Skip to main content
Top
Published in: Endocrine 2/2016

01-11-2016 | Review

A hypothetical model to solve the controversy over the involvement of UCP2 in palmitate-induced β-cell dysfunction

Authors: Alaa Shaheen, Ahmad M. A. Aljebali

Published in: Endocrine | Issue 2/2016

Login to get access

Abstract

The aim of this article is to solve an existing controversy over the involvement of uncoupling protein-2 in the impairment of glucose-stimulated insulin secretion induced by chronic exposure of β-cells to palmitate. We analyzed and compared the results of studies that support and that deny the involvement of uncoupling protein-2 in this impairment. We observed that this impairment could occur in multiple stages. We provide a model in which palmitate-induced impairment of glucose-stimulated insulin secretion is proposed to occur in two stages, early stage and late stage, depending on the integrity of electron supply (glycolysis and Krebs cycle) and transport system through electron transport chain after palmitate treatment. Prolonged exposure of β-cells to palmitate can impair this system. Early-stage impairment occurs due to uncoupling by uncoupling protein-2 when this system is still intact. When this system becomes impaired, late-stage impairment occurs mainly due to reduced glucose-stimulated adenosine triphosphate production independent of uncoupling by uncoupling protein-2. The change in glucose-stimulated oxygen uptake after palmitate treatment reflects the integrity of this system and can be used to differentiate between the two stages. Some β-cells lines and islets appear to be more resistant to palmitate-induced impairment of electron supply and transport system than others, and therefore early stage is prominent in the more resistant cell lines and less prominent or absent in the less resistant cell lines. This may help to resolve the pathogenesis of diabetes and to monitor the progression of palmitate-induced β-cell dysfunction.
Literature
2.
go back to reference G.M. Cooper. The Cell: A Molecular Approach. 2nd edn. (Sinauer Associates, Sunderland, MA, 2000) G.M. Cooper. The Cell: A Molecular Approach. 2nd edn. (Sinauer Associates, Sunderland, MA, 2000)
5.
go back to reference J.W. Joseph, V. Koshkin, M.C. Saleh, W.I. Sivitz, C.Y. Zhang, B.B. Lowell et al., Free fatty acid-induced beta-cell defects are dependent on uncoupling protein-2 expression. J. Biol. Chem. 279, 51049–51056 (2004). doi:10.1074/jbc.M409189200 CrossRefPubMed J.W. Joseph, V. Koshkin, M.C. Saleh, W.I. Sivitz, C.Y. Zhang, B.B. Lowell et al., Free fatty acid-induced beta-cell defects are dependent on uncoupling protein-2 expression. J. Biol. Chem. 279, 51049–51056 (2004). doi:10.​1074/​jbc.​M409189200 CrossRefPubMed
7.
go back to reference K.S. Echtay, D. Roussel, J. St-Pierre, M.B. Jekabsons, S. Cadenas, J.A. Stuart et al., Superoxide activates mitochondrial uncoupling proteins. Nature. 415, 96–99 (2002). doi:10.1038/415096a CrossRefPubMed K.S. Echtay, D. Roussel, J. St-Pierre, M.B. Jekabsons, S. Cadenas, J.A. Stuart et al., Superoxide activates mitochondrial uncoupling proteins. Nature. 415, 96–99 (2002). doi:10.​1038/​415096a CrossRefPubMed
8.
go back to reference K.S. Echtay, M.P. Murphy, R.A. Smith, D.A. Talbot, M.D. Brand, Superoxide activates mitochondrial uncoupling protein-2 from the matrix side: studies using targeted antioxidants. J. Biol. Chem. 277, 47129–47135 (2002). doi:10.1074/jbc.M208262200 CrossRefPubMed K.S. Echtay, M.P. Murphy, R.A. Smith, D.A. Talbot, M.D. Brand, Superoxide activates mitochondrial uncoupling protein-2 from the matrix side: studies using targeted antioxidants. J. Biol. Chem. 277, 47129–47135 (2002). doi:10.​1074/​jbc.​M208262200 CrossRefPubMed
9.
10.
go back to reference C. Carlsson, L.A. Borg, N. Welsh, Sodium palmitate induces partial mitochondrial uncoupling and reactive oxygen species in rat pancreatic islets in vitro. Endocrinology. 140, 3422–3428 (1999). doi:10.1210/en.140.8.3422 PubMed C. Carlsson, L.A. Borg, N. Welsh, Sodium palmitate induces partial mitochondrial uncoupling and reactive oxygen species in rat pancreatic islets in vitro. Endocrinology. 140, 3422–3428 (1999). doi:10.​1210/​en.​140.​8.​3422 PubMed
12.
go back to reference V. Hirschberg Jensen, C. Affourtit, Mitochondrial uncoupling protein-2 is not involved in palmitate-induced impairment of glucose-stimulated insulin secretion in INS-1E insulinoma cells and is not needed for the amplification of insulin release. Biochem. Biophys. Rep. 1, 8–15 (2015). doi:10.1016/j.bbrep.2015.03.008 PubMedPubMedCentral V. Hirschberg Jensen, C. Affourtit, Mitochondrial uncoupling protein-2 is not involved in palmitate-induced impairment of glucose-stimulated insulin secretion in INS-1E insulinoma cells and is not needed for the amplification of insulin release. Biochem. Biophys. Rep. 1, 8–15 (2015). doi:10.​1016/​j.​bbrep.​2015.​03.​008 PubMedPubMedCentral
13.
go back to reference Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Electron-Transport Chains and their Proton Pumps in Molecular Biology of the Cell, 4th edn. (Garland Science, New York, 2002). Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Electron-Transport Chains and their Proton Pumps in Molecular Biology of the Cell, 4th edn. (Garland Science, New York, 2002).
14.
go back to reference J. Barlow, V.H. Jensen, M. Jastroch, C. Affourtit, Palmitate-induced impairment of glucose-stimulated insulin secretion precedes mitochondrial dysfunction in mouse pancreatic islets. Biochem. J. 473(4), 487–496 (2016). doi:10.1042/BJ20151080 CrossRefPubMed J. Barlow, V.H. Jensen, M. Jastroch, C. Affourtit, Palmitate-induced impairment of glucose-stimulated insulin secretion precedes mitochondrial dysfunction in mouse pancreatic islets. Biochem. J. 473(4), 487–496 (2016). doi:10.​1042/​BJ20151080 CrossRefPubMed
16.
17.
go back to reference A.F. Oliveira, D.A. Cunha, L. Ladriere, M. Igoillo-Esteve, M. Bugliani, P. Marchetti, M. Cnop, In vitro use of free fatty acids bound to albumin: a comparison of protocols. Biotechniques 58(5), 228–233 (2015). doi:10.2144/000114285 CrossRefPubMed A.F. Oliveira, D.A. Cunha, L. Ladriere, M. Igoillo-Esteve, M. Bugliani, P. Marchetti, M. Cnop, In vitro use of free fatty acids bound to albumin: a comparison of protocols. Biotechniques 58(5), 228–233 (2015). doi:10.​2144/​000114285 CrossRefPubMed
18.
go back to reference A.K. Busch, D. Cordery, G.S. Denyer, T.J. Biden, Expression profiling of palmitate- and oleate-regulated genes provides novel insights into the effects of chronic lipid exposure on pancreatic β-cell function. Diabetes 51, 977–987 (2002). doi:10.2337/diabetes.51.4.977 CrossRefPubMed A.K. Busch, D. Cordery, G.S. Denyer, T.J. Biden, Expression profiling of palmitate- and oleate-regulated genes provides novel insights into the effects of chronic lipid exposure on pancreatic β-cell function. Diabetes 51, 977–987 (2002). doi:10.​2337/​diabetes.​51.​4.​977 CrossRefPubMed
19.
go back to reference H. Yoshikawa, Y. Tajiri, Y. Sako, T. Hashimoto, F. Umeda, H. Nawata, Effects of free fatty acids on beta-cell functions: a possible involvement of peroxisome proliferator-activated receptors alpha or pancreatic/duodenal homeobox. Metabolism 50, 613–618 (2001). doi:10.1053/meta.2001.22565 CrossRefPubMed H. Yoshikawa, Y. Tajiri, Y. Sako, T. Hashimoto, F. Umeda, H. Nawata, Effects of free fatty acids on beta-cell functions: a possible involvement of peroxisome proliferator-activated receptors alpha or pancreatic/duodenal homeobox. Metabolism 50, 613–618 (2001). doi:10.​1053/​meta.​2001.​22565 CrossRefPubMed
20.
go back to reference T.C. Brelje, N.V. Bhagroo, L.E. Stout, R.L. Sorenson, Beneficial effects of lipids and prolactin on insulin secretion and beta-cell proliferation: a role for lipids in the adaptation of islets to pregnancy. J. Endocrinol. 197, 265–276 (2008). doi:10.1677/JOE-07-0657 CrossRefPubMed T.C. Brelje, N.V. Bhagroo, L.E. Stout, R.L. Sorenson, Beneficial effects of lipids and prolactin on insulin secretion and beta-cell proliferation: a role for lipids in the adaptation of islets to pregnancy. J. Endocrinol. 197, 265–276 (2008). doi:10.​1677/​JOE-07-0657 CrossRefPubMed
21.
go back to reference Y. Terauchi, H. Sakura, K. Yasuda, K. Iwamoto, N. Takahashi, K. Ito et al., Pancreatic beta-cell-specific targeted disruption of glucokinase gene: diabetes mellitus due to defective insulin secretion to glucose. J. Biol. Chem. 270, 30253–30256 (1995). doi:10.1074/jbc.270.51.30253 CrossRefPubMed Y. Terauchi, H. Sakura, K. Yasuda, K. Iwamoto, N. Takahashi, K. Ito et al., Pancreatic beta-cell-specific targeted disruption of glucokinase gene: diabetes mellitus due to defective insulin secretion to glucose. J. Biol. Chem. 270, 30253–30256 (1995). doi:10.​1074/​jbc.​270.​51.​30253 CrossRefPubMed
22.
go back to reference J. Xiao, S. Gregersen, M. Kruhøffer, S.B. Pedersen, T.F. Ørntoft, K. Hermansen, The effect of chronic exposure to fatty acids on gene expression in clonal insulin-producing cells: studies using high density oligonucleotide microarray. Endocrinology 142, 4777–4784 (2001). doi:10.1210/en.142.11.4777 CrossRefPubMed J. Xiao, S. Gregersen, M. Kruhøffer, S.B. Pedersen, T.F. Ørntoft, K. Hermansen, The effect of chronic exposure to fatty acids on gene expression in clonal insulin-producing cells: studies using high density oligonucleotide microarray. Endocrinology 142, 4777–4784 (2001). doi:10.​1210/​en.​142.​11.​4777 CrossRefPubMed
23.
go back to reference M. Kebede, J. Favaloro, J.E. Gunton, D.R. Laybutt, M. Shaw, N. Wong et al., Fructose-1,6-bisphosphatase overexpression in pancreatic β-cells results in reduced insulin secretion: a new mechanism for fat-induced impairment of β-cell function. Diabetes 57, 1887–1895 (2008). doi:10.2337/db07-1326 CrossRefPubMedPubMedCentral M. Kebede, J. Favaloro, J.E. Gunton, D.R. Laybutt, M. Shaw, N. Wong et al., Fructose-1,6-bisphosphatase overexpression in pancreatic β-cells results in reduced insulin secretion: a new mechanism for fat-induced impairment of β-cell function. Diabetes 57, 1887–1895 (2008). doi:10.​2337/​db07-1326 CrossRefPubMedPubMedCentral
24.
go back to reference Y. Zhang, Z. Xie, G. Zhou, H. Zhang, J. Lu, W.J. Zhang, Fructose-1,6-bisphosphatase regulates glucose-stimulated insulin secretion of mouse pancreatic beta-cells. Endocrinology 151, 4688–4695 (2010). doi:10.1210/en.2009-1185 CrossRefPubMed Y. Zhang, Z. Xie, G. Zhou, H. Zhang, J. Lu, W.J. Zhang, Fructose-1,6-bisphosphatase regulates glucose-stimulated insulin secretion of mouse pancreatic beta-cells. Endocrinology 151, 4688–4695 (2010). doi:10.​1210/​en.​2009-1185 CrossRefPubMed
26.
go back to reference N. Sekine, V. Cirulli, R. Regazzi, L.J. Brown, E. Gine, J. Tamarit-Rodriguez et al., Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells: potential role in nutrient sensing. J. Biol. Chem. 269, 4895–4902 (1994)PubMed N. Sekine, V. Cirulli, R. Regazzi, L.J. Brown, E. Gine, J. Tamarit-Rodriguez et al., Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells: potential role in nutrient sensing. J. Biol. Chem. 269, 4895–4902 (1994)PubMed
29.
go back to reference Y.P. Zhou, V.E. Grill, Palmitate-induced beta-cell insensitivity to glucose is coupled to decreased pyruvate dehydrogenase activity and enhanced kinase activity in rat pancreatic islets. Diabetes 44, 394–399 (1995). doi:10.2337/diab.44.4.394 CrossRefPubMed Y.P. Zhou, V.E. Grill, Palmitate-induced beta-cell insensitivity to glucose is coupled to decreased pyruvate dehydrogenase activity and enhanced kinase activity in rat pancreatic islets. Diabetes 44, 394–399 (1995). doi:10.​2337/​diab.​44.​4.​394 CrossRefPubMed
31.
go back to reference M. Cnop, B. Abdulkarim, G. Bottu, D.A. Cunha, M. Igoillo-Esteve, M. Masini et al., RNA sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes 63, 1978–1993 (2014). doi:10.2337/db13-1383 CrossRefPubMed M. Cnop, B. Abdulkarim, G. Bottu, D.A. Cunha, M. Igoillo-Esteve, M. Masini et al., RNA sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes 63, 1978–1993 (2014). doi:10.​2337/​db13-1383 CrossRefPubMed
32.
34.
go back to reference S.U. Mir, N.M. George, L. Zahoor, R. Harms, Z. Guinn, N.E. Sarvetnick, Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J. Biol. Chem. 290, 6071–6085 (2015). doi:10.1074/jbc.M114.605345 CrossRefPubMed S.U. Mir, N.M. George, L. Zahoor, R. Harms, Z. Guinn, N.E. Sarvetnick, Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J. Biol. Chem. 290, 6071–6085 (2015). doi:10.​1074/​jbc.​M114.​605345 CrossRefPubMed
Metadata
Title
A hypothetical model to solve the controversy over the involvement of UCP2 in palmitate-induced β-cell dysfunction
Authors
Alaa Shaheen
Ahmad M. A. Aljebali
Publication date
01-11-2016
Publisher
Springer US
Published in
Endocrine / Issue 2/2016
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-016-1051-1

Other articles of this Issue 2/2016

Endocrine 2/2016 Go to the issue