Skip to main content
Top
Published in: Endocrine 1/2016

01-07-2016 | Original Article

Association between insulin resistance and impairment of FGF21 signal transduction in skeletal muscles

Authors: Ja Young Jeon, Sung-E Choi, Eun Suk Ha, Tae Ho Kim, Jong Gab Jung, Seung Jin Han, Hae Jin Kim, Dae Jung Kim, Yup Kang, Kwan-Woo Lee

Published in: Endocrine | Issue 1/2016

Login to get access

Abstract

Fibroblast growth factor (FGF) 21, was identified as a potent metabolic regulator of glucose and lipid metabolism. We investigated whether the levels and signalings of FGF21 changed in the skeletal muscle of type 2 diabetes mellitus (T2DM) patients, participants with impaired glucose tolerance (IGT), human skeletal muscle myotubes (HSMMs) under insulin-resistant conditions, and mice with diet-induced obesity (DIO). A percutaneous biopsy sample of the vastus lateralis muscle of T2DM patients, IGT subjects, and participants with normal glucose tolerance was obtained and the levels and signalings of FGF21 were assessed. We determined whether the expression and signalings of FGF21 in HSMMs altered according to palmitate concentrations and exposure time. Also, we confirmed whether changes of FGF21 signal transduction resulted in the alteration of FGF21 functions. DIO mice were treated intravenously with recombinant FGF21, and the levels and signalings of FGF21 were assessed in their soleus muscles. We checked whether or not FGF21 played a role in the gene transcription related to lipid oxidation. Levels of FGF21 increased, whereas levels of phosphorylated FGF receptor (p-FGFR), phosphorylated FGFR substrates 2α (p-FRS2α), and phosphorylated extracellular signal-regulated kinases (p-ERK) decreased in the skeletal muscle of both T2DM patients and IGT subjects. In vitro, palmitate increased the levels of FGF21 and significantly reduced the levels of β-klotho, p-FGFR, p-FRS2α, and p-ERK1/2 in HSMMs exposed to palmitate. Palmitate also decreased glucose uptake and glycogen contents of FGF21. Consistently, the levels of FGF21 were significantly higher and the levels of β-klotho and p-FGFR were lower in the DIO mice than in normal lean mice. The levels of FGF21 increased but its signal transduction and actions were impaired in skeletal muscles of T2DM patients, IGT subjects, in insulin-resistant HSMMs, and DIO mice.
Appendix
Available only for authorised users
Literature
1.
go back to reference T. Nishimura, Y. Nakatake, M. Konishi, N. Itoh, Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim. Biophys. Acta 1492, 203–206 (2000)CrossRefPubMed T. Nishimura, Y. Nakatake, M. Konishi, N. Itoh, Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim. Biophys. Acta 1492, 203–206 (2000)CrossRefPubMed
2.
go back to reference A. Kharitonenkov, T.L. Shiyanova, A. Koester, A.M. Ford, R. Micanovic, E.J. Galbreath et al., FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115, 1627–1635 (2005)CrossRefPubMedPubMedCentral A. Kharitonenkov, T.L. Shiyanova, A. Koester, A.M. Ford, R. Micanovic, E.J. Galbreath et al., FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115, 1627–1635 (2005)CrossRefPubMedPubMedCentral
3.
go back to reference A. Kharitonenkov, V.J. Wroblewski, A. Koester, Y.F. Chen, C.K. Clutinger, X.T. Tigno et al., The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148, 774–781 (2007)CrossRefPubMed A. Kharitonenkov, V.J. Wroblewski, A. Koester, Y.F. Chen, C.K. Clutinger, X.T. Tigno et al., The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148, 774–781 (2007)CrossRefPubMed
4.
go back to reference Y. Hotta, H. Nakamura, M. Konishi, Y. Murata, H. Takagi, S. Matsumura et al., Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 150, 4625–4633 (2009)CrossRefPubMed Y. Hotta, H. Nakamura, M. Konishi, Y. Murata, H. Takagi, S. Matsumura et al., Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 150, 4625–4633 (2009)CrossRefPubMed
5.
go back to reference T. Coskun, H.A. Bina, M.A. Schneider, J.D. Dunbar, C.C. Hu, Y. Chen et al., Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149, 6018–6027 (2008)CrossRefPubMed T. Coskun, H.A. Bina, M.A. Schneider, J.D. Dunbar, C.C. Hu, Y. Chen et al., Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149, 6018–6027 (2008)CrossRefPubMed
6.
go back to reference M. Mraz, M. Bartlova, Z. Lacinova, D. Michalsky, M. Kasalicky, D. Haluzikova et al., Serum concentrations and tissue expression of a novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesity. Clin. Endocrinol. (Oxf) 71, 369–375 (2009)CrossRef M. Mraz, M. Bartlova, Z. Lacinova, D. Michalsky, M. Kasalicky, D. Haluzikova et al., Serum concentrations and tissue expression of a novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesity. Clin. Endocrinol. (Oxf) 71, 369–375 (2009)CrossRef
7.
go back to reference R.D. Semba, K. Sun, J.M. Egan, C. Crasto, O.D. Carlson, L. Ferrucci, Relationship of serum fibroblast growth factor 21 with abnormal glucose metabolism and insulin resistance: the Baltimore Longitudinal Study of Aging. J. Clin. Endocrinol. Metab. 97, 1375–1382 (2012)CrossRefPubMedPubMedCentral R.D. Semba, K. Sun, J.M. Egan, C. Crasto, O.D. Carlson, L. Ferrucci, Relationship of serum fibroblast growth factor 21 with abnormal glucose metabolism and insulin resistance: the Baltimore Longitudinal Study of Aging. J. Clin. Endocrinol. Metab. 97, 1375–1382 (2012)CrossRefPubMedPubMedCentral
8.
go back to reference A.O. Chavez, M. Molina-Carrion, M.A. Abdul-Ghani, F. Folli, R.A. Defronzo, D. Tripathy, Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care 32, 1542–1546 (2009)CrossRefPubMedPubMedCentral A.O. Chavez, M. Molina-Carrion, M.A. Abdul-Ghani, F. Folli, R.A. Defronzo, D. Tripathy, Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care 32, 1542–1546 (2009)CrossRefPubMedPubMedCentral
9.
go back to reference F.M. Fisher, P.C. Chui, P.J. Antonellis, H.A. Bina, A. Kharitonenkov, J.S. Flier et al., Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 59, 2781–2789 (2010)CrossRefPubMedPubMedCentral F.M. Fisher, P.C. Chui, P.J. Antonellis, H.A. Bina, A. Kharitonenkov, J.S. Flier et al., Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 59, 2781–2789 (2010)CrossRefPubMedPubMedCentral
10.
go back to reference L.L. Listenberger, D.S. Ory, J.E. Schaffer, Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J. Biol. Chem. 276, 14890–14895 (2001)CrossRefPubMed L.L. Listenberger, D.S. Ory, J.E. Schaffer, Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J. Biol. Chem. 276, 14890–14895 (2001)CrossRefPubMed
11.
go back to reference E.S. Muise, B. Azzolina, D.W. Kuo, M. El-Sherbeini, Y. Tan, X. Yuan et al., Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol. Pharmacol. 74, 403–412 (2008)CrossRefPubMed E.S. Muise, B. Azzolina, D.W. Kuo, M. El-Sherbeini, Y. Tan, X. Yuan et al., Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol. Pharmacol. 74, 403–412 (2008)CrossRefPubMed
13.
go back to reference M.J. Potthoff, T. Inagaki, S. Satapati, X. Ding, T. He, R. Goetz et al., FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl. Acad. Sci. USA 106, 10853–10858 (2009)CrossRefPubMedPubMedCentral M.J. Potthoff, T. Inagaki, S. Satapati, X. Ding, T. He, R. Goetz et al., FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl. Acad. Sci. USA 106, 10853–10858 (2009)CrossRefPubMedPubMedCentral
14.
go back to reference W. Wente, A.M. Efanov, M. Brenner, A. Kharitonenkov, A. Koster, G.E. Sandusky et al., Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 55, 2470–2478 (2006)CrossRefPubMed W. Wente, A.M. Efanov, M. Brenner, A. Kharitonenkov, A. Koster, G.E. Sandusky et al., Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 55, 2470–2478 (2006)CrossRefPubMed
15.
go back to reference D.A. Sarruf, J.P. Thaler, G.J. Morton, J. German, J.D. Fischer, K. Ogimoto et al., Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes 59, 1817–1824 (2010)CrossRefPubMedPubMedCentral D.A. Sarruf, J.P. Thaler, G.J. Morton, J. German, J.D. Fischer, K. Ogimoto et al., Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes 59, 1817–1824 (2010)CrossRefPubMedPubMedCentral
16.
go back to reference K.H. Kim, Y.T. Jeong, H. Oh, S.H. Kim, J.M. Cho, Y.N. Kim et al., Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83–92 (2013)CrossRefPubMed K.H. Kim, Y.T. Jeong, H. Oh, S.H. Kim, J.M. Cho, Y.N. Kim et al., Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83–92 (2013)CrossRefPubMed
17.
go back to reference P. Hojman, M. Pedersen, A.R. Nielsen, R. Krogh-Madsen, C. Yfanti, T. Akerstrom et al., Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia. Diabetes 58, 2797–2801 (2009)CrossRefPubMedPubMedCentral P. Hojman, M. Pedersen, A.R. Nielsen, R. Krogh-Madsen, C. Yfanti, T. Akerstrom et al., Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia. Diabetes 58, 2797–2801 (2009)CrossRefPubMedPubMedCentral
18.
go back to reference F.L. Mashili, R.L. Austin, A.S. Deshmukh, T. Fritz, K. Caidahl, K. Bergdahl et al., Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab. Res. Rev. 27, 286–297 (2011)CrossRefPubMed F.L. Mashili, R.L. Austin, A.S. Deshmukh, T. Fritz, K. Caidahl, K. Bergdahl et al., Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab. Res. Rev. 27, 286–297 (2011)CrossRefPubMed
19.
go back to reference M.S. Lee, S.E. Choi, E.S. Ha, S.Y. An, T.H. Kim, S.J. Han et al., Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-kappaB. Metabolism 61, 1142–1151 (2012)CrossRefPubMed M.S. Lee, S.E. Choi, E.S. Ha, S.Y. An, T.H. Kim, S.J. Han et al., Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-kappaB. Metabolism 61, 1142–1151 (2012)CrossRefPubMed
20.
go back to reference K. Mai, J. Andres, K. Biedasek, J. Weicht, T. Bobbert, M. Sabath et al., Free fatty acids link metabolism and regulation of the insulin-sensitizing fibroblast growth factor-21. Diabetes 58, 1532–1538 (2009)CrossRefPubMedPubMedCentral K. Mai, J. Andres, K. Biedasek, J. Weicht, T. Bobbert, M. Sabath et al., Free fatty acids link metabolism and regulation of the insulin-sensitizing fibroblast growth factor-21. Diabetes 58, 1532–1538 (2009)CrossRefPubMedPubMedCentral
21.
go back to reference K.M. Habegger, K. Stemmer, C. Cheng, T.D. Muller, K.M. Heppner, N. Ottaway et al., Fibroblast growth factor 21 mediates specific glucagon actions. Diabetes 62, 1453–1463 (2013)CrossRefPubMedPubMedCentral K.M. Habegger, K. Stemmer, C. Cheng, T.D. Muller, K.M. Heppner, N. Ottaway et al., Fibroblast growth factor 21 mediates specific glucagon actions. Diabetes 62, 1453–1463 (2013)CrossRefPubMedPubMedCentral
22.
go back to reference M.K. Badman, P. Pissios, A.R. Kennedy, G. Koukos, J.S. Flier, E. Maratos-Flier, Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5, 426–437 (2007)CrossRefPubMed M.K. Badman, P. Pissios, A.R. Kennedy, G. Koukos, J.S. Flier, E. Maratos-Flier, Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5, 426–437 (2007)CrossRefPubMed
23.
go back to reference K.H. Bae, J.G. Kim, K.G. Park, Transcriptional regulation of fibroblast growth factor 21 expression. Endocrinol. Metab. (Seoul) 29, 105–111 (2014)CrossRef K.H. Bae, J.G. Kim, K.G. Park, Transcriptional regulation of fibroblast growth factor 21 expression. Endocrinol. Metab. (Seoul) 29, 105–111 (2014)CrossRef
24.
go back to reference F.M. Fisher, J.L. Estall, A.C. Adams, P.J. Antonellis, H.A. Bina, J.S. Flier et al., Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 152, 2996–3004 (2011)CrossRefPubMedPubMedCentral F.M. Fisher, J.L. Estall, A.C. Adams, P.J. Antonellis, H.A. Bina, J.S. Flier et al., Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 152, 2996–3004 (2011)CrossRefPubMedPubMedCentral
26.
go back to reference Y. Ogawa, H. Kurosu, M. Yamamoto, A. Nandi, K.P. Rosenblatt, R. Goetz et al., BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc. Natl. Acad. Sci. USA 104, 7432–7437 (2007)CrossRefPubMedPubMedCentral Y. Ogawa, H. Kurosu, M. Yamamoto, A. Nandi, K.P. Rosenblatt, R. Goetz et al., BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc. Natl. Acad. Sci. USA 104, 7432–7437 (2007)CrossRefPubMedPubMedCentral
27.
go back to reference H. Kurosu, M. Choi, Y. Ogawa, A.S. Dickson, R. Goetz, A.V. Eliseenkova et al., Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem. 282, 26687–26695 (2007)CrossRefPubMedPubMedCentral H. Kurosu, M. Choi, Y. Ogawa, A.S. Dickson, R. Goetz, A.V. Eliseenkova et al., Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem. 282, 26687–26695 (2007)CrossRefPubMedPubMedCentral
28.
go back to reference J. Diaz-Delfin, E. Hondares, R. Iglesias, M. Giralt, C. Caelles, F. Villarroya, TNF-alpha represses beta-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway. Endocrinology 153, 4238–4245 (2012)CrossRefPubMed J. Diaz-Delfin, E. Hondares, R. Iglesias, M. Giralt, C. Caelles, F. Villarroya, TNF-alpha represses beta-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway. Endocrinology 153, 4238–4245 (2012)CrossRefPubMed
29.
go back to reference W.Y. So, Q. Cheng, L. Chen, C. Evans-Molina, A. Xu, K.S. Lam et al., High glucose represses beta-klotho expression and impairs fibroblast growth factor 21 action in mouse pancreatic islets: involvement of peroxisome proliferator-activated receptor gamma signaling. Diabetes 62, 3751–3759 (2013)CrossRefPubMedPubMedCentral W.Y. So, Q. Cheng, L. Chen, C. Evans-Molina, A. Xu, K.S. Lam et al., High glucose represses beta-klotho expression and impairs fibroblast growth factor 21 action in mouse pancreatic islets: involvement of peroxisome proliferator-activated receptor gamma signaling. Diabetes 62, 3751–3759 (2013)CrossRefPubMedPubMedCentral
30.
go back to reference C. Schmitz-Peiffer, Signalling aspects of insulin resistance in skeletal muscle: mechanisms induced by lipid oversupply. Cell Signal. 12, 583–594 (2000)CrossRefPubMed C. Schmitz-Peiffer, Signalling aspects of insulin resistance in skeletal muscle: mechanisms induced by lipid oversupply. Cell Signal. 12, 583–594 (2000)CrossRefPubMed
31.
go back to reference A.R. Martins, R.T. Nachbar, R. Gorjao, M.A. Vinolo, W.T. Festuccia, R.H. Lambertucci et al., Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids Health Dis. 11, 30 (2012)CrossRefPubMedPubMedCentral A.R. Martins, R.T. Nachbar, R. Gorjao, M.A. Vinolo, W.T. Festuccia, R.H. Lambertucci et al., Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids Health Dis. 11, 30 (2012)CrossRefPubMedPubMedCentral
Metadata
Title
Association between insulin resistance and impairment of FGF21 signal transduction in skeletal muscles
Authors
Ja Young Jeon
Sung-E Choi
Eun Suk Ha
Tae Ho Kim
Jong Gab Jung
Seung Jin Han
Hae Jin Kim
Dae Jung Kim
Yup Kang
Kwan-Woo Lee
Publication date
01-07-2016
Publisher
Springer US
Published in
Endocrine / Issue 1/2016
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-015-0845-x

Other articles of this Issue 1/2016

Endocrine 1/2016 Go to the issue