Skip to main content
Top
Published in: Endocrine 1/2022

01-04-2022 | Insulins | Original Article

Excess branched-chain amino acids alter myotube metabolism and substrate preference which is worsened by concurrent insulin resistance

Authors: Madison E. Rivera, Caroline N. Rivera, Roger A. Vaughan

Published in: Endocrine | Issue 1/2022

Login to get access

Abstract

Purpose

Branched-chain amino acids (BCAA) have been shown to enhance several cellular signaling pathways including protein synthesis and mitochondrial biogenesis, yet population data demonstrate a correlation between circulating BCAA and severity of insulin resistance which has been hypothesized to be, in part, a byproduct of BCAA inhibition of mitochondrial function. The purpose of this study is to examine the effect of a BCAA mixture on muscle metabolism and related gene expression in vitro.

Methods

C2C12 myotubes were treated with a BCAA mixture containing leucine:isoleucine:valine at a ratio of 2:1:1 at 0.2, 2, or 20 mM (based on leucine content) for 6 days. qRT-PCR was used to measure metabolic gene expression. Oxygen consumption and extracellular acidification were used to assess mitochondrial and glycolytic metabolism, respectively. Mitochondrial content was determined via mitochondrial-specific staining.

Results

Despite significantly elevated mitochondrial staining, 6-day BCAA treatment reduced basal mitochondrial metabolism at a supraphysiological concentration (20 mM) in both insulin sensitive and resistant cells. Peak mitochondrial capacity was also reduced in insulin-resistant (but not insulin sensitive) cells. Conversely, basal glycolytic metabolism was elevated following 20 mM BCAA treatment, regardless of insulin resistance. In addition, insulin-resistant cells treated with 20 mM BCAA exhibited reduced gene expression of Ppargc1a, Cytc, Atp5b, Glut4, and several glycolytic enzymes versus insulin sensitive cells treated with 20 mM BCAA.

Conclusions

Collectively, these findings suggest BCAA at supraphysiologically high levels may negatively alter mitochondrial metabolism, and concurrent insulin resistance may also diminish peak mitochondrial capacity, as well as impede molecular adaptations that support a transition to a glycolytic preference/compensation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Z. Arany, M. Neinast, Branched chain amino acids in metabolic disease. Curr. Diab. Rep. 18, 76 (2018)PubMedCrossRef Z. Arany, M. Neinast, Branched chain amino acids in metabolic disease. Curr. Diab. Rep. 18, 76 (2018)PubMedCrossRef
2.
go back to reference N.P. Gannon, J.K. Schnuck, R.A. Vaughan, BCAA metabolism and insulin sensitivity—dysregulated by metabolic status? Mol. Nutr. Food Res. 62, e1700756 (2018)PubMedCrossRef N.P. Gannon, J.K. Schnuck, R.A. Vaughan, BCAA metabolism and insulin sensitivity—dysregulated by metabolic status? Mol. Nutr. Food Res. 62, e1700756 (2018)PubMedCrossRef
6.
go back to reference H.S. Brunetta, C.Q. de Camargo, E.A. Nunes, Does L-leucine supplementation cause any effect on glucose homeostasis in rodent models of glucose intolerance? A systematic review. Amino Acids 50, 1663–1678 (2018)PubMedCrossRef H.S. Brunetta, C.Q. de Camargo, E.A. Nunes, Does L-leucine supplementation cause any effect on glucose homeostasis in rodent models of glucose intolerance? A systematic review. Amino Acids 50, 1663–1678 (2018)PubMedCrossRef
7.
go back to reference N.P. Gannon, R.A. Vaughan, Leucine-induced anabolic-catabolism: two sides of the same coin. Amino Acids 48, 321–336 (2015)CrossRef N.P. Gannon, R.A. Vaughan, Leucine-induced anabolic-catabolism: two sides of the same coin. Amino Acids 48, 321–336 (2015)CrossRef
8.
go back to reference L. Zhang, F. Li, Q. Guo, Y. Duan, W. Wang, Y. Zhong, Y. Yang, Y. Yin, Leucine supplementation: a novel strategy for modulating lipid metabolism and energy homeostasis. Nutrients 12, 1299 (2020)PubMedCentralCrossRef L. Zhang, F. Li, Q. Guo, Y. Duan, W. Wang, Y. Zhong, Y. Yang, Y. Yin, Leucine supplementation: a novel strategy for modulating lipid metabolism and energy homeostasis. Nutrients 12, 1299 (2020)PubMedCentralCrossRef
9.
go back to reference C. Ruocco, A. Segala, A. Valerio, E. Nisoli, Essential amino acid formulations to prevent mitochondrial dysfunction and oxidative stress. Curr. Opin. Clin. Nutr. Metab. Care 24, 88–95 (2021)PubMedCrossRef C. Ruocco, A. Segala, A. Valerio, E. Nisoli, Essential amino acid formulations to prevent mitochondrial dysfunction and oxidative stress. Curr. Opin. Clin. Nutr. Metab. Care 24, 88–95 (2021)PubMedCrossRef
10.
go back to reference C. Liang, B.J. Curry, P.L. Brown, M.B. Zemel, Leucine modulates mitochondrial biogenesis and SIRT1-AMPK signaling in C2C12 myotubes. J. Nutr. Metab. 2014, 239750 (2014)PubMedPubMedCentralCrossRef C. Liang, B.J. Curry, P.L. Brown, M.B. Zemel, Leucine modulates mitochondrial biogenesis and SIRT1-AMPK signaling in C2C12 myotubes. J. Nutr. Metab. 2014, 239750 (2014)PubMedPubMedCentralCrossRef
11.
go back to reference J.K. Schnuck, K.L. Sunderland, N.P. Gannon, M.R. Kuennen, R.A. Vaughan, Leucine stimulates PPARbeta/delta-dependent mitochondrial biogenesis and oxidative metabolism with enhanced GLUT4 content and glucose uptake in myotubes. Biochimie 128-129, 1–7 (2016)PubMedCrossRef J.K. Schnuck, K.L. Sunderland, N.P. Gannon, M.R. Kuennen, R.A. Vaughan, Leucine stimulates PPARbeta/delta-dependent mitochondrial biogenesis and oxidative metabolism with enhanced GLUT4 content and glucose uptake in myotubes. Biochimie 128-129, 1–7 (2016)PubMedCrossRef
12.
go back to reference X. Sun, M.B. Zemel, Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr. Metab. 6, 26 (2009)CrossRef X. Sun, M.B. Zemel, Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr. Metab. 6, 26 (2009)CrossRef
13.
go back to reference Y. Sato, K.A. Obeng, F. Yoshizawa, Acute oral administration of L-leucine upregulates slow-fiber- and mitochondria-related genes in skeletal muscle of rats. Nutr. Res. 57, 36–44 (2018)PubMedCrossRef Y. Sato, K.A. Obeng, F. Yoshizawa, Acute oral administration of L-leucine upregulates slow-fiber- and mitochondria-related genes in skeletal muscle of rats. Nutr. Res. 57, 36–44 (2018)PubMedCrossRef
14.
go back to reference X. Chen, L. Xiang, G. Jia, G. Liu, H. Zhao, Z. Huang, Effects of dietary leucine on antioxidant activity and expression of antioxidant and mitochondrial-related genes in longissimus dorsi muscle and liver of piglets. Anim. Sci. J. 90, 990–998 (2019)PubMedCrossRef X. Chen, L. Xiang, G. Jia, G. Liu, H. Zhao, Z. Huang, Effects of dietary leucine on antioxidant activity and expression of antioxidant and mitochondrial-related genes in longissimus dorsi muscle and liver of piglets. Anim. Sci. J. 90, 990–998 (2019)PubMedCrossRef
15.
go back to reference X. Chen, L. Xiang, G. Jia, G. Liu, H. Zhao, Z. Huang, Leucine regulates slow-twitch muscle fibers expression and mitochondrial function by Sirt1/AMPK signaling in porcine skeletal muscle satellite cells. Anim. Sci. J. 90, 255–263 (2019)PubMedCrossRef X. Chen, L. Xiang, G. Jia, G. Liu, H. Zhao, Z. Huang, Leucine regulates slow-twitch muscle fibers expression and mitochondrial function by Sirt1/AMPK signaling in porcine skeletal muscle satellite cells. Anim. Sci. J. 90, 255–263 (2019)PubMedCrossRef
16.
go back to reference Y. Zhong, L. Zeng, J. Deng, Y. Duan, F. Li, β-hydroxy-β-methylbutyrate (HMB) improves mitochondrial function in myocytes through pathways involving PPARβ/δ and CDK4. Nutrition 60, 217–226 (2018)PubMedCrossRef Y. Zhong, L. Zeng, J. Deng, Y. Duan, F. Li, β-hydroxy-β-methylbutyrate (HMB) improves mitochondrial function in myocytes through pathways involving PPARβ/δ and CDK4. Nutrition 60, 217–226 (2018)PubMedCrossRef
17.
go back to reference G. D’Antona, M. Ragni, A. Cardile, L. Tedesco, M. Dossena, F. Bruttini, F. Caliaro, G. Corsetti, R. Bottinelli, M.O. Carruba, A. Valerio, E. Nisoli, Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab. 12, 362–372 (2010)PubMedCrossRef G. D’Antona, M. Ragni, A. Cardile, L. Tedesco, M. Dossena, F. Bruttini, F. Caliaro, G. Corsetti, R. Bottinelli, M.O. Carruba, A. Valerio, E. Nisoli, Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab. 12, 362–372 (2010)PubMedCrossRef
18.
go back to reference M.A. Johnson, N.P. Gannon, J.K. Schnuck, E.S. Lyon, K.L. Sunderland, R.A. Vaughan, Leucine, Palmitate, or leucine/palmitate cotreatment enhances myotube lipid content and oxidative preference. Lipids 53, 1043–1057 (2018)PubMedCrossRef M.A. Johnson, N.P. Gannon, J.K. Schnuck, E.S. Lyon, K.L. Sunderland, R.A. Vaughan, Leucine, Palmitate, or leucine/palmitate cotreatment enhances myotube lipid content and oxidative preference. Lipids 53, 1043–1057 (2018)PubMedCrossRef
19.
go back to reference M.E. Rivera, E.S. Lyon, M.A. Johnson, R.A. Vaughan, Leucine increases mitochondrial metabolism and lipid content without altering insulin signaling in myotubes. Biochimie 168, 124–133 (2020)PubMedCrossRef M.E. Rivera, E.S. Lyon, M.A. Johnson, R.A. Vaughan, Leucine increases mitochondrial metabolism and lipid content without altering insulin signaling in myotubes. Biochimie 168, 124–133 (2020)PubMedCrossRef
20.
go back to reference H. Li, M. Xu, J. Lee, C. He, Z. Xie, Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 303, E1234–1244 (2012)PubMedPubMedCentralCrossRef H. Li, M. Xu, J. Lee, C. He, Z. Xie, Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 303, E1234–1244 (2012)PubMedPubMedCentralCrossRef
21.
go back to reference J. Jiao, S.F. Han, W. Zhang, J.Y. Xu, X. Tong, X.B. Yin, L.X. Yuan, L.Q. Qin, Chronic leucine supplementation improves lipid metabolism in C57BL/6J mice fed with a high-fat/cholesterol diet. Food Nutr. Res. 60, 31304 (2016)PubMedCrossRef J. Jiao, S.F. Han, W. Zhang, J.Y. Xu, X. Tong, X.B. Yin, L.X. Yuan, L.Q. Qin, Chronic leucine supplementation improves lipid metabolism in C57BL/6J mice fed with a high-fat/cholesterol diet. Food Nutr. Res. 60, 31304 (2016)PubMedCrossRef
22.
go back to reference H. Wu, S. Dridi, Y. Huang, J.I. Baum, Leucine decreases intramyocellular lipid deposition in an mTORC1-independent manner in palmitate-treated C2C12 myotubes. Am. J. Physiol. Endocrinol. Metab. 318, E152–E163 (2020)PubMedCrossRef H. Wu, S. Dridi, Y. Huang, J.I. Baum, Leucine decreases intramyocellular lipid deposition in an mTORC1-independent manner in palmitate-treated C2C12 myotubes. Am. J. Physiol. Endocrinol. Metab. 318, E152–E163 (2020)PubMedCrossRef
23.
go back to reference R.A. Vaughan, R. Garcia-Smith, N.P. Gannon, M. Bisoffi, K.A. Trujillo, C.A. Conn, Leucine treatment enhances oxidative capacity through complete carbohydrate oxidation and increased mitochondrial density in skeletal muscle cells. Amino Acids 45, 901–911 (2013)PubMedCrossRef R.A. Vaughan, R. Garcia-Smith, N.P. Gannon, M. Bisoffi, K.A. Trujillo, C.A. Conn, Leucine treatment enhances oxidative capacity through complete carbohydrate oxidation and increased mitochondrial density in skeletal muscle cells. Amino Acids 45, 901–911 (2013)PubMedCrossRef
24.
go back to reference J. Banerjee, A. Bruckbauer, M.B. Zemel, Activation of the AMPK/Sirt1 pathway by a leucine-metformin combination increases insulin sensitivity in skeletal muscle, and stimulates glucose and lipid metabolism and increases life span in Caenorhabditis elegans. Metabolism 65, 1679–1691 (2016)PubMedCrossRef J. Banerjee, A. Bruckbauer, M.B. Zemel, Activation of the AMPK/Sirt1 pathway by a leucine-metformin combination increases insulin sensitivity in skeletal muscle, and stimulates glucose and lipid metabolism and increases life span in Caenorhabditis elegans. Metabolism 65, 1679–1691 (2016)PubMedCrossRef
25.
go back to reference A. Bruckbauer, M.B. Zemel, T. Thorpe, M.R. Akula, A.C. Stuckey, D. Osborne, E.B. Martin, S. Kennel, J.S. Wall, Synergistic effects of leucine and resveratrol on insulin sensitivity and fat metabolism in adipocytes and mice. Nutr. Metab. 9, (2012). https://doi.org/10.1186/1743-7075-9-77. A. Bruckbauer, M.B. Zemel, T. Thorpe, M.R. Akula, A.C. Stuckey, D. Osborne, E.B. Martin, S. Kennel, J.S. Wall, Synergistic effects of leucine and resveratrol on insulin sensitivity and fat metabolism in adipocytes and mice. Nutr. Metab. 9, (2012). https://​doi.​org/​10.​1186/​1743-7075-9-77.
26.
go back to reference L. Xiang, Z. Huang, X. Chen, G. Jia, G. Liu, H. Zhao, Leucine regulates porcine muscle fiber type transformation via adiponectin signaling pathway. Anim. Biotechnol. 11, 1–9 (2021)CrossRef L. Xiang, Z. Huang, X. Chen, G. Jia, G. Liu, H. Zhao, Leucine regulates porcine muscle fiber type transformation via adiponectin signaling pathway. Anim. Biotechnol. 11, 1–9 (2021)CrossRef
27.
go back to reference S. Jager, C. Handschin, J. Pierre, B.M. Spiegelman, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1 alpha. Proc. Natl Acad. Sci. USA 104, 12017–12022 (2007)PubMedPubMedCentralCrossRef S. Jager, C. Handschin, J. Pierre, B.M. Spiegelman, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1 alpha. Proc. Natl Acad. Sci. USA 104, 12017–12022 (2007)PubMedPubMedCentralCrossRef
28.
go back to reference N. Gleyzer, K. Vercauteren, R.C. Scarpulla, Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol. Cell. Biol. 25, 1354–1366 (2005)PubMedPubMedCentralCrossRef N. Gleyzer, K. Vercauteren, R.C. Scarpulla, Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol. Cell. Biol. 25, 1354–1366 (2005)PubMedPubMedCentralCrossRef
29.
go back to reference R.C. Scarpulla, Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta 1813, 1269–1278 (2011)PubMedCrossRef R.C. Scarpulla, Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta 1813, 1269–1278 (2011)PubMedCrossRef
30.
go back to reference H.H. Zong, J.M. Ren, L.H. Young, M. Pypaert, J. Mu, M.J. Birnbaum, G.I. Shulman, AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl Acad. Sci. USA 99, 15983–15987 (2002)PubMedPubMedCentralCrossRef H.H. Zong, J.M. Ren, L.H. Young, M. Pypaert, J. Mu, M.J. Birnbaum, G.I. Shulman, AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl Acad. Sci. USA 99, 15983–15987 (2002)PubMedPubMedCentralCrossRef
31.
go back to reference M.J. Evans, R.C. Scarpulla, NRF-1—a transactivator of nuclear-encoded respiratory genes in animal-cells. Genes Dev. 4, 1023–1034 (1990)PubMedCrossRef M.J. Evans, R.C. Scarpulla, NRF-1—a transactivator of nuclear-encoded respiratory genes in animal-cells. Genes Dev. 4, 1023–1034 (1990)PubMedCrossRef
32.
go back to reference J.V. Virbasius, R.C. Scarpulla, Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors—a potential link between nuclear and mitochodnrial gene-expression in organelle biogenesis. Proc. Natl Acad. Sci. USA 91, 1309–1313 (1994)PubMedPubMedCentralCrossRef J.V. Virbasius, R.C. Scarpulla, Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors—a potential link between nuclear and mitochodnrial gene-expression in organelle biogenesis. Proc. Natl Acad. Sci. USA 91, 1309–1313 (1994)PubMedPubMedCentralCrossRef
33.
go back to reference R.C. Scarpulla, Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286, 81–89 (2002)PubMedCrossRef R.C. Scarpulla, Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286, 81–89 (2002)PubMedCrossRef
34.
go back to reference J.A. Baur, K.J. Pearson, N.L. Price, H.A. Jamieson, C. Lerin, A. Kalra, V.V. Prabhu, J.S. Allard, G. Lopez-Lluch, K. Lewis, P.J. Pistell, S. Poosala, K.G. Becker, O. Boss, D. Gwinn, M.Y. Wang, S. Ramaswamy, K.W. Fishbein, R.G. Spencer, E.G. Lakatta, D. Le Couteur, R.J. Shaw, P. Navas, P. Puigserver, D.K. Ingram, R. de Cabo, D.A. Sinclair, Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006)PubMedPubMedCentralCrossRef J.A. Baur, K.J. Pearson, N.L. Price, H.A. Jamieson, C. Lerin, A. Kalra, V.V. Prabhu, J.S. Allard, G. Lopez-Lluch, K. Lewis, P.J. Pistell, S. Poosala, K.G. Becker, O. Boss, D. Gwinn, M.Y. Wang, S. Ramaswamy, K.W. Fishbein, R.G. Spencer, E.G. Lakatta, D. Le Couteur, R.J. Shaw, P. Navas, P. Puigserver, D.K. Ingram, R. de Cabo, D.A. Sinclair, Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006)PubMedPubMedCentralCrossRef
35.
go back to reference M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, J. Auwerx, Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1 alpha. Cell 127, 1109–1122 (2006)PubMedCrossRef M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, J. Auwerx, Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1 alpha. Cell 127, 1109–1122 (2006)PubMedCrossRef
36.
go back to reference R. Amat, A. Planavila, S.L. Chen, R. Iglesias, M. Giralt, F. Villarroya, SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma co-activator-1 alpha (PGC-1 alpha) gene in skeletal muscle through the PGC-1 alpha autoregulatory loop and interaction with MyoD. J. Biol. Chem. 284, 21872–21880 (2009)PubMedPubMedCentralCrossRef R. Amat, A. Planavila, S.L. Chen, R. Iglesias, M. Giralt, F. Villarroya, SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma co-activator-1 alpha (PGC-1 alpha) gene in skeletal muscle through the PGC-1 alpha autoregulatory loop and interaction with MyoD. J. Biol. Chem. 284, 21872–21880 (2009)PubMedPubMedCentralCrossRef
37.
go back to reference J. Brenmoehl, A. Hoelflich, Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion 13, 755–761 (2013)PubMedCrossRef J. Brenmoehl, A. Hoelflich, Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion 13, 755–761 (2013)PubMedCrossRef
38.
go back to reference Y. Li, Z. Xiong, W. Yan, E. Gao, H. Cheng, G. Wu, Y. Liu, L. Zhang, C. Li, S. Wang, M. Fan, H. Zhao, F. Zhang, L. Tao, Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation. Theranostics 10, 5623–5640 (2020)PubMedPubMedCentralCrossRef Y. Li, Z. Xiong, W. Yan, E. Gao, H. Cheng, G. Wu, Y. Liu, L. Zhang, C. Li, S. Wang, M. Fan, H. Zhao, F. Zhang, L. Tao, Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation. Theranostics 10, 5623–5640 (2020)PubMedPubMedCentralCrossRef
39.
go back to reference L. Tedesco, F. Rossi, M. Ragni, C. Ruocco, D. Brunetti, M.O. Carruba, Y. Torrente, A. Valerio, E. Nisoli, A Special amino-acid formula tailored to boosting cell respiration prevents mitochondrial dysfunction and oxidative stress caused by doxorubicin in mouse cardiomyocytes. Nutrients 12, 282 (2020)PubMedCentralCrossRef L. Tedesco, F. Rossi, M. Ragni, C. Ruocco, D. Brunetti, M.O. Carruba, Y. Torrente, A. Valerio, E. Nisoli, A Special amino-acid formula tailored to boosting cell respiration prevents mitochondrial dysfunction and oxidative stress caused by doxorubicin in mouse cardiomyocytes. Nutrients 12, 282 (2020)PubMedCentralCrossRef
40.
go back to reference L. Tedesco, G. Corsetti, C.,M. Ruocco, M. Ragni, F. Rossi, M.O. Carruba, A. Valerio, E. Nisoli, A specific amino acid formula prevents alcoholic liver disease in rodents. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G566–G582 (2018)PubMedCrossRef L. Tedesco, G. Corsetti, C.,M. Ruocco, M. Ragni, F. Rossi, M.O. Carruba, A. Valerio, E. Nisoli, A specific amino acid formula prevents alcoholic liver disease in rodents. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G566–G582 (2018)PubMedCrossRef
41.
go back to reference N. Abedpoor, F. Taghian, K. Ghaedi, I. Niktab, Z. Safaeinejad, F. Rabiee, S. Tanhaei, M.H. Nasr-Esfahani, PPARγ/Pgc-1α-Fndc5 pathway up-regulation in gastrocnemius and heart muscle of exercised, branched chain amino acid diet fed mice. Nutr. Metab. 15, 59 (2018)CrossRef N. Abedpoor, F. Taghian, K. Ghaedi, I. Niktab, Z. Safaeinejad, F. Rabiee, S. Tanhaei, M.H. Nasr-Esfahani, PPARγ/Pgc-1α-Fndc5 pathway up-regulation in gastrocnemius and heart muscle of exercised, branched chain amino acid diet fed mice. Nutr. Metab. 15, 59 (2018)CrossRef
42.
go back to reference T. Matsumoto, K. Nakamura, H. Matsumoto, R. Sakai, T. Kuwahara, Y. Kadota, Y. Kitaura, J. Sato, Y. Shimomura, Bolus ingestion of individual branched-chain amino acids alters plasma amino acid profiles in young healthy men. Springerplus 3, 35 (2014)PubMedPubMedCentralCrossRef T. Matsumoto, K. Nakamura, H. Matsumoto, R. Sakai, T. Kuwahara, Y. Kadota, Y. Kitaura, J. Sato, Y. Shimomura, Bolus ingestion of individual branched-chain amino acids alters plasma amino acid profiles in young healthy men. Springerplus 3, 35 (2014)PubMedPubMedCentralCrossRef
43.
go back to reference R. Elango, K. Chapman, M. Rafii, R.O. Ball, P.B. Pencharz, Determination of the tolerable upper intake level of leucine in acute dietary studies in young men. Am. J. Clin. Nutr. 96, 759–767 (2012)PubMedCrossRef R. Elango, K. Chapman, M. Rafii, R.O. Ball, P.B. Pencharz, Determination of the tolerable upper intake level of leucine in acute dietary studies in young men. Am. J. Clin. Nutr. 96, 759–767 (2012)PubMedCrossRef
44.
go back to reference E.S. Lyon, M.E. Rivera, M.A. Johnson, K.L. Sunderland, R.A. Vaughan, Actions of chronic physiological 3-hydroxyisobuterate treatment on mitochondrial metabolism and insulin signaling in myotubes. Nutr. Res. 66, 22–31 (2019)PubMedCrossRef E.S. Lyon, M.E. Rivera, M.A. Johnson, K.L. Sunderland, R.A. Vaughan, Actions of chronic physiological 3-hydroxyisobuterate treatment on mitochondrial metabolism and insulin signaling in myotubes. Nutr. Res. 66, 22–31 (2019)PubMedCrossRef
45.
go back to reference M.E. Rivera, E.S. Lyon, M.A. Johnson, K.L. Sunderland, R.A. Vaughan, Effect of valine on myotube insulin sensitivity and metabolism with and without insulin resistance. Mol. Cell. Biochem. 468, 169–183 (2020)PubMedCrossRef M.E. Rivera, E.S. Lyon, M.A. Johnson, K.L. Sunderland, R.A. Vaughan, Effect of valine on myotube insulin sensitivity and metabolism with and without insulin resistance. Mol. Cell. Biochem. 468, 169–183 (2020)PubMedCrossRef
46.
go back to reference N. Kumar, C.S. Dey, Metformin enhances insulin signalling in insulin-dependent and-independent pathways in insulin resistant muscle cells. Br. J. Pharm. 137, 329–336 (2002)CrossRef N. Kumar, C.S. Dey, Metformin enhances insulin signalling in insulin-dependent and-independent pathways in insulin resistant muscle cells. Br. J. Pharm. 137, 329–336 (2002)CrossRef
47.
go back to reference N. Kumar, C.S. Dey, Development of insulin resistance and reversal by thiazolidinediones in C2C12 skeletal muscle cells. Biochem. Pharmacol. 65, 249–257 (2003)PubMedCrossRef N. Kumar, C.S. Dey, Development of insulin resistance and reversal by thiazolidinediones in C2C12 skeletal muscle cells. Biochem. Pharmacol. 65, 249–257 (2003)PubMedCrossRef
48.
49.
go back to reference H. Crossland, K. Smith, I. Idris, B.E. Phillips, P.J. Atherton, D.J. Wilkinson, Exploring mechanistic links between extracellular BCAA & muscle insulin resistance: an in vitro approach. Am. J. Physiol. Cell. Physiol. 319, C1151–C1157 (2020)PubMedCrossRef H. Crossland, K. Smith, I. Idris, B.E. Phillips, P.J. Atherton, D.J. Wilkinson, Exploring mechanistic links between extracellular BCAA & muscle insulin resistance: an in vitro approach. Am. J. Physiol. Cell. Physiol. 319, C1151–C1157 (2020)PubMedCrossRef
50.
go back to reference J.J. Petrocelli, M.J. Drummond, PGC-1α-targeted therapeutic approaches to enhance muscle recovery in aging. Int. J. Environ. Res. Public Health 17, 8650 (2020)PubMedCentralCrossRef J.J. Petrocelli, M.J. Drummond, PGC-1α-targeted therapeutic approaches to enhance muscle recovery in aging. Int. J. Environ. Res. Public Health 17, 8650 (2020)PubMedCentralCrossRef
51.
go back to reference Y.B. Chang, K.B. Hong, M.G. Kim, H.J. Suh, K. Jo, Effect of the protein hydrolysate of rice syrup meal on the endurance exercise performance of BALB/c mice. Food Funct. 12, 1338–1348 (2021)PubMedCrossRef Y.B. Chang, K.B. Hong, M.G. Kim, H.J. Suh, K. Jo, Effect of the protein hydrolysate of rice syrup meal on the endurance exercise performance of BALB/c mice. Food Funct. 12, 1338–1348 (2021)PubMedCrossRef
52.
go back to reference C. Ruocco, M. Ragni, F. Rossi, P. Carullo, V. Ghini, F. Piscitelli, A. Cutignano, E. Manzo, R.M. Ioris, F. Bontems, L. Tedesco, C.M. Greco, A. Pino, I. Severi, D. Liu, R.P. Ceddia, L. Ponzoni, L. Tenori, L. Rizzetto, M. Scholz, K. Tuohy, F. Bifari, V. Di Marzo, C. Luchinat, M.O. Carruba, S. Cinti, I. Decimo, G. Condorelli, R. Coppari, S. Collins, A. Valerio, E. Nisoli, Manipulation of dietary amino acids prevents and reverses obesity in mice through multiple mechanisms that modulate energy homeostasis. Diabetes 69, 2324–2339 (2020)PubMedPubMedCentralCrossRef C. Ruocco, M. Ragni, F. Rossi, P. Carullo, V. Ghini, F. Piscitelli, A. Cutignano, E. Manzo, R.M. Ioris, F. Bontems, L. Tedesco, C.M. Greco, A. Pino, I. Severi, D. Liu, R.P. Ceddia, L. Ponzoni, L. Tenori, L. Rizzetto, M. Scholz, K. Tuohy, F. Bifari, V. Di Marzo, C. Luchinat, M.O. Carruba, S. Cinti, I. Decimo, G. Condorelli, R. Coppari, S. Collins, A. Valerio, E. Nisoli, Manipulation of dietary amino acids prevents and reverses obesity in mice through multiple mechanisms that modulate energy homeostasis. Diabetes 69, 2324–2339 (2020)PubMedPubMedCentralCrossRef
53.
go back to reference W.W. French, S. Dridi, S.A. Shouse, H. Wu, A. Hawley, S.O. Lee, X. Gu, J.I. Baum, A high-protein diet reduces weight gain, decreases food intake, decreases liver fat deposition, and improves markers of muscle metabolism in obese Zucker rats. Nutrients 9, 587 (2017)PubMedCentralCrossRef W.W. French, S. Dridi, S.A. Shouse, H. Wu, A. Hawley, S.O. Lee, X. Gu, J.I. Baum, A high-protein diet reduces weight gain, decreases food intake, decreases liver fat deposition, and improves markers of muscle metabolism in obese Zucker rats. Nutrients 9, 587 (2017)PubMedCentralCrossRef
54.
go back to reference K.M. Hill, C.G. Stathis, E. Grinfeld, A. Hayes, A.J. McAinch, Co-ingestion of carbohydrate and whey protein isolates enhance PGC-1α mRNA expression: a randomised, single blind, cross over study. J. Int. Soc. Sports Nutr. 10, 8 (2013)PubMedPubMedCentralCrossRef K.M. Hill, C.G. Stathis, E. Grinfeld, A. Hayes, A.J. McAinch, Co-ingestion of carbohydrate and whey protein isolates enhance PGC-1α mRNA expression: a randomised, single blind, cross over study. J. Int. Soc. Sports Nutr. 10, 8 (2013)PubMedPubMedCentralCrossRef
55.
go back to reference I. Buondonno, F. Sassi, G. Carignano, F. Dutto, C. Ferreri, F.G. Pili, M. Massaia, E. Nisoli, C. Ruocco, P. Porrino, C. Ravetta, C. Riganti, G.C. Isaia, P. D’Amelio, From mitochondria to healthy aging: The role of branched-chain amino acids treatment: MATeR a randomized study. Clin. Nutr. 39, 2080–2091 (2020)PubMedCrossRef I. Buondonno, F. Sassi, G. Carignano, F. Dutto, C. Ferreri, F.G. Pili, M. Massaia, E. Nisoli, C. Ruocco, P. Porrino, C. Ravetta, C. Riganti, G.C. Isaia, P. D’Amelio, From mitochondria to healthy aging: The role of branched-chain amino acids treatment: MATeR a randomized study. Clin. Nutr. 39, 2080–2091 (2020)PubMedCrossRef
56.
go back to reference G. Corsetti, E. Pasini, G. D’Antona, E. Nisoli, V. Flati, D. Assanelli, F.S. Dioguardi, R. Bianchi, Morphometric changes induced by amino acid supplementation in skeletal and cardiac muscles of old mice. Am. J. Cardiol. 101, 26E–34E (2008)PubMedCrossRef G. Corsetti, E. Pasini, G. D’Antona, E. Nisoli, V. Flati, D. Assanelli, F.S. Dioguardi, R. Bianchi, Morphometric changes induced by amino acid supplementation in skeletal and cardiac muscles of old mice. Am. J. Cardiol. 101, 26E–34E (2008)PubMedCrossRef
57.
go back to reference D. Brunetti, E. Bottani, A. Segala, S. Marchet, F. Rossi, F. Orlando, M. Malavolta, M.O. Carruba, C. Lamperti, M. Provinciali, E. Nisoli, A. Valerio, Targeting multiple mitochondrial processes by a metabolic modulator prevents sarcopenia and cognitive decline in SAMP8 mice. Front. Pharmacol. 11, 1171 (2020)PubMedPubMedCentralCrossRef D. Brunetti, E. Bottani, A. Segala, S. Marchet, F. Rossi, F. Orlando, M. Malavolta, M.O. Carruba, C. Lamperti, M. Provinciali, E. Nisoli, A. Valerio, Targeting multiple mitochondrial processes by a metabolic modulator prevents sarcopenia and cognitive decline in SAMP8 mice. Front. Pharmacol. 11, 1171 (2020)PubMedPubMedCentralCrossRef
Metadata
Title
Excess branched-chain amino acids alter myotube metabolism and substrate preference which is worsened by concurrent insulin resistance
Authors
Madison E. Rivera
Caroline N. Rivera
Roger A. Vaughan
Publication date
01-04-2022
Publisher
Springer US
Keywords
Insulins
Insulins
Published in
Endocrine / Issue 1/2022
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-021-02939-z

Other articles of this Issue 1/2022

Endocrine 1/2022 Go to the issue