Skip to main content
Top
Published in: Endocrine 3/2021

01-12-2021 | Metformin | Original Article

Potential impacts of diabetes mellitus and anti-diabetes agents on expressions of sodium-glucose transporters (SGLTs) in mice

Authors: Ziqi Hu, Yanjun Liao, Jing Wang, Xiaohua Wen, Luan Shu

Published in: Endocrine | Issue 3/2021

Login to get access

Abstract

Purpose

Sodium-glucose transporters (SGLTs) are important targets for therapeutic intervention of type 2 diabetes. This study aims to evaluate the physiological influences of diabetes mellitus and the potential impacts of metformin and fluoxetine on SGLTs expressions.

Methods

Alterations of SGLT1 and SGLT2 were measured in organs involved in glucose homeostasis (kidney, intestine, liver and pancreas) of streptozotocin (STZ) and high-fat diet (HFD) induced diabetic mice by western blotting and real-time PCR (RT-PCR) respectively.

Results

In kidney, duodenal segments of intestine, liver, and pancreas of HFD diabetic mice, expressions of SGLT2 were all elevated compared to control mice. The level of SGLT1 was significantly increased in intestine, but was decreased in pancreas. SGLT1 expression in kidney was unaffected, and SGLT1 was undetectable in hepatocytes. Similar results were obtained in STZ diabetic mice. More importantly, here we noticed metformin decreased levels of SGLT2 in kidney, intestine, and pancreas of HFD mice markedly. Expressions of SGLT1 in intestine and pancreas were reduced by metformin as well. In contrast, fluoxetine increased abundances of SGLT2 and SGLT1 in kidney of HFD mice, but decreased SGLT1 expression in intestine.

Conclusions

The present study provided evidence that expressions of SGLT1 and SGLT2 were significantly modulated by diabetes mellitus as well as by metformin and fluoxetine, which indicated the efficacy of SGLT2 inhibitors might be impacted by these factors.
Literature
1.
go back to reference E.M. Wright, D.D. Loo, B.A. Hirayama, Biology of human sodium glucose transporters. Physiol. Rev. 91(2), 733–794 (2011)CrossRef E.M. Wright, D.D. Loo, B.A. Hirayama, Biology of human sodium glucose transporters. Physiol. Rev. 91(2), 733–794 (2011)CrossRef
2.
go back to reference I.S. Wood, P. Trayhurn, Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br. J. Nutr. 89(1), 3–9 (2003)CrossRef I.S. Wood, P. Trayhurn, Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br. J. Nutr. 89(1), 3–9 (2003)CrossRef
3.
go back to reference G. Gyimesi, J. Pujol-Gimenez, Y. Kanai, M.A. Hediger, Sodium-coupled glucose transport, the SLC5 family, and therapeutically relevant inhibitors: from molecular discovery to clinical application. Pflugers Arch. 472(9), 1177–1206 (2020)CrossRef G. Gyimesi, J. Pujol-Gimenez, Y. Kanai, M.A. Hediger, Sodium-coupled glucose transport, the SLC5 family, and therapeutically relevant inhibitors: from molecular discovery to clinical application. Pflugers Arch. 472(9), 1177–1206 (2020)CrossRef
4.
go back to reference V. Vallon, S.C. Thomson, Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia 60(2), 215–225 (2017)CrossRef V. Vallon, S.C. Thomson, Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia 60(2), 215–225 (2017)CrossRef
5.
go back to reference P. Song, A. Onishi, H. Koepsell, V. Vallon, Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin. Ther. Targets 20(9), 1109–1125 (2016)CrossRef P. Song, A. Onishi, H. Koepsell, V. Vallon, Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin. Ther. Targets 20(9), 1109–1125 (2016)CrossRef
6.
go back to reference M.A. Abdul-Ghani, R.A. DeFronzo, L. Norton, Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans. Diabetes 62(10), 3324–3328 (2013)CrossRef M.A. Abdul-Ghani, R.A. DeFronzo, L. Norton, Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans. Diabetes 62(10), 3324–3328 (2013)CrossRef
7.
go back to reference R.A. DeFronzo, M. Hompesch, S. Kasichayanula, X. Liu, Y. Hong, M. Pfister, L.A. Morrow, B.R. Leslie, D.W. Boulton, A. Ching, F.P. LaCreta, S.C. Griffen, Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes. Diabetes Care 36(10), 3169–3176 (2013)CrossRef R.A. DeFronzo, M. Hompesch, S. Kasichayanula, X. Liu, Y. Hong, M. Pfister, L.A. Morrow, B.R. Leslie, D.W. Boulton, A. Ching, F.P. LaCreta, S.C. Griffen, Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes. Diabetes Care 36(10), 3169–3176 (2013)CrossRef
8.
go back to reference L. Darwish, E. Beroncal, M.V. Sison, W. Swardfager, Depression in people with type 2 diabetes: current perspectives. Diabetes Metab. Syndr. Obes. 11, 333–343 (2018)CrossRef L. Darwish, E. Beroncal, M.V. Sison, W. Swardfager, Depression in people with type 2 diabetes: current perspectives. Diabetes Metab. Syndr. Obes. 11, 333–343 (2018)CrossRef
9.
go back to reference P. Saeedi, I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A.A. Motala, K. Ogurtsova, J.E. Shaw, D. Bright, R. Williams, Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 157, 107843 (2019)CrossRef P. Saeedi, I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A.A. Motala, K. Ogurtsova, J.E. Shaw, D. Bright, R. Williams, Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 157, 107843 (2019)CrossRef
10.
go back to reference Economic Costs of Diabetes in the U.S. in 2017. Diabetes Care 41(5), 917–928 (2018). Economic Costs of Diabetes in the U.S. in 2017. Diabetes Care 41(5), 917–928 (2018).
11.
go back to reference T. Yakovleva, V. Sokolov, L. Chu, W. Tang, P.J. Greasley, H. Peilot Sjogren, S. Johansson, K. Peskov, G. Helmlinger, D.W. Boulton, R.C. Penland, Comparison of the urinary glucose excretion contributions of SGLT2 and SGLT1: A quantitative systems pharmacology analysis in healthy individuals and patients with type 2 diabetes treated with SGLT2 inhibitors. Diabetes Obes. Metab. 21(12), 2684–2693 (2019)CrossRef T. Yakovleva, V. Sokolov, L. Chu, W. Tang, P.J. Greasley, H. Peilot Sjogren, S. Johansson, K. Peskov, G. Helmlinger, D.W. Boulton, R.C. Penland, Comparison of the urinary glucose excretion contributions of SGLT2 and SGLT1: A quantitative systems pharmacology analysis in healthy individuals and patients with type 2 diabetes treated with SGLT2 inhibitors. Diabetes Obes. Metab. 21(12), 2684–2693 (2019)CrossRef
12.
go back to reference L. Norton, C.E. Shannon, M. Fourcaudot, C. Hu, N. Wang, W. Ren, J. Song, M. Abdul-Ghani, R.A. DeFronzo, J. Ren, W. Jia, Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects. Diabetes Obes. Metab. 19(9), 1322–1326 (2017)CrossRef L. Norton, C.E. Shannon, M. Fourcaudot, C. Hu, N. Wang, W. Ren, J. Song, M. Abdul-Ghani, R.A. DeFronzo, J. Ren, W. Jia, Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects. Diabetes Obes. Metab. 19(9), 1322–1326 (2017)CrossRef
13.
go back to reference X.X. Wang, J. Levi, Y. Luo, K. Myakala, M. Herman-Edelstein, L. Qiu, D. Wang, Y. Peng, A. Grenz, S. Lucia, E. Dobrinskikh, V.D. D’Agati, H. Koepsell, J.B. Kopp, A.Z. Rosenberg, M. Levi, SGLT2 protein expression is increased in human diabetic nephropathy: SGLT2 protein inhibition decreases renal lipid accumulation, inflammation, and the development of nephropathy in diabetic mice. J. Biol. Chem. 292(13), 5335–5348 (2017)CrossRef X.X. Wang, J. Levi, Y. Luo, K. Myakala, M. Herman-Edelstein, L. Qiu, D. Wang, Y. Peng, A. Grenz, S. Lucia, E. Dobrinskikh, V.D. D’Agati, H. Koepsell, J.B. Kopp, A.Z. Rosenberg, M. Levi, SGLT2 protein expression is increased in human diabetic nephropathy: SGLT2 protein inhibition decreases renal lipid accumulation, inflammation, and the development of nephropathy in diabetic mice. J. Biol. Chem. 292(13), 5335–5348 (2017)CrossRef
14.
go back to reference A. Solini, C. Rossi, C.M. Mazzanti, A. Proietti, H. Koepsell, E. Ferrannini, Sodium-glucose co-transporter (SGLT)2 and SGLT1 renal expression in patients with type 2 diabetes. Diabetes Obes. Metab. 19(9), 1289–1294 (2017)CrossRef A. Solini, C. Rossi, C.M. Mazzanti, A. Proietti, H. Koepsell, E. Ferrannini, Sodium-glucose co-transporter (SGLT)2 and SGLT1 renal expression in patients with type 2 diabetes. Diabetes Obes. Metab. 19(9), 1289–1294 (2017)CrossRef
15.
go back to reference L.A. Gallo, M.S. Ward, A.K. Fotheringham, A. Zhuang, D.J. Borg, N.B. Flemming, B.M. Harvie, T.L. Kinneally, S.M. Yeh, D.A. McCarthy, H. Koepsell, V. Vallon, C. Pollock, U. Panchapakesan, J.M. Forbes, Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice. Sci. Rep. 6, 26428 (2016)CrossRef L.A. Gallo, M.S. Ward, A.K. Fotheringham, A. Zhuang, D.J. Borg, N.B. Flemming, B.M. Harvie, T.L. Kinneally, S.M. Yeh, D.A. McCarthy, H. Koepsell, V. Vallon, C. Pollock, U. Panchapakesan, J.M. Forbes, Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice. Sci. Rep. 6, 26428 (2016)CrossRef
16.
go back to reference H. Chichger, M.E. Cleasby, S.K. Srai, R.J. Unwin, E.S. Debnam, J. Marks, Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane. Exp. Physiol. 101(6), 731–742 (2016)CrossRef H. Chichger, M.E. Cleasby, S.K. Srai, R.J. Unwin, E.S. Debnam, J. Marks, Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane. Exp. Physiol. 101(6), 731–742 (2016)CrossRef
17.
go back to reference J.A. Dominguez Rieg, V.R. Chirasani, H. Koepsell, S. Senapati, S.K. Mahata, T. Rieg, Regulation of intestinal SGLT1 by catestatin in hyperleptinemic type 2 diabetic mice. Lab. Investig. 96(1), 98–111 (2016)CrossRef J.A. Dominguez Rieg, V.R. Chirasani, H. Koepsell, S. Senapati, S.K. Mahata, T. Rieg, Regulation of intestinal SGLT1 by catestatin in hyperleptinemic type 2 diabetic mice. Lab. Investig. 96(1), 98–111 (2016)CrossRef
18.
go back to reference I. Vrhovac, D.Balen Eror, D. Klessen, C.Burger, D. Breljak, O. Kraus, N.Radovic, S.Jadrijevic, I.Aleksic, T.Walles, C.Sauvant, I.Sabolic, H.Koepsell, Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch. 467(9), 1881–1898 (2015).CrossRef I. Vrhovac, D.Balen Eror, D. Klessen, C.Burger, D. Breljak, O. Kraus, N.Radovic, S.Jadrijevic, I.Aleksic, T.Walles, C.Sauvant, I.Sabolic, H.Koepsell, Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch. 467(9), 1881–1898 (2015).CrossRef
19.
go back to reference C. Bonner, J. Kerr-Conte, V. Gmyr, G. Queniat, E. Moerman, J. Thevenet, C. Beaucamps, N. Delalleau, I. Popescu, W.J. Malaisse, A. Sener, B. Deprez, A. Abderrahmani, B. Staels, F. Pattou, Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat. Med. 21(5), 512–517 (2015)CrossRef C. Bonner, J. Kerr-Conte, V. Gmyr, G. Queniat, E. Moerman, J. Thevenet, C. Beaucamps, N. Delalleau, I. Popescu, W.J. Malaisse, A. Sener, B. Deprez, A. Abderrahmani, B. Staels, F. Pattou, Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat. Med. 21(5), 512–517 (2015)CrossRef
20.
go back to reference T. Suga, O. Kikuchi, M. Kobayashi, S. Matsui, H. Yokota-Hashimoto, E. Wada, D. Kohno, T. Sasaki, K. Takeuchi, S. Kakizaki, M. Yamada, T. Kitamura, SGLT1 in pancreatic alpha cells regulates glucagon secretion in mice, possibly explaining the distinct effects of SGLT2 inhibitors on plasma glucagon levels. Mol. Metab. 19, 1–12 (2019)CrossRef T. Suga, O. Kikuchi, M. Kobayashi, S. Matsui, H. Yokota-Hashimoto, E. Wada, D. Kohno, T. Sasaki, K. Takeuchi, S. Kakizaki, M. Yamada, T. Kitamura, SGLT1 in pancreatic alpha cells regulates glucagon secretion in mice, possibly explaining the distinct effects of SGLT2 inhibitors on plasma glucagon levels. Mol. Metab. 19, 1–12 (2019)CrossRef
21.
go back to reference H. Chae, R. Augustin, E. Gatineau, E. Mayoux, M. Bensellam, N. Antoine, F. Khattab, B.K. Lai, D. Brusa, B. Stierstorfer, H. Klein, B. Singh, L. Ruiz, M. Pieper, M. Mark, P.L. Herrera, F.M. Gribble, F. Reimann, A. Wojtusciszyn, C. Broca, N. Rita, L. Piemonti, P. Gilon, SGLT2 is not expressed in pancreatic alpha- and beta-cells, and its inhibition does not directly affect glucagon and insulin secretion in rodents and humans. Mol. Metab. 42, 101071 (2020)CrossRef H. Chae, R. Augustin, E. Gatineau, E. Mayoux, M. Bensellam, N. Antoine, F. Khattab, B.K. Lai, D. Brusa, B. Stierstorfer, H. Klein, B. Singh, L. Ruiz, M. Pieper, M. Mark, P.L. Herrera, F.M. Gribble, F. Reimann, A. Wojtusciszyn, C. Broca, N. Rita, L. Piemonti, P. Gilon, SGLT2 is not expressed in pancreatic alpha- and beta-cells, and its inhibition does not directly affect glucagon and insulin secretion in rodents and humans. Mol. Metab. 42, 101071 (2020)CrossRef
22.
go back to reference C. Saponaro, M. Muhlemann, A. Acosta-Montalvo, A. Piron, V. Gmyr, N. Delalleau, E. Moerman, J. Thevenet, G. Pasquetti, A. Coddeville, M. Cnop, J. Kerr-Conte, B. Staels, F. Pattou, C. Bonner, Interindividual heterogeneity of SGLT2 expression and function in human pancreatic islets. Diabetes 69(5), 902–914 (2020)CrossRef C. Saponaro, M. Muhlemann, A. Acosta-Montalvo, A. Piron, V. Gmyr, N. Delalleau, E. Moerman, J. Thevenet, G. Pasquetti, A. Coddeville, M. Cnop, J. Kerr-Conte, B. Staels, F. Pattou, C. Bonner, Interindividual heterogeneity of SGLT2 expression and function in human pancreatic islets. Diabetes 69(5), 902–914 (2020)CrossRef
23.
go back to reference A.M. Bolla, E. Butera, S. Pellegrini, A. Caretto, R. Bonfanti, R.A. Zuppardo, G. Barera, G.M. Cavestro, V. Sordi, E. Bosi, Expression of glucose transporters in duodenal mucosa of patients with type 1 diabetes. Acta Diabetol. 57(11), 1367–1373 (2020)CrossRef A.M. Bolla, E. Butera, S. Pellegrini, A. Caretto, R. Bonfanti, R.A. Zuppardo, G. Barera, G.M. Cavestro, V. Sordi, E. Bosi, Expression of glucose transporters in duodenal mucosa of patients with type 1 diabetes. Acta Diabetol. 57(11), 1367–1373 (2020)CrossRef
24.
go back to reference M. Zhang, R. Feng, J. Yue, C. Qian, M. Yang, W. Liu, C.K. Rayner, J. Ma, Effects of metformin and sitagliptin monotherapy on expression of intestinal and renal sweet taste receptors and glucose transporters in a rat model of type 2 diabetes. Horm. Metab. Res. 52(5), 329–335 (2020)CrossRef M. Zhang, R. Feng, J. Yue, C. Qian, M. Yang, W. Liu, C.K. Rayner, J. Ma, Effects of metformin and sitagliptin monotherapy on expression of intestinal and renal sweet taste receptors and glucose transporters in a rat model of type 2 diabetes. Horm. Metab. Res. 52(5), 329–335 (2020)CrossRef
Metadata
Title
Potential impacts of diabetes mellitus and anti-diabetes agents on expressions of sodium-glucose transporters (SGLTs) in mice
Authors
Ziqi Hu
Yanjun Liao
Jing Wang
Xiaohua Wen
Luan Shu
Publication date
01-12-2021
Publisher
Springer US
Published in
Endocrine / Issue 3/2021
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-021-02818-7

Other articles of this Issue 3/2021

Endocrine 3/2021 Go to the issue