Skip to main content
Top
Published in: Forensic Science, Medicine and Pathology 1/2020

01-03-2020 | Piperazine | Original Article

Detection and quantification of synthetic cathinones and selected piperazines in hair by LC-MS/MS

Authors: André Niebel, Franziska Krumbiegel, Sven Hartwig, Maria Kristina Parr, Michael Tsokos

Published in: Forensic Science, Medicine and Pathology | Issue 1/2020

Login to get access

Abstract

New psychoactive substances (NPS)—such as synthetic cathinones and piperazines—are defined as substances designed to replicate the effects of traditional illegal drugs, including cocaine, ecstasy and amphetamines. These substances are known to potentially be much more potent than their analogs. In the past, there were many poisonings and deaths associated with NPS. Because of this, NPS identification and quantification have become more important in forensic toxicology. The present work aimed to develop, validate and apply a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method capable of detecting 35 synthetic cathinones and piperazines in hair samples. All target analytes were resolved in a 12 min run time and identified based on the quantifier ion, at least one product ion and the retention time. Depending on the analyte, the calibration curves were linear over a maximal range of 0.01–3 ng/mg. The limits of detection and quantification were within the ranges of 0.006–0.052 ng/mg and 0.008–0.095 ng/mg, respectively. The precision, bias and matrix effect were all within acceptable GTFCh thresholds and the method was free from interferences. The validated method was successfully used to identify synthetic cathinones and piperazines in authentic hair samples (n = 40) from forensic cases, demonstrating its suitability for the screening and quantification of a wide number of new stimulants in hair specimens.
Literature
2.
go back to reference Kacinko SL, Papsun DM. The evolving landscape of designer drugs. In: Langman LJ, Snozek CLH, editors. LC-MS in drug analysis: methods and protocols. New York: Springer New York; 2019. p. 129–35.CrossRef Kacinko SL, Papsun DM. The evolving landscape of designer drugs. In: Langman LJ, Snozek CLH, editors. LC-MS in drug analysis: methods and protocols. New York: Springer New York; 2019. p. 129–35.CrossRef
3.
go back to reference Smith JP, Sutcliffe OB, Banks CE. An overview of recent developments in the analytical detection of new psychoactive substances (NPSs). Analyst. 2015;140:4932–48.CrossRef Smith JP, Sutcliffe OB, Banks CE. An overview of recent developments in the analytical detection of new psychoactive substances (NPSs). Analyst. 2015;140:4932–48.CrossRef
4.
go back to reference Valente MJ, Guedes de Pinho P, de Lourdes Bastos M, Carvalho F, Carvalho M. Khat and synthetic cathinones: a review. Arch Toxicol. 2014;88:15–45.CrossRef Valente MJ, Guedes de Pinho P, de Lourdes Bastos M, Carvalho F, Carvalho M. Khat and synthetic cathinones: a review. Arch Toxicol. 2014;88:15–45.CrossRef
5.
go back to reference Gautam L, Shanmuganathan A, Cole MD. Forensic analysis of cathinones. Forensic Sci Rev. 2013;25:47–64.PubMed Gautam L, Shanmuganathan A, Cole MD. Forensic analysis of cathinones. Forensic Sci Rev. 2013;25:47–64.PubMed
6.
go back to reference Cozzi NV, Sievert MK, Shulgin AT, Jacob P 3rd, Ruoho AE. Inhibition of plasma membrane monoamine transporters by beta-ketoamphetamines. Eur J Pharmacol. 1999;381:63–9.CrossRef Cozzi NV, Sievert MK, Shulgin AT, Jacob P 3rd, Ruoho AE. Inhibition of plasma membrane monoamine transporters by beta-ketoamphetamines. Eur J Pharmacol. 1999;381:63–9.CrossRef
7.
go back to reference Kehr J, Ichinose F, Yoshitake S, Goiny M, Sievertsson T, Nyberg F, et al. Mephedrone, compared with MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and 5-HT levels in nucleus accumbens of awake rats. Br J Pharmacol. 2011;164:1949–58.CrossRef Kehr J, Ichinose F, Yoshitake S, Goiny M, Sievertsson T, Nyberg F, et al. Mephedrone, compared with MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and 5-HT levels in nucleus accumbens of awake rats. Br J Pharmacol. 2011;164:1949–58.CrossRef
8.
go back to reference Al BJ, Tuv S, Røed Bilgrei O, Fjeld B, Bachs L. Synthetic cannabinoids and cathinones: prevalence and markets. Forensic Sci Rev. 2013;25:7–26. Al BJ, Tuv S, Røed Bilgrei O, Fjeld B, Bachs L. Synthetic cannabinoids and cathinones: prevalence and markets. Forensic Sci Rev. 2013;25:7–26.
9.
go back to reference Alvarez JC, Fabresse N, Larabi IA. Prevalence and surveillance of synthetic cathinones use by hair analysis: an update review. Curr Pharm Des. 2017;23:5487–95.PubMed Alvarez JC, Fabresse N, Larabi IA. Prevalence and surveillance of synthetic cathinones use by hair analysis: an update review. Curr Pharm Des. 2017;23:5487–95.PubMed
10.
go back to reference Prosser JM, Nelson LS. The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol. 2012;8:33–42.CrossRef Prosser JM, Nelson LS. The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol. 2012;8:33–42.CrossRef
11.
go back to reference Margasińska-Olejak J, Celiński R, Fischer A, Stojko J. A fatal case of poisoning of a 19-year-old after taking 3-MMC. Forensic Sci Int. 2019;300:e34–7.CrossRef Margasińska-Olejak J, Celiński R, Fischer A, Stojko J. A fatal case of poisoning of a 19-year-old after taking 3-MMC. Forensic Sci Int. 2019;300:e34–7.CrossRef
12.
go back to reference Pragst F, Balikova M. State of the art in hair analysis for detection of drug and alcohol abuse. Clin Chim Acta. 2006;370:17–49.CrossRef Pragst F, Balikova M. State of the art in hair analysis for detection of drug and alcohol abuse. Clin Chim Acta. 2006;370:17–49.CrossRef
13.
go back to reference Krumbiegel F, Hastedt M, Westendorf L, Niebel A, Methling M, Parr MK, et al. The use of nails as an alternative matrix for the long-term detection of previous drug intake: validation of sensitive UHPLC-MS/MS methods for the quantification of 76 substances and comparison of analytical results for drugs in nail and hair samples. Forensic Sci Med Pathol. 2016;12:416–34.CrossRef Krumbiegel F, Hastedt M, Westendorf L, Niebel A, Methling M, Parr MK, et al. The use of nails as an alternative matrix for the long-term detection of previous drug intake: validation of sensitive UHPLC-MS/MS methods for the quantification of 76 substances and comparison of analytical results for drugs in nail and hair samples. Forensic Sci Med Pathol. 2016;12:416–34.CrossRef
14.
go back to reference Carlier J, Diao X, Scheidweiler KB, Huestis MA. Distinguishing intake of new synthetic cannabinoids ADB-PINACA and 5F-ADB-PINACA with human hepatocyte metabolites and high-resolution mass spectrometry. Clin Chem. 2017;63:1008–21.CrossRef Carlier J, Diao X, Scheidweiler KB, Huestis MA. Distinguishing intake of new synthetic cannabinoids ADB-PINACA and 5F-ADB-PINACA with human hepatocyte metabolites and high-resolution mass spectrometry. Clin Chem. 2017;63:1008–21.CrossRef
15.
go back to reference Broecker S, Herre S, Pragst F. General unknown screening in hair by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Forensic Sci Int. 2012;218:68–81.CrossRef Broecker S, Herre S, Pragst F. General unknown screening in hair by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Forensic Sci Int. 2012;218:68–81.CrossRef
16.
go back to reference Peters FT, Hartung M, Herbold M, Schmitt G, Daldrup T, Mußhoff F. Requirements for the validation of analytical methods, Appendix B. In: Guideline for quality assurance in forensic-toxicological analyses. English translation, original German version published in Toxichem Krimtech. 2009;76:185–208. Peters FT, Hartung M, Herbold M, Schmitt G, Daldrup T, Mußhoff F. Requirements for the validation of analytical methods, Appendix B. In: Guideline for quality assurance in forensic-toxicological analyses. English translation, original German version published in Toxichem Krimtech. 2009;76:185–208.
18.
go back to reference Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003;75:3019–30.CrossRef Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003;75:3019–30.CrossRef
19.
go back to reference Kyriakou C, Pellegrini M, Garcia-Algar O, Marinelli E, Zaami S. Recent trends in analytical methods to determine new psychoactive substances in hair. Curr Neuropharmacol. 2017;15:663–81.CrossRef Kyriakou C, Pellegrini M, Garcia-Algar O, Marinelli E, Zaami S. Recent trends in analytical methods to determine new psychoactive substances in hair. Curr Neuropharmacol. 2017;15:663–81.CrossRef
20.
go back to reference Salomone A, Palamar JJ, Gerace E, Di Corcia D, Vincenti M. Hair testing for drugs of abuse and new psychoactive substances in a high-risk population. J Anal Toxicol. 2017;41:376–81.CrossRef Salomone A, Palamar JJ, Gerace E, Di Corcia D, Vincenti M. Hair testing for drugs of abuse and new psychoactive substances in a high-risk population. J Anal Toxicol. 2017;41:376–81.CrossRef
21.
go back to reference Kintz P. Evidence of 2 populations of mephedrone abusers by hair testing. Application to 4 forensic expertises. Curr Neuropharmacol. 2017;15:658–62.CrossRef Kintz P. Evidence of 2 populations of mephedrone abusers by hair testing. Application to 4 forensic expertises. Curr Neuropharmacol. 2017;15:658–62.CrossRef
22.
go back to reference Freni F, Bianco S, Vignali C, Groppi A, Moretti M, Osculati AMM, et al. A multi-analyte LC-MS/MS method for screening and quantification of 16 synthetic cathinones in hair: application to postmortem cases. Forensic Sci Int. 2019;298:115–20.CrossRef Freni F, Bianco S, Vignali C, Groppi A, Moretti M, Osculati AMM, et al. A multi-analyte LC-MS/MS method for screening and quantification of 16 synthetic cathinones in hair: application to postmortem cases. Forensic Sci Int. 2019;298:115–20.CrossRef
23.
go back to reference Sporkert F, Pragst F, Bachus R, Masuhr F, Harms L. Determination of cathinone, cathine and norephedrine in hair of Yemenite khat chewers. Forensic Sci Int. 2003;133:39–46.CrossRef Sporkert F, Pragst F, Bachus R, Masuhr F, Harms L. Determination of cathinone, cathine and norephedrine in hair of Yemenite khat chewers. Forensic Sci Int. 2003;133:39–46.CrossRef
24.
go back to reference Larabi IA, Martin M, Etting I, Penot P, Fabresse N, Alvarez JC. Drug-facilitated sexual assault (DFSA) involving 4-methylethcathinone (4-MEC), 3,4-Methylenedioxypyrovalerone (MDPV), and doxylamine highlighted by hair analysis. Drug Test Anal. 2018;10:1280–4.CrossRef Larabi IA, Martin M, Etting I, Penot P, Fabresse N, Alvarez JC. Drug-facilitated sexual assault (DFSA) involving 4-methylethcathinone (4-MEC), 3,4-Methylenedioxypyrovalerone (MDPV), and doxylamine highlighted by hair analysis. Drug Test Anal. 2018;10:1280–4.CrossRef
25.
go back to reference Alvarez JC, Etting I, Abe E, Villa A, Fabresse N. Identification and quantification of 4-methylethcathinone (4-MEC) and 3,4-methylenedioxypyrovalerone (MDPV) in hair by LC-MS/MS after chronic administration. Forensic Sci Int. 2017;270:39–45.CrossRef Alvarez JC, Etting I, Abe E, Villa A, Fabresse N. Identification and quantification of 4-methylethcathinone (4-MEC) and 3,4-methylenedioxypyrovalerone (MDPV) in hair by LC-MS/MS after chronic administration. Forensic Sci Int. 2017;270:39–45.CrossRef
26.
go back to reference Evans EA, Sullivan MA. Abuse and misuse of antidepressants. Subst Abus Rehabil. 2014;5:107–20. Evans EA, Sullivan MA. Abuse and misuse of antidepressants. Subst Abus Rehabil. 2014;5:107–20.
27.
go back to reference Ramirez Fernandez MD, Wille SM, Hill V, Samyn N. Determination of antidepressants in hair via UHPLC-MS/MS as a complementary informative tool for clinical and forensic toxicological assessments. Ther Drug Monit. 2016;38:751–60.CrossRef Ramirez Fernandez MD, Wille SM, Hill V, Samyn N. Determination of antidepressants in hair via UHPLC-MS/MS as a complementary informative tool for clinical and forensic toxicological assessments. Ther Drug Monit. 2016;38:751–60.CrossRef
28.
go back to reference Salomone A, Gazzilli G, Di Corcia D, Gerace E, Vincenti M. Determination of cathinones and other stimulant, psychedelic, and dissociative designer drugs in real hair samples. Anal Bioanal Chem. 2015;408:2035–42.CrossRef Salomone A, Gazzilli G, Di Corcia D, Gerace E, Vincenti M. Determination of cathinones and other stimulant, psychedelic, and dissociative designer drugs in real hair samples. Anal Bioanal Chem. 2015;408:2035–42.CrossRef
29.
go back to reference Boumba VA, Di Rago M, Peka M, Drummer OH, Gerostamoulos D. The analysis of 132 novel psychoactive substances in human hair using a single step extraction by tandem LC/MS. Forensic Sci Int. 2017;279:192–202.CrossRef Boumba VA, Di Rago M, Peka M, Drummer OH, Gerostamoulos D. The analysis of 132 novel psychoactive substances in human hair using a single step extraction by tandem LC/MS. Forensic Sci Int. 2017;279:192–202.CrossRef
30.
go back to reference Cooper GA, Kronstrand R, Kintz P. Society of hair testing guidelines for drug testing in hair. Forensic Sci Int. 2012;218:20–4.CrossRef Cooper GA, Kronstrand R, Kintz P. Society of hair testing guidelines for drug testing in hair. Forensic Sci Int. 2012;218:20–4.CrossRef
Metadata
Title
Detection and quantification of synthetic cathinones and selected piperazines in hair by LC-MS/MS
Authors
André Niebel
Franziska Krumbiegel
Sven Hartwig
Maria Kristina Parr
Michael Tsokos
Publication date
01-03-2020
Publisher
Springer US
Keyword
Piperazine
Published in
Forensic Science, Medicine and Pathology / Issue 1/2020
Print ISSN: 1547-769X
Electronic ISSN: 1556-2891
DOI
https://doi.org/10.1007/s12024-019-00209-z

Other articles of this Issue 1/2020

Forensic Science, Medicine and Pathology 1/2020 Go to the issue