Skip to main content
Top
Published in: Immunologic Research 2-3/2014

01-05-2014 | IMMUNOLOGY AT STANFORD UNIVERSITY

The interplay between Epstein–Barr virus and B lymphocytes: implications for infection, immunity, and disease

Authors: Olivia L. Hatton, Aleishia Harris-Arnold, Steven Schaffert, Sheri M. Krams, Olivia M. Martinez

Published in: Immunologic Research | Issue 2-3/2014

Login to get access

Abstract

Human B cells are the primary targets of Epstein–Barr virus (EBV) infection. In most cases, EBV infection is asymptomatic because of a highly effective host immune response, but some individuals develop self-limiting infectious mononucleosis, while others develop EBV-associated lymphoid or epithelial malignancies. The viral and immune factors that determine the outcome of infection are not understood. The EBV life cycle includes a lytic phase, culminating in the production of new viral particles, and a latent phase, during which the virus remains largely silent for the lifetime of the host in memory B cells. Thus, in healthy individuals, there is a tightly orchestrated interplay between EBV and the host that allows the virus to persist. To promote viral persistence, EBV has evolved a variety of strategies to modulate the host immune response including inhibition of immune cell function, blunting of apoptotic pathways, and interfering with antigen processing and presentation pathways. In this article, we focus on mechanisms by which dysregulation of the host B cell and immune modulation by the virus can contribute to development of EBV+ B cell lymphomas.
Literature
1.
go back to reference Shannon-Lowe C, Rowe M. Epstein-Barr virus infection of polarized epithelial cells via the basolateral surface by memory B cell-mediated transfer infection. PLoS Pathog. 2011;7(5):e1001338 (Epub 2011/05/17).PubMedCentralCrossRefPubMed Shannon-Lowe C, Rowe M. Epstein-Barr virus infection of polarized epithelial cells via the basolateral surface by memory B cell-mediated transfer infection. PLoS Pathog. 2011;7(5):e1001338 (Epub 2011/05/17).PubMedCentralCrossRefPubMed
2.
go back to reference Heath E, Begue-Pastor N, Chaganti S, Croom-Carter D, Shannon-Lowe C, Kube D, et al. Epstein-Barr virus infection of naive B cells in vitro frequently selects clones with mutated immunoglobulin genotypes: implications for virus biology. PLoS Pathog. 2012;8(5):e1002697 (Epub 2012/05/17).PubMedCentralCrossRefPubMed Heath E, Begue-Pastor N, Chaganti S, Croom-Carter D, Shannon-Lowe C, Kube D, et al. Epstein-Barr virus infection of naive B cells in vitro frequently selects clones with mutated immunoglobulin genotypes: implications for virus biology. PLoS Pathog. 2012;8(5):e1002697 (Epub 2012/05/17).PubMedCentralCrossRefPubMed
3.
go back to reference Kurth J, Spieker T, Wustrow J, Strickler GJ, Hansmann LM, Rajewsky K, et al. EBV-infected B cells in infectious mononucleosis: viral strategies for spreading in the B cell compartment and establishing latency. Immunity. 2000;13(4):485–95 (Epub 2000/11/09).CrossRefPubMed Kurth J, Spieker T, Wustrow J, Strickler GJ, Hansmann LM, Rajewsky K, et al. EBV-infected B cells in infectious mononucleosis: viral strategies for spreading in the B cell compartment and establishing latency. Immunity. 2000;13(4):485–95 (Epub 2000/11/09).CrossRefPubMed
4.
go back to reference Tracy SI, Kakalacheva K, Lunemann JD, Luzuriaga K, Middeldorp J, Thorley-Lawson DA. Persistence of Epstein-Barr virus in self-reactive memory B cells. J Virol. 2012;86(22):12330–40 (Epub 2012/09/07).PubMedCentralCrossRefPubMed Tracy SI, Kakalacheva K, Lunemann JD, Luzuriaga K, Middeldorp J, Thorley-Lawson DA. Persistence of Epstein-Barr virus in self-reactive memory B cells. J Virol. 2012;86(22):12330–40 (Epub 2012/09/07).PubMedCentralCrossRefPubMed
5.
go back to reference Angelini DF, Serafini B, Piras E, Severa M, Coccia EM, Rosicarelli B, et al. Increased CD8 + T cell response to Epstein-Barr virus lytic antigens in the active phase of multiple sclerosis. PLoS Pathog. 2013;9(4):e1003220 (Epub 2013/04/18).PubMedCentralCrossRefPubMed Angelini DF, Serafini B, Piras E, Severa M, Coccia EM, Rosicarelli B, et al. Increased CD8 + T cell response to Epstein-Barr virus lytic antigens in the active phase of multiple sclerosis. PLoS Pathog. 2013;9(4):e1003220 (Epub 2013/04/18).PubMedCentralCrossRefPubMed
6.
go back to reference Hislop AD, Taylor GS, Sauce D, Rickinson AB. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol. 2007;25:587–617.CrossRefPubMed Hislop AD, Taylor GS, Sauce D, Rickinson AB. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol. 2007;25:587–617.CrossRefPubMed
7.
go back to reference Callan MF, Tan L, Annels N, Ogg GS, Wilson JD, O’Callaghan CA, et al. Direct visualization of antigen-specific CD8 + T cells during the primary immune response to Epstein-Barr virus In vivo. J Exp Med. 1998;187(9):1395–402.PubMedCentralCrossRefPubMed Callan MF, Tan L, Annels N, Ogg GS, Wilson JD, O’Callaghan CA, et al. Direct visualization of antigen-specific CD8 + T cells during the primary immune response to Epstein-Barr virus In vivo. J Exp Med. 1998;187(9):1395–402.PubMedCentralCrossRefPubMed
8.
go back to reference Long HM, Chagoury OL, Leese AM, Ryan GB, James E, Morton LT, et al. MHC II tetramers visualize human CD4 + T cell responses to Epstein-Barr virus infection and demonstrate atypical kinetics of the nuclear antigen EBNA1 response. J Exp Med. 2013;210(5):933–49 (Epub 2013/04/10).PubMedCentralCrossRefPubMed Long HM, Chagoury OL, Leese AM, Ryan GB, James E, Morton LT, et al. MHC II tetramers visualize human CD4 + T cell responses to Epstein-Barr virus infection and demonstrate atypical kinetics of the nuclear antigen EBNA1 response. J Exp Med. 2013;210(5):933–49 (Epub 2013/04/10).PubMedCentralCrossRefPubMed
9.
go back to reference Falco DA, Nepomuceno RR, Krams SM, Lee PP, Davis MM, Salvatierra O, et al. Identification of Epstein-Barr virus-specific CD8 + T lymphocytes in the circulation of pediatric transplant recipients. Transplantation. 2002;74(4):501–10 Epub 2002/09/28.CrossRefPubMed Falco DA, Nepomuceno RR, Krams SM, Lee PP, Davis MM, Salvatierra O, et al. Identification of Epstein-Barr virus-specific CD8 + T lymphocytes in the circulation of pediatric transplant recipients. Transplantation. 2002;74(4):501–10 Epub 2002/09/28.CrossRefPubMed
10.
go back to reference Macedo C, Webber SA, Donnenberg AD, Popescu I, Hua Y, Green M, et al. EBV-specific CD8 + T cells from asymptomatic pediatric thoracic transplant patients carrying chronic high EBV loads display contrasting features: activated phenotype and exhausted function. J Immunol. 2011;186(10):5854–62 Epub 2011/04/05.PubMedCentralCrossRefPubMed Macedo C, Webber SA, Donnenberg AD, Popescu I, Hua Y, Green M, et al. EBV-specific CD8 + T cells from asymptomatic pediatric thoracic transplant patients carrying chronic high EBV loads display contrasting features: activated phenotype and exhausted function. J Immunol. 2011;186(10):5854–62 Epub 2011/04/05.PubMedCentralCrossRefPubMed
11.
go back to reference Williams H, McAulay K, Macsween KF, Gallacher NJ, Higgins CD, Harrison N, et al. The immune response to primary EBV infection: a role for natural killer cells. Br J Haematol. 2005;129(2):266–74 Epub 2005/04/09.CrossRefPubMed Williams H, McAulay K, Macsween KF, Gallacher NJ, Higgins CD, Harrison N, et al. The immune response to primary EBV infection: a role for natural killer cells. Br J Haematol. 2005;129(2):266–74 Epub 2005/04/09.CrossRefPubMed
12.
go back to reference Chijioke O, Muller A, Feederle R, Barros MH, Krieg C, Emmel V, et al. Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein–Barr virus infection. Cell Rep. 2013;5(6):1489–98 Epub 2013/12/24.PubMedCentralCrossRefPubMed Chijioke O, Muller A, Feederle R, Barros MH, Krieg C, Emmel V, et al. Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein–Barr virus infection. Cell Rep. 2013;5(6):1489–98 Epub 2013/12/24.PubMedCentralCrossRefPubMed
13.
go back to reference Lunemann A, Vanoaica LD, Azzi T, Nadal D, Munz C. A distinct subpopulation of human NK cells restricts B cell transformation by EBV. J Immunol. 2013;191(10):4989–95 Epub 2013/10/11.CrossRefPubMed Lunemann A, Vanoaica LD, Azzi T, Nadal D, Munz C. A distinct subpopulation of human NK cells restricts B cell transformation by EBV. J Immunol. 2013;191(10):4989–95 Epub 2013/10/11.CrossRefPubMed
14.
go back to reference Chaigne-Delalande B, Li FY, O’Connor GM, Lukacs MJ, Jiang P, Zheng L, et al. Mg2 + regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science. 2013;341(6142):186–91 Epub 2013/07/13.PubMedCentralCrossRefPubMed Chaigne-Delalande B, Li FY, O’Connor GM, Lukacs MJ, Jiang P, Zheng L, et al. Mg2 + regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science. 2013;341(6142):186–91 Epub 2013/07/13.PubMedCentralCrossRefPubMed
15.
go back to reference Parolini S, Bottino C, Falco M, Augugliaro R, Giliani S, Franceschini R, et al. X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J Exp Med. 2000;192(3):337–46 Epub 2000/08/10.PubMedCentralCrossRefPubMed Parolini S, Bottino C, Falco M, Augugliaro R, Giliani S, Franceschini R, et al. X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J Exp Med. 2000;192(3):337–46 Epub 2000/08/10.PubMedCentralCrossRefPubMed
16.
go back to reference Eidenschenk C, Dunne J, Jouanguy E, Fourlinnie C, Gineau L, Bacq D, et al. A novel primary immunodeficiency with specific natural-killer cell deficiency maps to the centromeric region of chromosome 8. Am J Hum Genet. 2006;78(4):721–7 Epub 2006/03/15.PubMedCentralCrossRefPubMed Eidenschenk C, Dunne J, Jouanguy E, Fourlinnie C, Gineau L, Bacq D, et al. A novel primary immunodeficiency with specific natural-killer cell deficiency maps to the centromeric region of chromosome 8. Am J Hum Genet. 2006;78(4):721–7 Epub 2006/03/15.PubMedCentralCrossRefPubMed
17.
go back to reference Shaw RK, Issekutz AC, Fraser R, Schmit P, Morash B, Monaco-Shawver L, et al. Bilateral adrenal EBV-associated smooth muscle tumors in a child with a natural killer cell deficiency. Blood. 2012;119(17):4009–12 Epub 2012/03/20.PubMedCentralCrossRefPubMed Shaw RK, Issekutz AC, Fraser R, Schmit P, Morash B, Monaco-Shawver L, et al. Bilateral adrenal EBV-associated smooth muscle tumors in a child with a natural killer cell deficiency. Blood. 2012;119(17):4009–12 Epub 2012/03/20.PubMedCentralCrossRefPubMed
18.
go back to reference Snow AL, Martinez OM. Epstein-Barr virus: evasive maneuvers in the development of PTLD. Am J Transpl. 2007;7(2):271–7.CrossRef Snow AL, Martinez OM. Epstein-Barr virus: evasive maneuvers in the development of PTLD. Am J Transpl. 2007;7(2):271–7.CrossRef
20.
go back to reference Ressing ME, Horst D, Griffin BD, Tellam J, Zuo J, Khanna R, et al. Epstein–Barr virus evasion of CD8(+) and CD4(+) T cell immunity via concerted actions of multiple gene products. Semin Cancer Biol. 2008;18(6):397–408 Epub 2008/11/04.CrossRefPubMed Ressing ME, Horst D, Griffin BD, Tellam J, Zuo J, Khanna R, et al. Epstein–Barr virus evasion of CD8(+) and CD4(+) T cell immunity via concerted actions of multiple gene products. Semin Cancer Biol. 2008;18(6):397–408 Epub 2008/11/04.CrossRefPubMed
21.
go back to reference Jochum S, Moosmann A, Lang S, Hammerschmidt W, Zeidler R. The EBV immunoevasins vIL-10 and BNLF2a protect newly infected B cells from immune recognition and elimination. PLoS Pathog. 2012;8(5):e1002704 (Epub 2012/05/23).PubMedCentralCrossRefPubMed Jochum S, Moosmann A, Lang S, Hammerschmidt W, Zeidler R. The EBV immunoevasins vIL-10 and BNLF2a protect newly infected B cells from immune recognition and elimination. PLoS Pathog. 2012;8(5):e1002704 (Epub 2012/05/23).PubMedCentralCrossRefPubMed
22.
go back to reference Cohen JI, Lekstrom K. Epstein–Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells. J Virol. 1999;73(9):7627–32 (Epub 1999/08/10).PubMedCentralPubMed Cohen JI, Lekstrom K. Epstein–Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells. J Virol. 1999;73(9):7627–32 (Epub 1999/08/10).PubMedCentralPubMed
23.
go back to reference Tellam J, Connolly G, Green KJ, Miles JJ, Moss DJ, Burrows SR, et al. Endogenous presentation of CD8 + T cell epitopes from Epstein-Barr virus-encoded nuclear antigen 1. J Exp Med. 2004;199(10):1421–31 (Epub 2004/05/19).PubMedCentralCrossRefPubMed Tellam J, Connolly G, Green KJ, Miles JJ, Moss DJ, Burrows SR, et al. Endogenous presentation of CD8 + T cell epitopes from Epstein-Barr virus-encoded nuclear antigen 1. J Exp Med. 2004;199(10):1421–31 (Epub 2004/05/19).PubMedCentralCrossRefPubMed
24.
go back to reference Voo KS, Fu T, Wang HY, Tellam J, Heslop HE, Brenner MK, et al. Evidence for the presentation of major histocompatibility complex class I-restricted Epstein–Barr virus nuclear antigen 1 peptides to CD8 + T lymphocytes. J Exp Med. 2004;199(4):459–70 (Epub 2004/02/11).PubMedCentralCrossRefPubMed Voo KS, Fu T, Wang HY, Tellam J, Heslop HE, Brenner MK, et al. Evidence for the presentation of major histocompatibility complex class I-restricted Epstein–Barr virus nuclear antigen 1 peptides to CD8 + T lymphocytes. J Exp Med. 2004;199(4):459–70 (Epub 2004/02/11).PubMedCentralCrossRefPubMed
25.
go back to reference Hislop AD, Ressing ME, van Leeuwen D, Pudney VA, Horst D, Koppers-Lalic D, et al. A CD8 + T cell immune evasion protein specific to Epstein–Barr virus and its close relatives in old world primates. J Exp Med. 2007;204(8):1863–73 (Epub 2007/07/11).PubMedCentralCrossRefPubMed Hislop AD, Ressing ME, van Leeuwen D, Pudney VA, Horst D, Koppers-Lalic D, et al. A CD8 + T cell immune evasion protein specific to Epstein–Barr virus and its close relatives in old world primates. J Exp Med. 2007;204(8):1863–73 (Epub 2007/07/11).PubMedCentralCrossRefPubMed
26.
go back to reference Zuo J, Thomas W, van Leeuwen D, Middeldorp JM, Wiertz EJ, Ressing ME, et al. The DNase of gammaherpesviruses impairs recognition by virus-specific CD8 + T cells through an additional host shutoff function. J Virol. 2008;82(5):2385–93.PubMedCentralCrossRefPubMed Zuo J, Thomas W, van Leeuwen D, Middeldorp JM, Wiertz EJ, Ressing ME, et al. The DNase of gammaherpesviruses impairs recognition by virus-specific CD8 + T cells through an additional host shutoff function. J Virol. 2008;82(5):2385–93.PubMedCentralCrossRefPubMed
27.
go back to reference Zuo J, Currin A, Griffin BD, Shannon-Lowe C, Thomas WA, Ressing ME, et al. The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation. PLoS Pathog. 2009;5(1):e1000255 (Epub 2009/01/03).PubMedCentralCrossRefPubMed Zuo J, Currin A, Griffin BD, Shannon-Lowe C, Thomas WA, Ressing ME, et al. The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation. PLoS Pathog. 2009;5(1):e1000255 (Epub 2009/01/03).PubMedCentralCrossRefPubMed
28.
go back to reference Desbien AL, Kappler JW, Marrack P. The Epstein–Barr virus Bcl-2 homolog, BHRF1, blocks apoptosis by binding to a limited amount of Bim. Proc Natl Acad Sci U S A. 2009;106(14):5663–8 Epub 2009/03/19.PubMedCentralCrossRefPubMed Desbien AL, Kappler JW, Marrack P. The Epstein–Barr virus Bcl-2 homolog, BHRF1, blocks apoptosis by binding to a limited amount of Bim. Proc Natl Acad Sci U S A. 2009;106(14):5663–8 Epub 2009/03/19.PubMedCentralCrossRefPubMed
29.
go back to reference Snow AL, Chen LJ, Nepomuceno RR, Krams SM, Esquivel CO, Martinez OM. Resistance to Fas-mediated apoptosis in EBV-infected B cell lymphomas is due to defects in the proximal Fas signaling pathway. J Immunol. 2001;167(9):5404–11 Epub 2001/10/24.CrossRefPubMed Snow AL, Chen LJ, Nepomuceno RR, Krams SM, Esquivel CO, Martinez OM. Resistance to Fas-mediated apoptosis in EBV-infected B cell lymphomas is due to defects in the proximal Fas signaling pathway. J Immunol. 2001;167(9):5404–11 Epub 2001/10/24.CrossRefPubMed
30.
go back to reference Snow AL, Lambert SL, Natkunam Y, Esquivel CO, Krams SM, Martinez OM. EBV can protect latently infected B cell lymphomas from death receptor-induced apoptosis. J Immunol. 2006;177(5):3283–93 Epub 2006/08/22.CrossRefPubMed Snow AL, Lambert SL, Natkunam Y, Esquivel CO, Krams SM, Martinez OM. EBV can protect latently infected B cell lymphomas from death receptor-induced apoptosis. J Immunol. 2006;177(5):3283–93 Epub 2006/08/22.CrossRefPubMed
31.
go back to reference Laherty CD, Hu HM, Opipari AW, Wang F, Dixit VM. The Epstein–Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor kappa B. J Biol Chem. 1992;267(34):24157–60.PubMed Laherty CD, Hu HM, Opipari AW, Wang F, Dixit VM. The Epstein–Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor kappa B. J Biol Chem. 1992;267(34):24157–60.PubMed
32.
go back to reference Henderson S, Rowe M, Gregory C, Croom-Carter D, Wang F, Longnecker R, et al. Induction of bcl-2 expression by Epstein–Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell. 1991;65(7):1107–15.CrossRefPubMed Henderson S, Rowe M, Gregory C, Croom-Carter D, Wang F, Longnecker R, et al. Induction of bcl-2 expression by Epstein–Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell. 1991;65(7):1107–15.CrossRefPubMed
33.
go back to reference Wang S, Rowe M, Lundgren E. Expression of the Epstein Barr virus transforming protein LMP1 causes a rapid and transient stimulation of the Bcl-2 homologue Mcl-1 levels in B-cell lines. Cancer Res. 1996;56(20):4610–3.PubMed Wang S, Rowe M, Lundgren E. Expression of the Epstein Barr virus transforming protein LMP1 causes a rapid and transient stimulation of the Bcl-2 homologue Mcl-1 levels in B-cell lines. Cancer Res. 1996;56(20):4610–3.PubMed
34.
go back to reference Hong SY, Yoon WH, Park JH, Kang SG, Ahn JH, Lee TH. Involvement of two NF-kappa B binding elements in tumor necrosis factor alpha-, CD40-, and Epstein–Barr virus latent membrane protein 1-mediated induction of the cellular inhibitor of apoptosis protein 2 gene. J Biol Chem. 2000;275(24):18022–8.CrossRefPubMed Hong SY, Yoon WH, Park JH, Kang SG, Ahn JH, Lee TH. Involvement of two NF-kappa B binding elements in tumor necrosis factor alpha-, CD40-, and Epstein–Barr virus latent membrane protein 1-mediated induction of the cellular inhibitor of apoptosis protein 2 gene. J Biol Chem. 2000;275(24):18022–8.CrossRefPubMed
35.
go back to reference Kaye K, Izumi KM, Kieff E. Epstein Barr virus latent membrane protein 1 is essential for B lymphocyte growth transformation. Proc Natl Acad Sci U S A. 1993;90:9150–4.PubMedCentralCrossRefPubMed Kaye K, Izumi KM, Kieff E. Epstein Barr virus latent membrane protein 1 is essential for B lymphocyte growth transformation. Proc Natl Acad Sci U S A. 1993;90:9150–4.PubMedCentralCrossRefPubMed
36.
go back to reference Wang D, Liebowitz D, Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell. 1985;43(3 Pt 2):831–40.CrossRefPubMed Wang D, Liebowitz D, Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell. 1985;43(3 Pt 2):831–40.CrossRefPubMed
37.
go back to reference Beatty PR, Krams SM, Martinez OM. Involvement of IL-10 in the autonomous growth of EBV-transformed B cell lines. J Immunol. 1997;158(9):4045–51 (Epub 1997/05/01).PubMed Beatty PR, Krams SM, Martinez OM. Involvement of IL-10 in the autonomous growth of EBV-transformed B cell lines. J Immunol. 1997;158(9):4045–51 (Epub 1997/05/01).PubMed
38.
go back to reference Martinez OM, Villanueva JC, Lawrence-Miyasaki L, Quinn MB, Cox K, Krams SM. Viral and immunologic aspects of Epstein–Barr virus infection in pediatric liver transplant recipients. Transplantation. 1995;59(4):519–24 (Epub 1995/02/27).CrossRefPubMed Martinez OM, Villanueva JC, Lawrence-Miyasaki L, Quinn MB, Cox K, Krams SM. Viral and immunologic aspects of Epstein–Barr virus infection in pediatric liver transplant recipients. Transplantation. 1995;59(4):519–24 (Epub 1995/02/27).CrossRefPubMed
39.
go back to reference Nepomuceno RR, Balatoni CE, Natkunam Y, Snow AL, Krams SM, Martinez OM. Rapamycin inhibits the interleukin 10 signal transduction pathway and the growth of Epstein Barr virus B-cell lymphomas. Cancer Res. 2003;63(15):4472–80 (Epub 2003/08/09).PubMed Nepomuceno RR, Balatoni CE, Natkunam Y, Snow AL, Krams SM, Martinez OM. Rapamycin inhibits the interleukin 10 signal transduction pathway and the growth of Epstein Barr virus B-cell lymphomas. Cancer Res. 2003;63(15):4472–80 (Epub 2003/08/09).PubMed
40.
go back to reference Mauri C, Bosma A. Immune regulatory function of B cells. Annu Rev Immunol. 2012;30:221–41 (Epub 2012/01/10).CrossRefPubMed Mauri C, Bosma A. Immune regulatory function of B cells. Annu Rev Immunol. 2012;30:221–41 (Epub 2012/01/10).CrossRefPubMed
41.
go back to reference Lambert SL, Martinez OM. Latent membrane protein 1 of EBV activates phosphatidylinositol 3-kinase to induce production of IL-10. J Immunol. 2007;179(12):8225–34.CrossRefPubMed Lambert SL, Martinez OM. Latent membrane protein 1 of EBV activates phosphatidylinositol 3-kinase to induce production of IL-10. J Immunol. 2007;179(12):8225–34.CrossRefPubMed
42.
go back to reference Hatton O, Lambert SL, Krams SM, Martinez OM. Src kinase and Syk activation initiate PI3 K signaling by a chimeric latent membrane protein 1 in Epstein–Barr virus (EBV) + B cell lymphomas. PLoS ONE. 2012;7(8):e42610.PubMedCentralCrossRefPubMed Hatton O, Lambert SL, Krams SM, Martinez OM. Src kinase and Syk activation initiate PI3 K signaling by a chimeric latent membrane protein 1 in Epstein–Barr virus (EBV) + B cell lymphomas. PLoS ONE. 2012;7(8):e42610.PubMedCentralCrossRefPubMed
43.
go back to reference Hatton O, Phillips LK, Vaysberg M, Hurwich J, Krams SM, Martinez OM. Syk activation of phosphatidylinositol 3-kinase/Akt prevents HtrA2-dependent loss of X-linked inhibitor of apoptosis protein (XIAP) to promote survival of Epstein–Barr virus + (EBV +) B cell lymphomas. J Biol Chem. 2011;286(43):37368–78 (Epub 2011/09/13).PubMedCentralCrossRefPubMed Hatton O, Phillips LK, Vaysberg M, Hurwich J, Krams SM, Martinez OM. Syk activation of phosphatidylinositol 3-kinase/Akt prevents HtrA2-dependent loss of X-linked inhibitor of apoptosis protein (XIAP) to promote survival of Epstein–Barr virus + (EBV +) B cell lymphomas. J Biol Chem. 2011;286(43):37368–78 (Epub 2011/09/13).PubMedCentralCrossRefPubMed
44.
go back to reference Vaysberg M, Balatoni CE, Nepomuceno RR, Krams SM, Martinez OM. Rapamycin inhibits proliferation of Epstein–Barr virus-positive B-cell lymphomas through modulation of cell-cycle protein expression. Transplantation. 2007;83(8):1114–21.CrossRefPubMed Vaysberg M, Balatoni CE, Nepomuceno RR, Krams SM, Martinez OM. Rapamycin inhibits proliferation of Epstein–Barr virus-positive B-cell lymphomas through modulation of cell-cycle protein expression. Transplantation. 2007;83(8):1114–21.CrossRefPubMed
45.
go back to reference Furukawa S, Wei L, Krams SM, Esquivel CO, Martinez OM. PI3 K delta inhibition augments the efficacy of rapamycin in suppressing proliferation of Epstein-Barr virus (EBV) + B cell lymphomas. Am J Transpl. 2013;13(8):2035–43 (Epub 2013/07/12).CrossRef Furukawa S, Wei L, Krams SM, Esquivel CO, Martinez OM. PI3 K delta inhibition augments the efficacy of rapamycin in suppressing proliferation of Epstein-Barr virus (EBV) + B cell lymphomas. Am J Transpl. 2013;13(8):2035–43 (Epub 2013/07/12).CrossRef
46.
go back to reference Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, et al. Identification of virus-encoded microRNAs. Science. 2004;304(5671):734–6.CrossRefPubMed Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, et al. Identification of virus-encoded microRNAs. Science. 2004;304(5671):734–6.CrossRefPubMed
47.
48.
go back to reference Harris A, Krams SM, Martinez OM. MicroRNAs as immune regulators: implications for transplantation. Am J Transpl. 2010;10(4):713–9 (Epub 2010/03/05).CrossRef Harris A, Krams SM, Martinez OM. MicroRNAs as immune regulators: implications for transplantation. Am J Transpl. 2010;10(4):713–9 (Epub 2010/03/05).CrossRef
49.
go back to reference Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, et al. Regulation of the germinal center response by microRNA-155. Science. 2007;316(5824):604–8 Epub 2007/04/28.CrossRefPubMed Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, et al. Regulation of the germinal center response by microRNA-155. Science. 2007;316(5824):604–8 Epub 2007/04/28.CrossRefPubMed
50.
go back to reference Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A. 2005;102(10):3627–32 (Epub 2005/03/02).PubMedCentralCrossRefPubMed Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A. 2005;102(10):3627–32 (Epub 2005/03/02).PubMedCentralCrossRefPubMed
51.
go back to reference Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol. 2005;207(2):243–9 Epub 2005/07/26.CrossRefPubMed Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol. 2005;207(2):243–9 Epub 2005/07/26.CrossRefPubMed
52.
go back to reference Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A. 2006;103(18):7024–9 Epub 2006/04/28.PubMedCentralCrossRefPubMed Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A. 2006;103(18):7024–9 Epub 2006/04/28.PubMedCentralCrossRefPubMed
53.
go back to reference Thapa DR, Bhatia K, Bream JH, D’Souza G, Rinaldo CR, Wolinsky S, et al. B-cell activation induced microRNA-21 is elevated in circulating B cells preceding the diagnosis of AIDS-related non-Hodgkin lymphomas. AIDS. 2012;26(9):1177–80 Epub 2012/04/11.PubMedCentralCrossRefPubMed Thapa DR, Bhatia K, Bream JH, D’Souza G, Rinaldo CR, Wolinsky S, et al. B-cell activation induced microRNA-21 is elevated in circulating B cells preceding the diagnosis of AIDS-related non-Hodgkin lymphomas. AIDS. 2012;26(9):1177–80 Epub 2012/04/11.PubMedCentralCrossRefPubMed
54.
go back to reference Bandyopadhyay S, Pai SK, Hirota S, Hosobe S, Tsukada T, Miura K, et al. PTEN up-regulates the tumor metastasis suppressor gene Drg-1 in prostate and breast cancer. Cancer Res. 2004;64(21):7655–60 (Epub 2004/11/03).CrossRefPubMed Bandyopadhyay S, Pai SK, Hirota S, Hosobe S, Tsukada T, Miura K, et al. PTEN up-regulates the tumor metastasis suppressor gene Drg-1 in prostate and breast cancer. Cancer Res. 2004;64(21):7655–60 (Epub 2004/11/03).CrossRefPubMed
55.
go back to reference Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010;467(7311):86–90 Epub 2010/08/10.CrossRefPubMed Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010;467(7311):86–90 Epub 2010/08/10.CrossRefPubMed
56.
go back to reference Skalsky RL, Corcoran DL, Gottwein E, Frank CL, Kang D, Hafner M, et al. The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog. 2012;8(1):e1002484 (Epub 2012/02/01).PubMedCentralCrossRefPubMed Skalsky RL, Corcoran DL, Gottwein E, Frank CL, Kang D, Hafner M, et al. The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog. 2012;8(1):e1002484 (Epub 2012/02/01).PubMedCentralCrossRefPubMed
57.
go back to reference Vaysberg M, Hatton O, Lambert SL, Snow AL, Wong B, Krams SM, et al. Tumor-derived variants of Epstein–Barr virus latent membrane protein 1 induce sustained Erk activation and c-Fos. J Biol Chem. 2008;283(52):36573–85 Epub 2008/11/07.PubMedCentralCrossRefPubMed Vaysberg M, Hatton O, Lambert SL, Snow AL, Wong B, Krams SM, et al. Tumor-derived variants of Epstein–Barr virus latent membrane protein 1 induce sustained Erk activation and c-Fos. J Biol Chem. 2008;283(52):36573–85 Epub 2008/11/07.PubMedCentralCrossRefPubMed
58.
go back to reference Chen ML, Tsai CN, Liang CL, Shu CH, Huang CR, Sulitzeanu D, et al. Cloning and characterization of the latent membrane protein (LMP) of a specific Epstein–Barr virus variant derived from the nasopharyngeal carcinoma in the Taiwanese population. Oncogene. 1992;7(11):2131–40 Epub 1992/11/01.PubMed Chen ML, Tsai CN, Liang CL, Shu CH, Huang CR, Sulitzeanu D, et al. Cloning and characterization of the latent membrane protein (LMP) of a specific Epstein–Barr virus variant derived from the nasopharyngeal carcinoma in the Taiwanese population. Oncogene. 1992;7(11):2131–40 Epub 1992/11/01.PubMed
59.
go back to reference Li SN, Chang YS, Liu ST. Effect of a 10-amino acid deletion on the oncogenic activity of latent membrane protein 1 of Epstein–Barr virus. Oncogene. 1996;12(10):2129–35 Epub 1996/05/16.PubMed Li SN, Chang YS, Liu ST. Effect of a 10-amino acid deletion on the oncogenic activity of latent membrane protein 1 of Epstein–Barr virus. Oncogene. 1996;12(10):2129–35 Epub 1996/05/16.PubMed
60.
go back to reference Johnson RJ, Stack M, Hazlewood SA, Jones M, Blackmore CG, Hu LF, et al. The 30-base-pair deletion in Chinese variants of the Epstein–Barr virus LMP1 gene is not the major effector of functional differences between variant LMP1 genes in human lymphocytes. J Virol. 1998;72(5):4038–48.PubMedCentralPubMed Johnson RJ, Stack M, Hazlewood SA, Jones M, Blackmore CG, Hu LF, et al. The 30-base-pair deletion in Chinese variants of the Epstein–Barr virus LMP1 gene is not the major effector of functional differences between variant LMP1 genes in human lymphocytes. J Virol. 1998;72(5):4038–48.PubMedCentralPubMed
61.
go back to reference Chang CM, Yu KJ, Mbulaiteye SM, Hildesheim A, Bhatia K. The extent of genetic diversity of Epstein–Barr virus and its geographic and disease patterns: a need for reappraisal. Virus Res. 2009;143(2):209–21 (Epub 2009/07/15).PubMedCentralCrossRefPubMed Chang CM, Yu KJ, Mbulaiteye SM, Hildesheim A, Bhatia K. The extent of genetic diversity of Epstein–Barr virus and its geographic and disease patterns: a need for reappraisal. Virus Res. 2009;143(2):209–21 (Epub 2009/07/15).PubMedCentralCrossRefPubMed
63.
go back to reference Walling DM, Shebib N, Weaver SC, Nichols CM, Flaitz CM, Webster-Cyriaque J. The molecular epidemiology and evolution of Epstein–Barr virus: sequence variation and genetic recombination in the latent membrane protein-1 gene. J Infect Dis. 1999;179(4):763–74 Epub 1999/03/09.CrossRefPubMed Walling DM, Shebib N, Weaver SC, Nichols CM, Flaitz CM, Webster-Cyriaque J. The molecular epidemiology and evolution of Epstein–Barr virus: sequence variation and genetic recombination in the latent membrane protein-1 gene. J Infect Dis. 1999;179(4):763–74 Epub 1999/03/09.CrossRefPubMed
64.
go back to reference Sandvej K, Gratama JW, Munch M, Zhou XG, Bolhuis RL, Andresen BS, et al. Sequence analysis of the Epstein–Barr virus (EBV) latent membrane protein-1 gene and promoter region: identification of four variants among wild-type EBV isolates. Blood. 1997;90(1):323–30.PubMed Sandvej K, Gratama JW, Munch M, Zhou XG, Bolhuis RL, Andresen BS, et al. Sequence analysis of the Epstein–Barr virus (EBV) latent membrane protein-1 gene and promoter region: identification of four variants among wild-type EBV isolates. Blood. 1997;90(1):323–30.PubMed
65.
go back to reference Walling DM, Brown AL, Etienne W, Keitel WA, Ling PD. Multiple Epstein–Barr virus infections in healthy individuals. J Virol. 2003;77(11):6546–50 Epub 2003/05/14.PubMedCentralCrossRefPubMed Walling DM, Brown AL, Etienne W, Keitel WA, Ling PD. Multiple Epstein–Barr virus infections in healthy individuals. J Virol. 2003;77(11):6546–50 Epub 2003/05/14.PubMedCentralCrossRefPubMed
66.
go back to reference Pai S, O’Sullivan B, Abdul-Jabbar I, Peng J, Connoly G, Khanna R, et al. Nasopharyngeal carcinoma-associated Epstein–Barr virus-encoded oncogene latent membrane protein 1 potentiates regulatory T-cell function. Immunol Cell Biol. 2007;85(5):370–7 (Epub 2007/03/21).CrossRefPubMed Pai S, O’Sullivan B, Abdul-Jabbar I, Peng J, Connoly G, Khanna R, et al. Nasopharyngeal carcinoma-associated Epstein–Barr virus-encoded oncogene latent membrane protein 1 potentiates regulatory T-cell function. Immunol Cell Biol. 2007;85(5):370–7 (Epub 2007/03/21).CrossRefPubMed
67.
go back to reference Lin HJ, Cherng JM, Hung MS, Sayion Y, Lin JC. Functional assays of HLA A2-restricted epitope variant of latent membrane protein 1 (LMP-1) of Epstein–Barr virus in nasopharyngeal carcinoma of Southern China and Taiwan. J Biomed Sci. 2005;12(6):925–36 Epub 2005/11/25.CrossRefPubMed Lin HJ, Cherng JM, Hung MS, Sayion Y, Lin JC. Functional assays of HLA A2-restricted epitope variant of latent membrane protein 1 (LMP-1) of Epstein–Barr virus in nasopharyngeal carcinoma of Southern China and Taiwan. J Biomed Sci. 2005;12(6):925–36 Epub 2005/11/25.CrossRefPubMed
68.
go back to reference Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, et al. DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature. 1984;310(5974):207–11 Epub 1984/07/19.CrossRefPubMed Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, et al. DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature. 1984;310(5974):207–11 Epub 1984/07/19.CrossRefPubMed
Metadata
Title
The interplay between Epstein–Barr virus and B lymphocytes: implications for infection, immunity, and disease
Authors
Olivia L. Hatton
Aleishia Harris-Arnold
Steven Schaffert
Sheri M. Krams
Olivia M. Martinez
Publication date
01-05-2014
Publisher
Springer US
Published in
Immunologic Research / Issue 2-3/2014
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-014-8496-1

Other articles of this Issue 2-3/2014

Immunologic Research 2-3/2014 Go to the issue

IMMUNOLOGY AT STANFORD UNIVERSITY

Leukotrienes in pulmonary arterial hypertension

IMMUNOLOGY AT STANFORD UNIVERSITY

The early history of Stanford Immunology

IMMUNOLOGY AT STANFORD UNIVERSITY

NK cells after transplantation: friend or foe