Skip to main content
Top
Published in: Immunologic Research 1-3/2009

01-07-2009

Shortening the immunodeficient period after hematopoietic stem cell transplantation

Authors: Isabelle André-Schmutz, Emmanuelle Six, Delphine Bonhomme, Julien Rouiller, Liliane Dal Cortivo, Alain Fischer, Marina Cavazzana-Calvo

Published in: Immunologic Research | Issue 1-3/2009

Login to get access

Abstract

The delayed reconstitution of the T-lymphoid compartment represents a major clinical challenge after HLA-mismatched hematopoietic stem cell transplantation. The generation of new T lymphocytes deriving from transplanted hematopoietic stem cells requires several months, a period associated with an increased risk of opportunistic infections and relapses. Recently, the early steps of human lymphopoiesis and the nature of the thymus-seeding progenitors were described. Moreover several scientific groups succeeded to generate T-cell precursors from murine and human hematopoietic stem cells in vitro by transitory exposition to Notch-ligands. Here we summarize and discuss these results and their possible usage in the development of new cell therapies to shorten the immunodeficient period following hematopoietic stem cell transplantation.
Literature
1.
go back to reference Antoine C, Muller S, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. Lancet. 2003;361(9357):553–60.PubMedCrossRef Antoine C, Muller S, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. Lancet. 2003;361(9357):553–60.PubMedCrossRef
2.
go back to reference Aversa F, Martelli MM, et al. Use of stem cells from mismatched related donors. Curr Opin Hematol. 1997;4(6):419–22.PubMedCrossRef Aversa F, Martelli MM, et al. Use of stem cells from mismatched related donors. Curr Opin Hematol. 1997;4(6):419–22.PubMedCrossRef
3.
go back to reference Yoshimi A, Bader P, et al. Donor leukocyte infusion after hematopoietic stem cell transplantation in patients with juvenile myelomonocytic leukemia. Leukemia. 2005;19(6):971–7.PubMedCrossRef Yoshimi A, Bader P, et al. Donor leukocyte infusion after hematopoietic stem cell transplantation in patients with juvenile myelomonocytic leukemia. Leukemia. 2005;19(6):971–7.PubMedCrossRef
4.
go back to reference Cobbold M, Khan N, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med. 2005;202(3):379–86.PubMedCrossRef Cobbold M, Khan N, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med. 2005;202(3):379–86.PubMedCrossRef
5.
go back to reference Feuchtinger T, Matthes-Martin S, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134(1):64–76.PubMedCrossRef Feuchtinger T, Matthes-Martin S, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134(1):64–76.PubMedCrossRef
6.
go back to reference Hamel Y, Blake N, et al. Adenovirally transduced dendritic cells induce bispecific cytotoxic T lymphocyte responses against adenovirus and cytomegalovirus pp65 or against adenovirus and Epstein-Barr virus EBNA3C protein: a novel approach for immunotherapy. Hum Gene Ther. 2002;13(7):855–66.PubMedCrossRef Hamel Y, Blake N, et al. Adenovirally transduced dendritic cells induce bispecific cytotoxic T lymphocyte responses against adenovirus and cytomegalovirus pp65 or against adenovirus and Epstein-Barr virus EBNA3C protein: a novel approach for immunotherapy. Hum Gene Ther. 2002;13(7):855–66.PubMedCrossRef
7.
go back to reference Keenan RD, Ainsworth J, et al. Purification of cytomegalovirus-specific CD8 T cells from peripheral blood using HLA-peptide tetramers. Br J Haematol. 2001;115(2):428–34.PubMedCrossRef Keenan RD, Ainsworth J, et al. Purification of cytomegalovirus-specific CD8 T cells from peripheral blood using HLA-peptide tetramers. Br J Haematol. 2001;115(2):428–34.PubMedCrossRef
8.
go back to reference Amrolia PJ, Muccioli-Casadei G, et al. Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood. 2006;108(6):1797–808.PubMedCrossRef Amrolia PJ, Muccioli-Casadei G, et al. Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood. 2006;108(6):1797–808.PubMedCrossRef
9.
go back to reference Andre-Schmutz I, Le Deist F, et al. Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a phase 1/2 study. Lancet. 2002;360(9327):130–7.PubMedCrossRef Andre-Schmutz I, Le Deist F, et al. Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a phase 1/2 study. Lancet. 2002;360(9327):130–7.PubMedCrossRef
10.
go back to reference Solomon SR, Mielke S, et al. Selective depletion of alloreactive donor lymphocytes: a novel method to reduce the severity of graft-versus-host disease in older patients undergoing matched sibling donor stem cell transplantation. Blood. 2005;106(3):1123–9.PubMedCrossRef Solomon SR, Mielke S, et al. Selective depletion of alloreactive donor lymphocytes: a novel method to reduce the severity of graft-versus-host disease in older patients undergoing matched sibling donor stem cell transplantation. Blood. 2005;106(3):1123–9.PubMedCrossRef
11.
go back to reference Chen BJ, Cui X, et al. Prevention of graft-versus-host disease while preserving graft-versus-leukemia effect after selective depletion of host-reactive T cells by photodynamic cell purging process. Blood. 2002;99(9):3083–8.PubMedCrossRef Chen BJ, Cui X, et al. Prevention of graft-versus-host disease while preserving graft-versus-leukemia effect after selective depletion of host-reactive T cells by photodynamic cell purging process. Blood. 2002;99(9):3083–8.PubMedCrossRef
12.
go back to reference Guimond M, Balassy A, et al. P-glycoprotein targeting: a unique strategy to selectively eliminate immunoreactive T cells. Blood. 2002;100(2):375–82.PubMedCrossRef Guimond M, Balassy A, et al. P-glycoprotein targeting: a unique strategy to selectively eliminate immunoreactive T cells. Blood. 2002;100(2):375–82.PubMedCrossRef
13.
go back to reference Alpdogan O, Eng JM, et al. Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood. 2005;105(2):865–73.PubMedCrossRef Alpdogan O, Eng JM, et al. Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood. 2005;105(2):865–73.PubMedCrossRef
14.
go back to reference Alpdogan O, Muriglan SJ, et al. IL-7 enhances peripheral T cell reconstitution after allogeneic hematopoietic stem cell transplantation. J Clin Invest. 2003;112(7):1095–107.PubMed Alpdogan O, Muriglan SJ, et al. IL-7 enhances peripheral T cell reconstitution after allogeneic hematopoietic stem cell transplantation. J Clin Invest. 2003;112(7):1095–107.PubMed
15.
go back to reference Andre-Schmutz I, Bonhomme D, et al. IL-7 effect on immunological reconstitution after HSCT depends on MHC incompatibility. Br J Haematol. 2004;126(6):844–51.PubMedCrossRef Andre-Schmutz I, Bonhomme D, et al. IL-7 effect on immunological reconstitution after HSCT depends on MHC incompatibility. Br J Haematol. 2004;126(6):844–51.PubMedCrossRef
16.
go back to reference Rossi S, Blazar BR, et al. Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood. 2002;100(2):682–91.PubMedCrossRef Rossi S, Blazar BR, et al. Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood. 2002;100(2):682–91.PubMedCrossRef
17.
go back to reference Kondo M, Weissman IL, et al. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 1997;91(5):661–72.PubMedCrossRef Kondo M, Weissman IL, et al. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 1997;91(5):661–72.PubMedCrossRef
18.
go back to reference Bhandoola A, Sambandam A. From stem cell to T cell: one route or many? Nat Rev Immunol. 2006;6(2):117–26.PubMedCrossRef Bhandoola A, Sambandam A. From stem cell to T cell: one route or many? Nat Rev Immunol. 2006;6(2):117–26.PubMedCrossRef
19.
go back to reference Bell JJ, Bhandoola A. The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature. 2008;452(7188):764–7.PubMedCrossRef Bell JJ, Bhandoola A. The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature. 2008;452(7188):764–7.PubMedCrossRef
20.
go back to reference Haddad R, Guardiola P, et al. Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood. Blood. 2004;104(13):3918–26.PubMedCrossRef Haddad R, Guardiola P, et al. Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood. Blood. 2004;104(13):3918–26.PubMedCrossRef
21.
go back to reference Hao QL, Zhu J, et al. Identification of a novel, human multilymphoid progenitor in cord blood. Blood. 2001;97(12):3683–90.PubMedCrossRef Hao QL, Zhu J, et al. Identification of a novel, human multilymphoid progenitor in cord blood. Blood. 2001;97(12):3683–90.PubMedCrossRef
22.
go back to reference Hokland P, Hokland M, et al. Identification and cloning of a prethymic precursor T lymphocyte from a population of common acute lymphoblastic leukemia antigen (CALLA)-positive fetal bone marrow cells. J Exp Med. 1987;165(6):1749–54.PubMedCrossRef Hokland P, Hokland M, et al. Identification and cloning of a prethymic precursor T lymphocyte from a population of common acute lymphoblastic leukemia antigen (CALLA)-positive fetal bone marrow cells. J Exp Med. 1987;165(6):1749–54.PubMedCrossRef
23.
go back to reference Galy A, Travis M, et al. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity. 1995;3(4):459–73.PubMedCrossRef Galy A, Travis M, et al. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity. 1995;3(4):459–73.PubMedCrossRef
24.
go back to reference Davi F, Faili A, et al. Early onset of immunoglobulin heavy chain gene rearrangements in normal human bone marrow CD34+ cells. Blood. 1997;90(10):4014–21.PubMed Davi F, Faili A, et al. Early onset of immunoglobulin heavy chain gene rearrangements in normal human bone marrow CD34+ cells. Blood. 1997;90(10):4014–21.PubMed
25.
go back to reference Dworzak MN, Fritsch G, et al. Four-color flow cytometric investigation of terminal deoxynucleotidyl transferase-positive lymphoid precursors in pediatric bone marrow: CD79a expression precedes CD19 in early B-cell ontogeny. Blood. 1998;92(9):3203–9.PubMed Dworzak MN, Fritsch G, et al. Four-color flow cytometric investigation of terminal deoxynucleotidyl transferase-positive lymphoid precursors in pediatric bone marrow: CD79a expression precedes CD19 in early B-cell ontogeny. Blood. 1998;92(9):3203–9.PubMed
26.
go back to reference Rossi MI, Yokota T, et al. B lymphopoiesis is active throughout human life, but there are developmental age-related changes. Blood. 2003;101(2):576–84.PubMedCrossRef Rossi MI, Yokota T, et al. B lymphopoiesis is active throughout human life, but there are developmental age-related changes. Blood. 2003;101(2):576–84.PubMedCrossRef
27.
go back to reference Hoffmann-Fezer G, Knapp W, et al. Anatomical distribution of call antigen expressing cells in normal lymphatic tissue and in lymphomas. Leuk Res. 1982;6(6):761–7.PubMedCrossRef Hoffmann-Fezer G, Knapp W, et al. Anatomical distribution of call antigen expressing cells in normal lymphatic tissue and in lymphomas. Leuk Res. 1982;6(6):761–7.PubMedCrossRef
28.
go back to reference Neudorf SM, LeBien TW, et al. Characterization of thymocytes expressing the common acute lymphoblastic leukemia antigen. Leuk Res. 1984;8(2):173–9.PubMedCrossRef Neudorf SM, LeBien TW, et al. Characterization of thymocytes expressing the common acute lymphoblastic leukemia antigen. Leuk Res. 1984;8(2):173–9.PubMedCrossRef
29.
30.
go back to reference Dik WA, Pike-Overzet K, et al. New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med. 2005;201(11):1715–23.PubMedCrossRef Dik WA, Pike-Overzet K, et al. New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med. 2005;201(11):1715–23.PubMedCrossRef
31.
go back to reference Weerkamp F, Baert MR, et al. Human thymus contains multipotent progenitors with T/B lymphoid, myeloid, and erythroid lineage potential. Blood. 2006;107(8):3131–7.PubMedCrossRef Weerkamp F, Baert MR, et al. Human thymus contains multipotent progenitors with T/B lymphoid, myeloid, and erythroid lineage potential. Blood. 2006;107(8):3131–7.PubMedCrossRef
32.
go back to reference de Pooter R, Zuniga-Pflucker JC. T-cell potential and development in vitro: the OP9-DL1 approach. Curr Opin Immunol. 2007;19(2):163–8.PubMedCrossRef de Pooter R, Zuniga-Pflucker JC. T-cell potential and development in vitro: the OP9-DL1 approach. Curr Opin Immunol. 2007;19(2):163–8.PubMedCrossRef
33.
go back to reference Six EM, Bonhomme D, et al. A human postnatal lymphoid progenitor capable of circulating and seeding the thymus. J Exp Med. 2007;204(13):3085–93.PubMedCrossRef Six EM, Bonhomme D, et al. A human postnatal lymphoid progenitor capable of circulating and seeding the thymus. J Exp Med. 2007;204(13):3085–93.PubMedCrossRef
34.
go back to reference Res P, Martinez-Caceres E, et al. CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood. 1996;87(12):5196–206.PubMed Res P, Martinez-Caceres E, et al. CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood. 1996;87(12):5196–206.PubMed
35.
go back to reference Sambandam A, Maillard I, et al. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol. 2005;6(7):663–70.PubMedCrossRef Sambandam A, Maillard I, et al. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol. 2005;6(7):663–70.PubMedCrossRef
36.
go back to reference Tan JB, Visan I, et al. Requirement for Notch1 signals at sequential early stages of intrathymic T cell development. Nat Immunol. 2005;6(7):671–9.PubMedCrossRef Tan JB, Visan I, et al. Requirement for Notch1 signals at sequential early stages of intrathymic T cell development. Nat Immunol. 2005;6(7):671–9.PubMedCrossRef
37.
go back to reference Lefort N, Lelièvre LD, et al. Short exposure to Notch ligands is sufficient to induce T and NK cell programs and to increase the T cell potential of primary human CD34+ cells. Exp Hematol. 2006;34(12):1720–9.PubMedCrossRef Lefort N, Lelièvre LD, et al. Short exposure to Notch ligands is sufficient to induce T and NK cell programs and to increase the T cell potential of primary human CD34+ cells. Exp Hematol. 2006;34(12):1720–9.PubMedCrossRef
38.
go back to reference Zakrzewski JL, Kochman AA, et al. Adoptive transfer of T-cell precursors enhances T-cell reconstitution after allogeneic hematopoietic stem cell transplantation. Nat Med. 2006;12(9):1039–47.PubMedCrossRef Zakrzewski JL, Kochman AA, et al. Adoptive transfer of T-cell precursors enhances T-cell reconstitution after allogeneic hematopoietic stem cell transplantation. Nat Med. 2006;12(9):1039–47.PubMedCrossRef
39.
go back to reference Zakrzewski JL, Suh D, et al. Tumor immunotherapy across MHC barriers using allogeneic T-cell precursors. Nat Biotechnol. 2008;26(4):453–61.PubMedCrossRef Zakrzewski JL, Suh D, et al. Tumor immunotherapy across MHC barriers using allogeneic T-cell precursors. Nat Biotechnol. 2008;26(4):453–61.PubMedCrossRef
Metadata
Title
Shortening the immunodeficient period after hematopoietic stem cell transplantation
Authors
Isabelle André-Schmutz
Emmanuelle Six
Delphine Bonhomme
Julien Rouiller
Liliane Dal Cortivo
Alain Fischer
Marina Cavazzana-Calvo
Publication date
01-07-2009
Publisher
Humana Press Inc
Published in
Immunologic Research / Issue 1-3/2009
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-008-8080-7

Other articles of this Issue 1-3/2009

Immunologic Research 1-3/2009 Go to the issue