Skip to main content
Top
Published in: Endocrine 1/2019

01-10-2019 | Original Article

The isolation of thyroxine (T4), the discovery of 3,5,3’-triiodothyronine (T3), and the identification of the deiodinases that generate T3 from T4: An historical review

Authors: John C. Morris, Valerie Anne Galton

Published in: Endocrine | Issue 1/2019

Login to get access

Excerpt

The thyroid gland was first described in the 17th century. However, the concept that this organ might have a functional role in the body was not recognized until the 19th century, when cretinism and myxedema were associated with thyroid atrophy, surgical thyroidectomy was found to result in symptoms comparable to those seen in patients with myxedema [1] and Murray demonstrated that myxedema could be treated successfully with daily injections of sheep thyroid extract [2]. These findings suggested that the thyroid secreted an active principle(s) essential for the prevention of myxedema, and in 1914 Kendall succeeded in isolating from the thyroid the compound now recognized as thyroxine (T4). …
Literature
1.
go back to reference J. Lindholm, P. Laurberg, Hypothyroidism and thyroid substitution: historical aspects. J. Thyroid Res. 2011, 1–10 (2011)CrossRef J. Lindholm, P. Laurberg, Hypothyroidism and thyroid substitution: historical aspects. J. Thyroid Res. 2011, 1–10 (2011)CrossRef
2.
go back to reference G.R. Murray, Note on the treatment of myxoedema by hypodermic injections of an extract of the thyroid gland of sheep. Brit. Med. J. 2, 786–797 (1891)CrossRef G.R. Murray, Note on the treatment of myxoedema by hypodermic injections of an extract of the thyroid gland of sheep. Brit. Med. J. 2, 786–797 (1891)CrossRef
3.
go back to reference E. C. Kendall, Cortisone (Charles Scribner’s Sons, New York, 1971). E. C. Kendall, Cortisone (Charles Scribner’s Sons, New York, 1971).
4.
go back to reference E. Baumann, [Ueber das normale Vorkommen von Jod im Thierkorper]. Z. Physiol. Chem. 21, 319–330 (1896). E. Baumann, [Ueber das normale Vorkommen von Jod im Thierkorper]. Z. Physiol. Chem. 21, 319–330 (1896).
5.
go back to reference H. Clapesattle, The Doctors Mayo (Mayo Clinic, Rochester, Minnesota, 1969). H. Clapesattle, The Doctors Mayo (Mayo Clinic, Rochester, Minnesota, 1969).
6.
go back to reference T Rooke. The Quest for Cortisone (Michigan State University Press, Lansing Michigan, (2012). T Rooke. The Quest for Cortisone (Michigan State University Press, Lansing Michigan, (2012).
7.
go back to reference E.C. Kendall, The isolation in crystalline form of the compound containing iodine which occurs in the thyroid gland. J. Am. Med. Assoc. 64, 2042–2043 (1915)CrossRef E.C. Kendall, The isolation in crystalline form of the compound containing iodine which occurs in the thyroid gland. J. Am. Med. Assoc. 64, 2042–2043 (1915)CrossRef
10.
go back to reference J.H. Means, Therapeutics of the thyroid. J. Am. Med. Assoc. 105, 24–28 (1935)CrossRef J.H. Means, Therapeutics of the thyroid. J. Am. Med. Assoc. 105, 24–28 (1935)CrossRef
11.
go back to reference C.R. Harington, Bichemical basis of thyroid function. Lancet 225, 1261–1267 (1935)CrossRef C.R. Harington, Bichemical basis of thyroid function. Lancet 225, 1261–1267 (1935)CrossRef
12.
go back to reference C.R. Harington, Croonian lecture: thyroxine: its biosynthesis and its immunochemistry. Proc. R. Soc. Lond. Ser. B 132, 223–238 (1944)CrossRef C.R. Harington, Croonian lecture: thyroxine: its biosynthesis and its immunochemistry. Proc. R. Soc. Lond. Ser. B 132, 223–238 (1944)CrossRef
13.
go back to reference A. Taurog, I.L. Chaikoff, The nature of the circulating thyroid hormone. J. Biol. Chem. 176, 639–656 (1948)PubMed A. Taurog, I.L. Chaikoff, The nature of the circulating thyroid hormone. J. Biol. Chem. 176, 639–656 (1948)PubMed
15.
go back to reference J. Gross et al. Presence of iodinated amino acids in unhydrolyzed thyroid and plasma. Science 111, 605–608 (1950)CrossRefPubMed J. Gross et al. Presence of iodinated amino acids in unhydrolyzed thyroid and plasma. Science 111, 605–608 (1950)CrossRefPubMed
17.
go back to reference S.C. Kaufman, Thyroid hormone use: trends in the United States from 1960 through 1988. Thyroid 1, 285–291 (1991)CrossRefPubMed S.C. Kaufman, Thyroid hormone use: trends in the United States from 1960 through 1988. Thyroid 1, 285–291 (1991)CrossRefPubMed
18.
go back to reference J. Gross, R. Pitt-Rivers, The identification of 3,5,3’L-triiodothyronine in human plasma. Lancet 259, 439–441 (1952)CrossRef J. Gross, R. Pitt-Rivers, The identification of 3,5,3’L-triiodothyronine in human plasma. Lancet 259, 439–441 (1952)CrossRef
20.
go back to reference J. Roche, S. Lissitsky, R. Michel, Sur la presence de triiodothyronine dans la thyroglobuline. C. R. Acad. Sci. 234, 1228–1230 (1952) J. Roche, S. Lissitsky, R. Michel, Sur la presence de triiodothyronine dans la thyroglobuline. C. R. Acad. Sci. 234, 1228–1230 (1952)
21.
go back to reference J. Gross, R. Pitt-Rivers, W.R. Trotter, Effect of 3,5,3’-L-triiodothyronine in myxoedema. Lancet 259, 1044–1045 (1952)CrossRef J. Gross, R. Pitt-Rivers, W.R. Trotter, Effect of 3,5,3’-L-triiodothyronine in myxoedema. Lancet 259, 1044–1045 (1952)CrossRef
22.
go back to reference J. Gross, R. Pitt-Rivers, Physiological activity of 3:5:3’-L-Triiodothyronine. Lancet 259, 593–594 (1952)CrossRef J. Gross, R. Pitt-Rivers, Physiological activity of 3:5:3’-L-Triiodothyronine. Lancet 259, 593–594 (1952)CrossRef
24.
go back to reference R. Pitt-Rivers, J.B. Stanbury, B. Rapp, Conversion of thyroxine to 3,5,3’-triiodothyronine in vivo. J. Clin. Endocrinol. Metab. 15, 616–620 (1955)CrossRefPubMed R. Pitt-Rivers, J.B. Stanbury, B. Rapp, Conversion of thyroxine to 3,5,3’-triiodothyronine in vivo. J. Clin. Endocrinol. Metab. 15, 616–620 (1955)CrossRefPubMed
25.
go back to reference W.E. Lassiter, J.B. Stanbury, In vivo conversion of thyroxine to 3,5,3’ triiodothyronine. J. Clin. Endocrinol. Metab. 18, 903–906 (1958)CrossRefPubMed W.E. Lassiter, J.B. Stanbury, In vivo conversion of thyroxine to 3,5,3’ triiodothyronine. J. Clin. Endocrinol. Metab. 18, 903–906 (1958)CrossRefPubMed
26.
go back to reference E.C. Albright, F.C. Larson, R.H. Tust, In vitro conversion of thyroxine to triiodothyronine by kidney slices. Proc. Soc. Expt. Biol. Med. 86, 137–140 (1954)CrossRef E.C. Albright, F.C. Larson, R.H. Tust, In vitro conversion of thyroxine to triiodothyronine by kidney slices. Proc. Soc. Expt. Biol. Med. 86, 137–140 (1954)CrossRef
28.
29.
go back to reference L.E. Braverman, S.H. Ingbar, K. Sterling, Conversion of thyroxine to triiodothyronine in athyreotic human subjects. J. Clin. Invest. 49, 855–864 (1970)CrossRefPubMedPubMedCentral L.E. Braverman, S.H. Ingbar, K. Sterling, Conversion of thyroxine to triiodothyronine in athyreotic human subjects. J. Clin. Invest. 49, 855–864 (1970)CrossRefPubMedPubMedCentral
30.
go back to reference K. Sterling, M.A. Brenner, E.S. Newman, Conversion of thyroxine to triiodothyronine in normal human subjects. Science 169, 1099–1100 (1970)CrossRefPubMed K. Sterling, M.A. Brenner, E.S. Newman, Conversion of thyroxine to triiodothyronine in normal human subjects. Science 169, 1099–1100 (1970)CrossRefPubMed
31.
go back to reference J.H. Oppenheimer et al. Specific nuclear triidothyronine binding sites in rat liver and kidney. J. Clin. Endocrinol. Metab. 35, 330–333 (1972)CrossRefPubMed J.H. Oppenheimer et al. Specific nuclear triidothyronine binding sites in rat liver and kidney. J. Clin. Endocrinol. Metab. 35, 330–333 (1972)CrossRefPubMed
32.
go back to reference A.R. Schadlow et al. Specific triiodothyronine binding sites in the anterior pituitary of the rat. Science 176, 1252–1254 (1972)CrossRefPubMed A.R. Schadlow et al. Specific triiodothyronine binding sites in the anterior pituitary of the rat. Science 176, 1252–1254 (1972)CrossRefPubMed
33.
go back to reference H.H. Samuels, J.S. Tsai, Thyroid hormone action in cell culture: demonstration of nuclear receptors in intact cells and isolated nuclei. Proc. Natl Acad. Sci. USA 12, 3488–3494 (1973)CrossRef H.H. Samuels, J.S. Tsai, Thyroid hormone action in cell culture: demonstration of nuclear receptors in intact cells and isolated nuclei. Proc. Natl Acad. Sci. USA 12, 3488–3494 (1973)CrossRef
34.
go back to reference J.H. Oppenheimer et al. Limited binding capacity sites for L-triiodothyronine in rat liver nuclei. Nuclear-cytoplasmic interrelation, binding constants, and cross- reactivity with L-thyroxine. J. Clin. Invest. 53, 768–677 (1974)CrossRefPubMedPubMedCentral J.H. Oppenheimer et al. Limited binding capacity sites for L-triiodothyronine in rat liver nuclei. Nuclear-cytoplasmic interrelation, binding constants, and cross- reactivity with L-thyroxine. J. Clin. Invest. 53, 768–677 (1974)CrossRefPubMedPubMedCentral
35.
go back to reference M.I. Surks, J.H. Oppenheimer, Concentration of L-thyroxine and L-triiodothyronine specifically bound to nuclear receptors in rat liver and kidney. J. Clin. Invest. 60, 555–562 (1977)CrossRefPubMedPubMedCentral M.I. Surks, J.H. Oppenheimer, Concentration of L-thyroxine and L-triiodothyronine specifically bound to nuclear receptors in rat liver and kidney. J. Clin. Invest. 60, 555–562 (1977)CrossRefPubMedPubMedCentral
36.
go back to reference T.J. Visser et al. Subcellular localization of a rat liver enzyme converting thyroxine into tri- iodothyronine and possible involvement of essential thiol groups. Biochem. J. 157, 479–482 (1976)CrossRefPubMedPubMedCentral T.J. Visser et al. Subcellular localization of a rat liver enzyme converting thyroxine into tri- iodothyronine and possible involvement of essential thiol groups. Biochem. J. 157, 479–482 (1976)CrossRefPubMedPubMedCentral
37.
go back to reference J.E. Silva, P.R. Larsen, Contributions of plasma triiodothyronine and local thyroxine monodeiodination to triiodothyronine and nuclear triiodothyronine receptor saturation in pituitary, liver, and kidney of hypothyroid rats. Further evidence relating saturation of pituitary nuclear triiodothyronine receptors and the acute inhibition of thyroid-stimulating hormone release. J. Clin. Invest. 61, 1247–1259 (1978)CrossRefPubMedPubMedCentral J.E. Silva, P.R. Larsen, Contributions of plasma triiodothyronine and local thyroxine monodeiodination to triiodothyronine and nuclear triiodothyronine receptor saturation in pituitary, liver, and kidney of hypothyroid rats. Further evidence relating saturation of pituitary nuclear triiodothyronine receptors and the acute inhibition of thyroid-stimulating hormone release. J. Clin. Invest. 61, 1247–1259 (1978)CrossRefPubMedPubMedCentral
38.
go back to reference P.R. Larsen et al. Inhibition of intrapituitary thyroxine to 3.5.3’-triiodothyronine conversion prevents the acute suppression of thyrotropin release by thyroxine in hypothyroid rats. J. Clin. Invest. 64, 117–128 (1979)CrossRefPubMedPubMedCentral P.R. Larsen et al. Inhibition of intrapituitary thyroxine to 3.5.3’-triiodothyronine conversion prevents the acute suppression of thyrotropin release by thyroxine in hypothyroid rats. J. Clin. Invest. 64, 117–128 (1979)CrossRefPubMedPubMedCentral
39.
go back to reference T.J. Visser et al. Evidence for two pathways of iodothyronine 5’-deiodination in rat pituitary that differ in kinetics, propylthiouracil sensitivity, and response to hypothyroidism. J. Clin. Invest. 71, 992–1002 (1983)CrossRefPubMedPubMedCentral T.J. Visser et al. Evidence for two pathways of iodothyronine 5’-deiodination in rat pituitary that differ in kinetics, propylthiouracil sensitivity, and response to hypothyroidism. J. Clin. Invest. 71, 992–1002 (1983)CrossRefPubMedPubMedCentral
40.
go back to reference T.J. Visser. et al. Kinetic evidence suggesting two mechanisms for iodothyronine 5’-deiodination in rat cerebral cortex. Proc. Natl Acad. Sci. USA 79, 5080–5084 (1982)CrossRefPubMedPubMedCentral T.J. Visser. et al. Kinetic evidence suggesting two mechanisms for iodothyronine 5’-deiodination in rat cerebral cortex. Proc. Natl Acad. Sci. USA 79, 5080–5084 (1982)CrossRefPubMedPubMedCentral
41.
go back to reference A.C. Bianco et al. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endo. Rev. 23, 38–89 (2002)CrossRef A.C. Bianco et al. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endo. Rev. 23, 38–89 (2002)CrossRef
42.
go back to reference M.J. Berry, L. Banu, P.R. Larsen, Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature 349, 438–440 (1991)CrossRefPubMed M.J. Berry, L. Banu, P.R. Larsen, Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature 349, 438–440 (1991)CrossRefPubMed
43.
go back to reference J.C. Davey et al. Cloning of a cDNA for the type II iodothyronine deiodinase. J. Biol. Chem. 270, 26786–26789 (1995)CrossRefPubMed J.C. Davey et al. Cloning of a cDNA for the type II iodothyronine deiodinase. J. Biol. Chem. 270, 26786–26789 (1995)CrossRefPubMed
44.
go back to reference W. Croteau et al. Cloning of the mammalian type II iodothyronine deiodinase: a selenoprotein differentially expressed and regulated in the human brain and other tissues. J. Clin. Invest. 98, 405–417 (1996)CrossRefPubMedPubMedCentral W. Croteau et al. Cloning of the mammalian type II iodothyronine deiodinase: a selenoprotein differentially expressed and regulated in the human brain and other tissues. J. Clin. Invest. 98, 405–417 (1996)CrossRefPubMedPubMedCentral
45.
go back to reference M.J. Schneider et al. Targeted disruption of the type 2 selenodeiodinase gene (Dio2) results in a phenotype of pituitary resistance to T4. Mol. Endocrinol. 15, 2137–2148 (2001)CrossRefPubMed M.J. Schneider et al. Targeted disruption of the type 2 selenodeiodinase gene (Dio2) results in a phenotype of pituitary resistance to T4. Mol. Endocrinol. 15, 2137–2148 (2001)CrossRefPubMed
46.
go back to reference M.J. Schneider et al. Targeted disruption of the type1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology 147, 580–589 (2006)CrossRefPubMed M.J. Schneider et al. Targeted disruption of the type1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology 147, 580–589 (2006)CrossRefPubMed
48.
go back to reference F.R. Crantz, J.E. Silva, P.R. Larsen, An analysis of the sources and quantity of 3,5,3’-triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum. Endocrinology 110, 367–375 (1982)CrossRefPubMed F.R. Crantz, J.E. Silva, P.R. Larsen, An analysis of the sources and quantity of 3,5,3’-triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum. Endocrinology 110, 367–375 (1982)CrossRefPubMed
49.
go back to reference K. Sorimachi, J. Robbins, Metabolism of thyroid hormones by cultured monkey hepatocarcinoma cells. Nonphenolic ring dieodination and sulfation. J. Biol. Chem. 252, 4458–4463 (1977)PubMed K. Sorimachi, J. Robbins, Metabolism of thyroid hormones by cultured monkey hepatocarcinoma cells. Nonphenolic ring dieodination and sulfation. J. Biol. Chem. 252, 4458–4463 (1977)PubMed
50.
51.
go back to reference S.A. Huang et al. Type 3 iodothyronine deiodinase is highly expressed in the human uteroplacental unit and in fetal epithelium. J. Clin. Endo. Metab. 88, 1384–1388 (2003)CrossRef S.A. Huang et al. Type 3 iodothyronine deiodinase is highly expressed in the human uteroplacental unit and in fetal epithelium. J. Clin. Endo. Metab. 88, 1384–1388 (2003)CrossRef
52.
go back to reference L. Ng et al. A protective role for type 3 deiodinase, a thyroid hormone-inactivating enzyme, in cochlear development and auditory function. Endocrinology 150, 1952–1960 (2009)CrossRefPubMed L. Ng et al. A protective role for type 3 deiodinase, a thyroid hormone-inactivating enzyme, in cochlear development and auditory function. Endocrinology 150, 1952–1960 (2009)CrossRefPubMed
53.
go back to reference D.L. St. Germain et al. A thyroid hormone regulated gene in Xenopus laevis encodes a type III iodothyronine 5-deiodinase. Proc. Natl Acad. Sci. USA 91, 7767–7771 (1994).CrossRef D.L. St. Germain et al. A thyroid hormone regulated gene in Xenopus laevis encodes a type III iodothyronine 5-deiodinase. Proc. Natl Acad. Sci. USA 91, 7767–7771 (1994).CrossRef
54.
go back to reference W. Croteau et al. Cloning and expression of a cDNA for a mammalian type III iodothyronine deiodinase. J. Biol. Chem. 270, 16569–16575 (1995)CrossRefPubMed W. Croteau et al. Cloning and expression of a cDNA for a mammalian type III iodothyronine deiodinase. J. Biol. Chem. 270, 16569–16575 (1995)CrossRefPubMed
55.
go back to reference A. Hernandez et al. Type 3 deiodinase deficiency results in functional abnormalities at multiple levels of the thyroid axis. Endocrinology 148, 5680–5687 (2007)CrossRefPubMed A. Hernandez et al. Type 3 deiodinase deficiency results in functional abnormalities at multiple levels of the thyroid axis. Endocrinology 148, 5680–5687 (2007)CrossRefPubMed
Metadata
Title
The isolation of thyroxine (T4), the discovery of 3,5,3’-triiodothyronine (T3), and the identification of the deiodinases that generate T3 from T4: An historical review
Authors
John C. Morris
Valerie Anne Galton
Publication date
01-10-2019
Publisher
Springer US
Published in
Endocrine / Issue 1/2019
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-019-01990-1

Other articles of this Issue 1/2019

Endocrine 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.