisms. In Principles of Molecular Regulation. Edited by Conn PM, Means AR. Totowa, NJ. Humana Press. 2000:187–204.
145.
go back to reference Chang KW, Sheng Y, Gombold JL. Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein. Virology. 2000;269:212–24.PubMedCrossRef Chang KW, Sheng Y, Gombold JL. Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein. Virology. 2000;269:212–24.PubMedCrossRef
146.
go back to reference Bos EC, Heijnen L, Luytjes W, Spaan WJ. Mutational analysis of the murine coronavirus spike protein: effect on cell-to-cell fusion. Virology. 1995;214:453–63.PubMedCrossRef Bos EC, Heijnen L, Luytjes W, Spaan WJ. Mutational analysis of the murine coronavirus spike protein: effect on cell-to-cell fusion. Virology. 1995;214:453–63.PubMedCrossRef
148.
go back to reference Clausen TM, Sandoval DR, Spliid CB, Pihl J, Perrett HR, Painter CD, Narayanan A, Majowicz SA, Kwong EM, McVicar RN, Thacker BE, Glass CA, Yang Z, Torres JL, Golden GJ, Bartels PL, Porell RN, Garretson AF, Laubach L, Feldman J, Yin X, Pu Y, Hauser BM, Caradonna TM, Kellman BP, Martino C, Gordts PLSM, Chanda SK, Schmidt AG, Godula K, Leibel SL, Jose J, Corbett KD, Ward AB, Carlin AF, Esko JD. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell. 2020;183:1043-1057.e1015.PubMedPubMedCentralCrossRef Clausen TM, Sandoval DR, Spliid CB, Pihl J, Perrett HR, Painter CD, Narayanan A, Majowicz SA, Kwong EM, McVicar RN, Thacker BE, Glass CA, Yang Z, Torres JL, Golden GJ, Bartels PL, Porell RN, Garretson AF, Laubach L, Feldman J, Yin X, Pu Y, Hauser BM, Caradonna TM, Kellman BP, Martino C, Gordts PLSM, Chanda SK, Schmidt AG, Godula K, Leibel SL, Jose J, Corbett KD, Ward AB, Carlin AF, Esko JD. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell. 2020;183:1043-1057.e1015.PubMedPubMedCentralCrossRef
149.
go back to reference Teien AN, Abildgaard U, Höök M. The anticoagulant effect of heparan sulfate and dermatan sulfate. Thromb Res. 1976;8:859–67.PubMedCrossRef Teien AN, Abildgaard U, Höök M. The anticoagulant effect of heparan sulfate and dermatan sulfate. Thromb Res. 1976;8:859–67.PubMedCrossRef
151.
go back to reference Madjid M, Vela D, Khalili-Tabrizi H, Casscells SW, Litovsky S. Systemic infections cause exaggerated local inflammation in atherosclerotic coronary arteries: clues to the triggering effect of acute infections on acute coronary syndromes. Tex Heart Inst J. 2007;34:11.PubMedPubMedCentral Madjid M, Vela D, Khalili-Tabrizi H, Casscells SW, Litovsky S. Systemic infections cause exaggerated local inflammation in atherosclerotic coronary arteries: clues to the triggering effect of acute infections on acute coronary syndromes. Tex Heart Inst J. 2007;34:11.PubMedPubMedCentral
Metadata
Title
COVID-19: the CaMKII-like system of S protein drives membrane fusion and induces syncytial multinucleated giant cells
Authors
Liu Wenzhong
Li Hualan
Publication date
01-12-2021
Publisher
Springer US
Published in
Immunologic Research / Issue 6/2021
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-021-09224-1

Other articles of this Issue 6/2021

Immunologic Research 6/2021 Go to the issue