Skip to main content
Top
Published in: Endocrine Pathology 2/2009

01-06-2009

Small Cell Lung Cancer: Significance of RB Alterations and TTF-1 Expression in its Carcinogenesis, Phenotype, and Biology

Authors: Hitoshi Kitamura, Takuya Yazawa, Hanako Sato, Koji Okudela, Hiroaki Shimoyamada

Published in: Endocrine Pathology | Issue 2/2009

Login to get access

Abstract

Small cell lung cancer (SCLC) exhibits highly aggressive behavior and has a poor prognosis. While numerous investigations have been carried out, the exact mechanism of its carcinogenesis and aggressiveness is still unclear. SCLC is categorized as a neuroendocrine neoplasia and has a genetic profile characterized by universal alterations of the RB and TP53 genes. Epidemiological studies indicate the majority of SCLCs to be caused by smoking and the TP53 mutational pattern to be consistent with that evoked by smoke carcinogens; however, there is no direct evidence that such carcinogens induce alterations to RB in SCLC. While the importance of these alterations in the carcinogenesis of SCLC is strongly suggested, the exact molecular mechanism has been only little elucidated. SCLC cells almost always express mammalian achaete-scute homolog-1 (MASH1) and thyroid transcription factor-1 (TTF-1). MASH1 plays a critical role in neuroendocrine differentiation. TTF-1 is a characteristic marker of distal airway cells and pulmonary adenocarcinomas, but is also expressed in extrapulmonary neuroendocrine cancers. Thus, TTF-1 may well play a significant role in the development of neuroendocrine cancers. Recent studies indicate that the airway stem cell is committed to the neuroendocrine lineage through MASH1 and Notch signaling and that only RB-deleted neuroendocrine cells selectively proliferate in response to E2F3, eventually undergoing transformation to neuroendocrine cancer cells, probably in concert with TP53 gene aberrations. Thus, alterations of both the RB and TP53 genes are central to the carcinogenesis of SCLC, while many other factors including MASH1 and TTF-1 contribute to the development and biological behavior of SCLC.
Literature
1.
go back to reference Travis W, Nicholson S, Hirsch FR, Pugatch B, Geisinger K, Brambilla E, et al. Small cell carcinoma. In: Travis WD, Brambilla E, Mueller-Hermelink HK, Harris CC, ed. Tumours of the lung. Tumours of the lung, pleura, thymus and heart. World Health Organization classification of tumours. Pathology and genetics. Lyon: IARC; p. 31–34, 2004. Travis W, Nicholson S, Hirsch FR, Pugatch B, Geisinger K, Brambilla E, et al. Small cell carcinoma. In: Travis WD, Brambilla E, Mueller-Hermelink HK, Harris CC, ed. Tumours of the lung. Tumours of the lung, pleura, thymus and heart. World Health Organization classification of tumours. Pathology and genetics. Lyon: IARC; p. 31–34, 2004.
3.
go back to reference Parkin M, Tyczynski JE, Boffetta P, Samet J, Shields P, Caporaso N. Lung cancer epidemiology and etiology. In: Travis WD, Brambilla E, Mueller-Hermelink HK, Harris CC, ed. Tumours of the lung. Tumours of the lung, pleura, thymus and heart. World Health Organization classification of tumours. Pathology and genetics. Lyon: IARC; p. 12–15, 2004. Parkin M, Tyczynski JE, Boffetta P, Samet J, Shields P, Caporaso N. Lung cancer epidemiology and etiology. In: Travis WD, Brambilla E, Mueller-Hermelink HK, Harris CC, ed. Tumours of the lung. Tumours of the lung, pleura, thymus and heart. World Health Organization classification of tumours. Pathology and genetics. Lyon: IARC; p. 12–15, 2004.
5.
go back to reference Gouyer V, Gazzeri S, Brambilla E, Bolon I, Moro D, Perron P, et al. Loss of heterozygosity at the RB locus correlates with loss of RB protein in primary malignant neuro-endocrine lung carcinomas. Int J Cancer 58:818–824, 1994. doi:10.1002/ijc.2910580612 PubMedCrossRef Gouyer V, Gazzeri S, Brambilla E, Bolon I, Moro D, Perron P, et al. Loss of heterozygosity at the RB locus correlates with loss of RB protein in primary malignant neuro-endocrine lung carcinomas. Int J Cancer 58:818–824, 1994. doi:10.​1002/​ijc.​2910580612 PubMedCrossRef
6.
go back to reference Couyer V, Gazzeri S, Bolon I, Devet C, Brambilla C, Brambilla E. Mechanism of retinoblastoma gene inactivation in the spectrum of neuroendocrine lung tumors. Am J Respir Cell Mol Biol 18:188–196, 1998. Couyer V, Gazzeri S, Bolon I, Devet C, Brambilla C, Brambilla E. Mechanism of retinoblastoma gene inactivation in the spectrum of neuroendocrine lung tumors. Am J Respir Cell Mol Biol 18:188–196, 1998.
8.
go back to reference Feng X-D, Huang S-G, Shou J-Y, Liao B-R, Yingling JM, Ye X, et al. Analysis of pathway activity in primary tumors and NC160 cell lines using gene expression profiling data. Genomics Proteomics Bioinformatics 5:15–24, 2007. doi:10.1016/S1672-0229(07)60010-2 PubMedCrossRef Feng X-D, Huang S-G, Shou J-Y, Liao B-R, Yingling JM, Ye X, et al. Analysis of pathway activity in primary tumors and NC160 cell lines using gene expression profiling data. Genomics Proteomics Bioinformatics 5:15–24, 2007. doi:10.​1016/​S1672-0229(07)60010-2 PubMedCrossRef
9.
go back to reference Kim YH, Girard L, Giacomini CP, Wang P, Hernandez-Boussard T, Tibshirani R, et al. Combined microarray analysis of small cell lung cancer reveals altered apoptotic balance and distinct expression signatures of MYC family gene amplification. Oncogene 25:130–138, 2006. doi:10.1038/sj.onc.1209303 PubMedCrossRef Kim YH, Girard L, Giacomini CP, Wang P, Hernandez-Boussard T, Tibshirani R, et al. Combined microarray analysis of small cell lung cancer reveals altered apoptotic balance and distinct expression signatures of MYC family gene amplification. Oncogene 25:130–138, 2006. doi:10.​1038/​sj.​onc.​1209303 PubMedCrossRef
10.
go back to reference Schuller HM, Plummer III HK, Jull BA. Receptor-mediated effects of nicotine and its nitrosated derivative NNK on pulmonary neuroendocrine cells. Anat Rec 270A:51–58, 2003. doi:10.1002/ar.a.10019 CrossRef Schuller HM, Plummer III HK, Jull BA. Receptor-mediated effects of nicotine and its nitrosated derivative NNK on pulmonary neuroendocrine cells. Anat Rec 270A:51–58, 2003. doi:10.​1002/​ar.​a.​10019 CrossRef
11.
go back to reference Song P, Sekhon HS, Jia Y, Keller JA, Blusztajn JK, Mark GP, et al. Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma. Cancer Res 63:214–221, 2003.PubMed Song P, Sekhon HS, Jia Y, Keller JA, Blusztajn JK, Mark GP, et al. Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma. Cancer Res 63:214–221, 2003.PubMed
15.
go back to reference Eimin B, Gazzery S, Brambilla C, Brambilla E. Distinct pattern of E2F1 expression in human lung tumours: E2F1 is upregulated in small cell lung carcinoma. Oncogene 20:1678–1687, 2001. doi:10.1038/sj.onc.1204242 CrossRef Eimin B, Gazzery S, Brambilla C, Brambilla E. Distinct pattern of E2F1 expression in human lung tumours: E2F1 is upregulated in small cell lung carcinoma. Oncogene 20:1678–1687, 2001. doi:10.​1038/​sj.​onc.​1204242 CrossRef
16.
go back to reference McClellan KA, Slack RS. Specific in vivo roles for E2Fs in differentiation and development. Cell Cycle 6:2917–2927, 2007.PubMed McClellan KA, Slack RS. Specific in vivo roles for E2Fs in differentiation and development. Cell Cycle 6:2917–2927, 2007.PubMed
19.
go back to reference Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Bems A. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 4:16–25, 2003. doi:10.1016/S1535-6108(03)00220-4 CrossRef Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Bems A. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 4:16–25, 2003. doi:10.​1016/​S1535-6108(03)00220-4 CrossRef
20.
go back to reference Parisi T, Yuan TL, Faust AM, Caron AM, Bronson R, Lees JA. Selective requirements for E2f3 in the development and tumorigenicity of Rb-deficient chimeric tissues. Mol Cell Biol 27:2283–2293, 2007. doi:10.1128/MCB.01854-06 PubMedCrossRef Parisi T, Yuan TL, Faust AM, Caron AM, Bronson R, Lees JA. Selective requirements for E2f3 in the development and tumorigenicity of Rb-deficient chimeric tissues. Mol Cell Biol 27:2283–2293, 2007. doi:10.​1128/​MCB.​01854-06 PubMedCrossRef
23.
go back to reference Borges M, Linnoila RI, van de Velde HJK, Chen H, Nelkin BD, Mabry M, et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 386:852–855, 1997. doi:10.1038/386852a0 PubMedCrossRef Borges M, Linnoila RI, van de Velde HJK, Chen H, Nelkin BD, Mabry M, et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 386:852–855, 1997. doi:10.​1038/​386852a0 PubMedCrossRef
28.
go back to reference Jagirdar J. Application of immunohistochemistry to the diagnosis of primary and metastatic carcinoma to the lung. Arch Pathol Lab Med 132:384–396, 2008.PubMed Jagirdar J. Application of immunohistochemistry to the diagnosis of primary and metastatic carcinoma to the lung. Arch Pathol Lab Med 132:384–396, 2008.PubMed
29.
go back to reference Folpe AL, Gown AM, Lamps LW, Garcia R, Dail DH, Zarbo RJ, et al. Thyroid transcription factor-1: immunohistochemical evaluation in pulmonary neuroendocrine tumors. Mod Pathol 12:5–8, 1999.PubMed Folpe AL, Gown AM, Lamps LW, Garcia R, Dail DH, Zarbo RJ, et al. Thyroid transcription factor-1: immunohistochemical evaluation in pulmonary neuroendocrine tumors. Mod Pathol 12:5–8, 1999.PubMed
31.
go back to reference Hiroshima K, Iyoda A, Shida T, Shibuya, K, Iizawa T, Kishi H, et al. Distinction of pulmonary large cell neuroendocrine carcinoma from small cell lung carcinoma: a morphological, immunohistochemical, and molecular analysis. Mod Pathol 19:1358–1368, 2006. doi:10.1038/modpathol.3800659 PubMedCrossRef Hiroshima K, Iyoda A, Shida T, Shibuya, K, Iizawa T, Kishi H, et al. Distinction of pulmonary large cell neuroendocrine carcinoma from small cell lung carcinoma: a morphological, immunohistochemical, and molecular analysis. Mod Pathol 19:1358–1368, 2006. doi:10.​1038/​modpathol.​3800659 PubMedCrossRef
34.
go back to reference Reynolds PR, Hoidal JR. Temporal-spatial expression and transcriptional regulation of alpha7 nicotinic acetylcholine receptor by thyroid transcription factor-1 and early growth response factor-1 during murine lung development. J Biol Chem 280:32548–32554, 2005. doi:10.1074/jbc.M502231200 PubMedCrossRef Reynolds PR, Hoidal JR. Temporal-spatial expression and transcriptional regulation of alpha7 nicotinic acetylcholine receptor by thyroid transcription factor-1 and early growth response factor-1 during murine lung development. J Biol Chem 280:32548–32554, 2005. doi:10.​1074/​jbc.​M502231200 PubMedCrossRef
37.
go back to reference Johnson BE, Russell E, Simmons AM, Phelps R, Steinberg SM, Ihde DC, et al. Myc family DNA amplification in 126 tumor cell lines from patients with small cell lung cancer. J Cell Biochem Suppl 24:210–217, 1996. doi:10.1002/jcb.240630516 PubMedCrossRef Johnson BE, Russell E, Simmons AM, Phelps R, Steinberg SM, Ihde DC, et al. Myc family DNA amplification in 126 tumor cell lines from patients with small cell lung cancer. J Cell Biochem Suppl 24:210–217, 1996. doi:10.​1002/​jcb.​240630516 PubMedCrossRef
38.
go back to reference Cuttitta F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fischler A, et al. Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 316:823–826, 1985. doi:10.1038/316823a0 PubMedCrossRef Cuttitta F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fischler A, et al. Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 316:823–826, 1985. doi:10.​1038/​316823a0 PubMedCrossRef
39.
go back to reference Kelly MJ, Linnoila RI, Avis IL, Georgiadis MS, Cuttitta F, Mulshine JL, et al. Antitumor activity of a monoclonal antibody directed against gastrin-releasing peptide in patients with small cell lung cancer. Chest 112:256–261, 1997. doi:10.1378/chest.112.1.256 CrossRef Kelly MJ, Linnoila RI, Avis IL, Georgiadis MS, Cuttitta F, Mulshine JL, et al. Antitumor activity of a monoclonal antibody directed against gastrin-releasing peptide in patients with small cell lung cancer. Chest 112:256–261, 1997. doi:10.​1378/​chest.​112.​1.​256 CrossRef
40.
41.
go back to reference Brambilla E, Negoescu A, Gazzeri S, Lantuejoul S, Moro D, Brambilla C, et al. Apoptosis-related factors p53, Bcl2, and Bax in neuroendocrine lung tumors. Am J Pathol 149:1941–1952, 1996.PubMed Brambilla E, Negoescu A, Gazzeri S, Lantuejoul S, Moro D, Brambilla C, et al. Apoptosis-related factors p53, Bcl2, and Bax in neuroendocrine lung tumors. Am J Pathol 149:1941–1952, 1996.PubMed
43.
44.
45.
go back to reference Jiang S-X, Kameya T, Asamura H, Umezawa A, Sato Y, Shinada J, et al. hASH1 expression is closely correlated with endocrine phenotype and differentiation extent in pulmonary neuroendocrine tumors. Mod Pathol 17:222–229, 2004. doi:10.1038/modpathol.3800038 PubMedCrossRef Jiang S-X, Kameya T, Asamura H, Umezawa A, Sato Y, Shinada J, et al. hASH1 expression is closely correlated with endocrine phenotype and differentiation extent in pulmonary neuroendocrine tumors. Mod Pathol 17:222–229, 2004. doi:10.​1038/​modpathol.​3800038 PubMedCrossRef
49.
go back to reference Ferretti E, Stefano DD, Zazzeroni F, Gallo R, Fratticci A, Carfagnini R, et al. Human pituitary tumours express the bHLH transcription factors NeuroD1 and ASH1. J Endocrinol Invest 26:957–965, 2003.PubMed Ferretti E, Stefano DD, Zazzeroni F, Gallo R, Fratticci A, Carfagnini R, et al. Human pituitary tumours express the bHLH transcription factors NeuroD1 and ASH1. J Endocrinol Invest 26:957–965, 2003.PubMed
50.
51.
go back to reference Pemer S, Wagner PL, Soltemann A, LaFargue C, Tischler V, Weir BA, et al. TTF1 expression in non-small cell lung carcinoma: association with TTF1 gene amplification and improved survival. J Pathol 217:65–72, 2009. doi:10.1002/path.2443 CrossRef Pemer S, Wagner PL, Soltemann A, LaFargue C, Tischler V, Weir BA, et al. TTF1 expression in non-small cell lung carcinoma: association with TTF1 gene amplification and improved survival. J Pathol 217:65–72, 2009. doi:10.​1002/​path.​2443 CrossRef
54.
go back to reference Sato K, Narumi K, Isemura M, Sakai T, Abe T, Matsushima K, et al. Increased expression of the 67kDa-laminin receptor gene in human small cell lung cancer. Biochem Biophys Res Commun 182:746–752, 1992. doi:10.1016/0006-291X(92)91795-R CrossRef Sato K, Narumi K, Isemura M, Sakai T, Abe T, Matsushima K, et al. Increased expression of the 67kDa-laminin receptor gene in human small cell lung cancer. Biochem Biophys Res Commun 182:746–752, 1992. doi:10.​1016/​0006-291X(92)91795-R CrossRef
55.
go back to reference Gogali A, Charalabopoulos K, Constantopoulos S. Integrin receptors in primary lung cancer. Exp Oncol 26:106–110, 2004.PubMed Gogali A, Charalabopoulos K, Constantopoulos S. Integrin receptors in primary lung cancer. Exp Oncol 26:106–110, 2004.PubMed
56.
go back to reference Yazawa T, Ito T, Kamma H, Suzuki T, Okudela K, Hayashi H, et al. Complicated mechanisms of class II transactivator transcription deficiency in small cell lung cancer and neuroblastoma. Am J Pathol 161:291–300, 2002.PubMed Yazawa T, Ito T, Kamma H, Suzuki T, Okudela K, Hayashi H, et al. Complicated mechanisms of class II transactivator transcription deficiency in small cell lung cancer and neuroblastoma. Am J Pathol 161:291–300, 2002.PubMed
Metadata
Title
Small Cell Lung Cancer: Significance of RB Alterations and TTF-1 Expression in its Carcinogenesis, Phenotype, and Biology
Authors
Hitoshi Kitamura
Takuya Yazawa
Hanako Sato
Koji Okudela
Hiroaki Shimoyamada
Publication date
01-06-2009
Publisher
Humana Press Inc
Published in
Endocrine Pathology / Issue 2/2009
Print ISSN: 1046-3976
Electronic ISSN: 1559-0097
DOI
https://doi.org/10.1007/s12022-009-9072-4

Other articles of this Issue 2/2009

Endocrine Pathology 2/2009 Go to the issue