Skip to main content
Top
Published in: Endocrine 2/2016

01-11-2016 | Original Article

The pivotal role of high glucose-induced overexpression of PKCβ in the appearance of glucagon-like peptide-1 resistance in endothelial cells

Authors: Gemma Pujadas, Valeria De Nigris, Lucia La Sala, Roberto Testa, Stefano Genovese, Antonio Ceriello

Published in: Endocrine | Issue 2/2016

Login to get access

Abstract

Recently, it has been demonstrated that Glucagon-like peptide-1 (GLP-1) has a protective effect on endothelial cells. Our hypothesis is that this GLP-1 protective effect is partly lost when the cells are exposed to sustained high glucose concentrations. Human umbilical vein endothelial cells (HUVECs) were cultured for 21 days in normal glucose (5 mmol/L, NG) or high glucose (25 mmol/L glucose, HG). GLP-1 (7-37) and Ruboxistaurin were added at 50 and 500 nM, respectively, alone or in combination, 1 h before cell harvesting. Analysis of GLP-1 receptor protein levels, as well as of the gene expression of different ER stress-related genes, proliferation markers, antioxidant cell response-related genes, and PKA subunits, was performed. ROS production was also measured in HUVECs exposed to mentioned treatments. GLP-1 receptor expression was reduced in HUVECs exposed to chronic high glucose concentrations but was partially restored by a chemical PKCβ-specific inhibitor. GLP-1, added as an acute treatment in endothelial cells, had the capacity to induce the expression of Nrf2-detoxifying enzyme targets, to increase transcription levels of scavenger genes, to attenuate the expression of high glucose-induced PKA subunits, ER stress and also the apoptotic phenotype of HUVECs; these effects occured only when high glucose-induced PKCβ overexpression was reduced by Ruboxistaurin. In a similar manner, ROS production induced by high glucose was reduced by GLP-1 in the presence of PKCβ inhibitor. This study suggests that an increase in PKCβ, induced by high glucose, could have a role in endothelial GLP-1 resistance, reducing GLP-1 receptor levels and disrupting the GLP-1 canonical pathway.
Appendix
Available only for authorised users
Literature
1.
go back to reference S. Herzberg-Schafer, M. Heni, N. Stefan, H.U. Haring, A. Fritsche, Impairment of GLP1-induced insulin secretion: role of genetic background, insulin resistance and hyperglycaemia. Diabetes Obes. Metab. 14(Suppl 3), 85–90 (2012)CrossRefPubMed S. Herzberg-Schafer, M. Heni, N. Stefan, H.U. Haring, A. Fritsche, Impairment of GLP1-induced insulin secretion: role of genetic background, insulin resistance and hyperglycaemia. Diabetes Obes. Metab. 14(Suppl 3), 85–90 (2012)CrossRefPubMed
2.
go back to reference M. Nauck, F. Stockmann, R. Ebert, W. Creutzfeldt, Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29, 46–52 (1986)CrossRefPubMed M. Nauck, F. Stockmann, R. Ebert, W. Creutzfeldt, Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29, 46–52 (1986)CrossRefPubMed
4.
go back to reference Y. Ishibashi, T. Matsui, M. Takeuchi, S. Yamagishi, Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation end product (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression. Biochem. Biophys. Res. Commun. 391, 1405–1408 (2010)CrossRefPubMed Y. Ishibashi, T. Matsui, M. Takeuchi, S. Yamagishi, Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation end product (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression. Biochem. Biophys. Res. Commun. 391, 1405–1408 (2010)CrossRefPubMed
5.
go back to reference L. Ding, J. Zhang, Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells. Acta Pharmacol. Sin. 33, 75–81 (2012)CrossRefPubMed L. Ding, J. Zhang, Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells. Acta Pharmacol. Sin. 33, 75–81 (2012)CrossRefPubMed
6.
go back to reference G.G. Holz, Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 53, 5–13 (2004)CrossRefPubMedPubMedCentral G.G. Holz, Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 53, 5–13 (2004)CrossRefPubMedPubMedCentral
7.
go back to reference K. Ban, M.H. Noyan-Ashraf, J. Hoefer, S.S. Bolz, D.J. Drucker, M. Husain, Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117, 2340–2350 (2008)CrossRefPubMed K. Ban, M.H. Noyan-Ashraf, J. Hoefer, S.S. Bolz, D.J. Drucker, M. Husain, Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117, 2340–2350 (2008)CrossRefPubMed
8.
go back to reference T. Nystrom, M.K. Gutniak, Q. Zhang, F. Zhang, J.J. Holst, B. Ahren, A. Sjoholm, Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am. J. Physiol. Endocrinol. Metab. 287, E1209–E1215 (2004)CrossRefPubMed T. Nystrom, M.K. Gutniak, Q. Zhang, F. Zhang, J.J. Holst, B. Ahren, A. Sjoholm, Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am. J. Physiol. Endocrinol. Metab. 287, E1209–E1215 (2004)CrossRefPubMed
9.
go back to reference A. Ceriello, K. Esposito, R. Testa, A.R. Bonfigli, M. Marra, D. Giugliano, The possible protective role of glucagon-like peptide 1 on endothelium during the meal and evidence for an “endothelial resistance” to glucagon-like peptide 1 in diabetes. Diabetes Care 34, 697–702 (2011)CrossRefPubMedPubMedCentral A. Ceriello, K. Esposito, R. Testa, A.R. Bonfigli, M. Marra, D. Giugliano, The possible protective role of glucagon-like peptide 1 on endothelium during the meal and evidence for an “endothelial resistance” to glucagon-like peptide 1 in diabetes. Diabetes Care 34, 697–702 (2011)CrossRefPubMedPubMedCentral
10.
go back to reference H. Oeseburg, R.A. de Boer, H. Buikema, P. van der Harst, W.H. van Gilst, H.H. Sillje, Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A. Arterioscler. Thromb. Vasc. Biol. 30, 1407–1414 (2010)CrossRefPubMed H. Oeseburg, R.A. de Boer, H. Buikema, P. van der Harst, W.H. van Gilst, H.H. Sillje, Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A. Arterioscler. Thromb. Vasc. Biol. 30, 1407–1414 (2010)CrossRefPubMed
11.
go back to reference A. Pecorelli, V. Bocci, A. Acquaviva, G. Belmonte, C. Gardi, F. Virgili, L. Ciccoli, G. Valacchi, NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells. Toxicol. Appl. Pharmacol. 267, 30–40 (2013)CrossRefPubMed A. Pecorelli, V. Bocci, A. Acquaviva, G. Belmonte, C. Gardi, F. Virgili, L. Ciccoli, G. Valacchi, NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells. Toxicol. Appl. Pharmacol. 267, 30–40 (2013)CrossRefPubMed
12.
go back to reference J. Liu, Y. Liu, L. Chen, Y. Wang, J. Li, Glucagon-Like Peptide-1 Analog Liraglutide Protects against Diabetic Cardiomyopathy by the Inhibition of the Endoplasmic Reticulum Stress Pathway. J. Diabetes Res. 2013, 630537 (2013)PubMedPubMedCentral J. Liu, Y. Liu, L. Chen, Y. Wang, J. Li, Glucagon-Like Peptide-1 Analog Liraglutide Protects against Diabetic Cardiomyopathy by the Inhibition of the Endoplasmic Reticulum Stress Pathway. J. Diabetes Res. 2013, 630537 (2013)PubMedPubMedCentral
13.
go back to reference B. Schisano, A.L. Harte, K. Lois, P. Saravanan, N. Al-Daghri, O. Al-Attas, L.B. Knudsen, P.G. McTernan, A. Ceriello, G. Tripathi, GLP-1 analogue, Liraglutide protects human umbilical vein endothelial cells against high glucose induced endoplasmic reticulum stress. Regul. Pept. 174, 46–52 (2012)CrossRefPubMed B. Schisano, A.L. Harte, K. Lois, P. Saravanan, N. Al-Daghri, O. Al-Attas, L.B. Knudsen, P.G. McTernan, A. Ceriello, G. Tripathi, GLP-1 analogue, Liraglutide protects human umbilical vein endothelial cells against high glucose induced endoplasmic reticulum stress. Regul. Pept. 174, 46–52 (2012)CrossRefPubMed
14.
go back to reference L. Zhao, H. Guo, H. Chen, R.B. Petersen, L. Zheng, A. Peng, K. Huang, Effect of Liraglutide on endoplasmic reticulum stress in diabetes. Biochem. Biophys. Res. Commun. 441, 133–138 (2013)CrossRefPubMed L. Zhao, H. Guo, H. Chen, R.B. Petersen, L. Zheng, A. Peng, K. Huang, Effect of Liraglutide on endoplasmic reticulum stress in diabetes. Biochem. Biophys. Res. Commun. 441, 133–138 (2013)CrossRefPubMed
15.
go back to reference A. Mima, J. Hiraoka-Yamomoto, Q. Li, M. Kitada, C. Li, P. Geraldes, M. Matsumoto, K. Mizutani, K. Park, C. Cahill, S. Nishikawa, C. Rask-Madsen, G.L. King, Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCbeta activation in diabetes. Diabetes 61, 2967–2979 (2012)CrossRefPubMedPubMedCentral A. Mima, J. Hiraoka-Yamomoto, Q. Li, M. Kitada, C. Li, P. Geraldes, M. Matsumoto, K. Mizutani, K. Park, C. Cahill, S. Nishikawa, C. Rask-Madsen, G.L. King, Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCbeta activation in diabetes. Diabetes 61, 2967–2979 (2012)CrossRefPubMedPubMedCentral
16.
go back to reference T.P. Solomon, S.H. Knudsen, K. Karstoft, K. Winding, J.J. Holst, B.K. Pedersen, Examining the effects of hyperglycemia on pancreatic endocrine function in humans: evidence for in vivo glucotoxicity. J. Clin. Endocrinol. Metab. 97, 4682–4691 (2012)CrossRefPubMed T.P. Solomon, S.H. Knudsen, K. Karstoft, K. Winding, J.J. Holst, B.K. Pedersen, Examining the effects of hyperglycemia on pancreatic endocrine function in humans: evidence for in vivo glucotoxicity. J. Clin. Endocrinol. Metab. 97, 4682–4691 (2012)CrossRefPubMed
17.
go back to reference C.J. Green, T.I. Henriksen, B.K. Pedersen, T.P. Solomon, Glucagon like peptide-1-induced glucose metabolism in differentiated human muscle satellite cells is attenuated by hyperglycemia. PLoS One 7, e44284 (2012)CrossRefPubMedPubMedCentral C.J. Green, T.I. Henriksen, B.K. Pedersen, T.P. Solomon, Glucagon like peptide-1-induced glucose metabolism in differentiated human muscle satellite cells is attenuated by hyperglycemia. PLoS One 7, e44284 (2012)CrossRefPubMedPubMedCentral
18.
go back to reference G. Xu, H. Kaneto, D.R. Laybutt, V.F. Duvivier-Kali, N. Trivedi, K. Suzuma, G.L. King, G.C. Weir, S. Bonner-Weir, Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes. Diabetes 56, 1551–1558 (2007)CrossRefPubMed G. Xu, H. Kaneto, D.R. Laybutt, V.F. Duvivier-Kali, N. Trivedi, K. Suzuma, G.L. King, G.C. Weir, S. Bonner-Weir, Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes. Diabetes 56, 1551–1558 (2007)CrossRefPubMed
19.
go back to reference C. Gorrini, I.S. Harris, T.W. Mak, Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013)CrossRefPubMed C. Gorrini, I.S. Harris, T.W. Mak, Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013)CrossRefPubMed
20.
go back to reference A.C. Brewer, T.V. Murray, M. Arno, M. Zhang, N.P. Anilkumar, G.E. Mann, A.M. Shah, Nox4 regulates Nrf2 and glutathione redox in cardiomyocytes in vivo. Free Radic. Biol. Med. 51, 205–215 (2011)CrossRefPubMedPubMedCentral A.C. Brewer, T.V. Murray, M. Arno, M. Zhang, N.P. Anilkumar, G.E. Mann, A.M. Shah, Nox4 regulates Nrf2 and glutathione redox in cardiomyocytes in vivo. Free Radic. Biol. Med. 51, 205–215 (2011)CrossRefPubMedPubMedCentral
21.
go back to reference D.J. Drucker, Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol. Endocrinol. 17, 161–171 (2003)CrossRefPubMed D.J. Drucker, Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol. Endocrinol. 17, 161–171 (2003)CrossRefPubMed
22.
go back to reference T. Forst, M.M. Weber, A. Pfutzner, Cardiovascular benefits of GLP-1-based therapies in patients with diabetes mellitus type 2: effects on endothelial and vascular dysfunction beyond glycemic control. Exp. Diabetes Res. 2012, 635472 (2012)CrossRefPubMedPubMedCentral T. Forst, M.M. Weber, A. Pfutzner, Cardiovascular benefits of GLP-1-based therapies in patients with diabetes mellitus type 2: effects on endothelial and vascular dysfunction beyond glycemic control. Exp. Diabetes Res. 2012, 635472 (2012)CrossRefPubMedPubMedCentral
23.
go back to reference K. Ban, S. Hui, D.J. Drucker, M. Husain, Cardiovascular consequences of drugs used for the treatment of diabetes: potential promise of incretin-based therapies. J. Am. Soc. Hypertens. 3, 245–259 (2009)CrossRefPubMed K. Ban, S. Hui, D.J. Drucker, M. Husain, Cardiovascular consequences of drugs used for the treatment of diabetes: potential promise of incretin-based therapies. J. Am. Soc. Hypertens. 3, 245–259 (2009)CrossRefPubMed
24.
go back to reference D. Accili, K.C. Arden, FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004)CrossRefPubMed D. Accili, K.C. Arden, FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004)CrossRefPubMed
25.
go back to reference K. Soberg, T. Jahnsen, T. Rognes, B.S. Skalhegg, J.K. Laerdahl, Evolutionary paths of the cAMP-dependent protein kinase (PKA) catalytic subunits. PLoS One 8, e60935 (2013)CrossRefPubMedPubMedCentral K. Soberg, T. Jahnsen, T. Rognes, B.S. Skalhegg, J.K. Laerdahl, Evolutionary paths of the cAMP-dependent protein kinase (PKA) catalytic subunits. PLoS One 8, e60935 (2013)CrossRefPubMedPubMedCentral
26.
go back to reference S. Rajan, L.M. Dickson, E. Mathew, C.M. Orr, J.H. Ellenbroek, L.H. Philipson, B. Wicksteed, Chronic hyperglycemia downregulates GLP-1 receptor signaling in pancreatic beta-cells via protein kinase A. Mol. Metab. 4, 265–276 (2015)CrossRefPubMedPubMedCentral S. Rajan, L.M. Dickson, E. Mathew, C.M. Orr, J.H. Ellenbroek, L.H. Philipson, B. Wicksteed, Chronic hyperglycemia downregulates GLP-1 receptor signaling in pancreatic beta-cells via protein kinase A. Mol. Metab. 4, 265–276 (2015)CrossRefPubMedPubMedCentral
27.
go back to reference T.W. Kensler, N. Wakabayashi, S. Biswal, Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89–116 (2007)CrossRefPubMed T.W. Kensler, N. Wakabayashi, S. Biswal, Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89–116 (2007)CrossRefPubMed
28.
go back to reference M. Kobayashi, L. Li, N. Iwamoto, Y. Nakajima-Takagi, H. Kaneko, Y. Nakayama, M. Eguchi, Y. Wada, Y. Kumagai, M. Yamamoto, The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol. Cell. Biol. 29, 493–502 (2009)CrossRefPubMed M. Kobayashi, L. Li, N. Iwamoto, Y. Nakajima-Takagi, H. Kaneko, Y. Nakayama, M. Eguchi, Y. Wada, Y. Kumagai, M. Yamamoto, The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol. Cell. Biol. 29, 493–502 (2009)CrossRefPubMed
29.
go back to reference M. Kobayashi, M. Yamamoto, Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid. Redox Signal. 7, 385–394 (2005)CrossRefPubMed M. Kobayashi, M. Yamamoto, Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid. Redox Signal. 7, 385–394 (2005)CrossRefPubMed
30.
go back to reference M. Kobayashi, M. Yamamoto, Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv. Enzyme Regul. 46, 113–140 (2006)CrossRefPubMed M. Kobayashi, M. Yamamoto, Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv. Enzyme Regul. 46, 113–140 (2006)CrossRefPubMed
31.
go back to reference C.Y. Tsai, C.C. Wang, T.Y. Lai, H.N. Tsu, C.H. Wang, H.Y. Liang, W.W. Kuo, Antioxidant effects of diallyl trisulfide on high glucose-induced apoptosis are mediated by the PI3K/Akt-dependent activation of Nrf2 in cardiomyocytes. Int. J. Cardiol. 168, 1286–1297 (2013)CrossRefPubMed C.Y. Tsai, C.C. Wang, T.Y. Lai, H.N. Tsu, C.H. Wang, H.Y. Liang, W.W. Kuo, Antioxidant effects of diallyl trisulfide on high glucose-induced apoptosis are mediated by the PI3K/Akt-dependent activation of Nrf2 in cardiomyocytes. Int. J. Cardiol. 168, 1286–1297 (2013)CrossRefPubMed
32.
go back to reference S.G. Fonseca, M. Burcin, J. Gromada, F. Urano, Endoplasmic reticulum stress in beta-cells and development of diabetes. Curr. Opin. Pharmacol. 9, 763–770 (2009)CrossRefPubMedPubMedCentral S.G. Fonseca, M. Burcin, J. Gromada, F. Urano, Endoplasmic reticulum stress in beta-cells and development of diabetes. Curr. Opin. Pharmacol. 9, 763–770 (2009)CrossRefPubMedPubMedCentral
33.
go back to reference L. Xu, G.A. Spinas, M. Niessen, ER stress in adipocytes inhibits insulin signaling, represses lipolysis, and alters the secretion of adipokines without inhibiting glucose transport. Horm. Metab. Res. 42, 643–651 (2010)CrossRefPubMed L. Xu, G.A. Spinas, M. Niessen, ER stress in adipocytes inhibits insulin signaling, represses lipolysis, and alters the secretion of adipokines without inhibiting glucose transport. Horm. Metab. Res. 42, 643–651 (2010)CrossRefPubMed
34.
go back to reference C.J. van der Kallen, M.M. van Greevenbroek, C.D. Stehouwer, C.G. Schalkwijk, Endoplasmic reticulum stress-induced apoptosis in the development of diabetes: is there a role for adipose tissue and liver? Apoptosis Int. J. Program. Cell Death 14, 1424–1434 (2009)CrossRef C.J. van der Kallen, M.M. van Greevenbroek, C.D. Stehouwer, C.G. Schalkwijk, Endoplasmic reticulum stress-induced apoptosis in the development of diabetes: is there a role for adipose tissue and liver? Apoptosis Int. J. Program. Cell Death 14, 1424–1434 (2009)CrossRef
35.
go back to reference S. Alhusaini, K. McGee, B. Schisano, A. Harte, P. McTernan, S. Kumar, G. Tripathi, Lipopolysaccharide, high glucose and saturated fatty acids induce endoplasmic reticulum stress in cultured primary human adipocytes: Salicylate alleviates this stress. Biochem. Biophys. Res. Commun. 397, 472–478 (2010)CrossRefPubMed S. Alhusaini, K. McGee, B. Schisano, A. Harte, P. McTernan, S. Kumar, G. Tripathi, Lipopolysaccharide, high glucose and saturated fatty acids induce endoplasmic reticulum stress in cultured primary human adipocytes: Salicylate alleviates this stress. Biochem. Biophys. Res. Commun. 397, 472–478 (2010)CrossRefPubMed
36.
go back to reference C.S. McAlpine, A.J. Bowes, G.H. Werstuck, Diabetes, hyperglycemia and accelerated atherosclerosis: evidence supporting a role for endoplasmic reticulum (ER) stress signaling. Cardiovasc. Hematol. Disord. 10, 151–157 (2010)CrossRef C.S. McAlpine, A.J. Bowes, G.H. Werstuck, Diabetes, hyperglycemia and accelerated atherosclerosis: evidence supporting a role for endoplasmic reticulum (ER) stress signaling. Cardiovasc. Hematol. Disord. 10, 151–157 (2010)CrossRef
37.
go back to reference W. Bakker, E.C. Eringa, P. Sipkema, V.W. van Hinsbergh, Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res. 335, 165–189 (2009)CrossRefPubMed W. Bakker, E.C. Eringa, P. Sipkema, V.W. van Hinsbergh, Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res. 335, 165–189 (2009)CrossRefPubMed
38.
go back to reference J. Lee, S.W. Hong, S.E. Park, E.J. Rhee, C.Y. Park, K.W. Oh, S.W. Park, W.Y. Lee, Exendin-4 attenuates endoplasmic reticulum stress through a SIRT1-dependent mechanism. Cell Stress Chaperones 19, 649–656 (2014)CrossRefPubMedPubMedCentral J. Lee, S.W. Hong, S.E. Park, E.J. Rhee, C.Y. Park, K.W. Oh, S.W. Park, W.Y. Lee, Exendin-4 attenuates endoplasmic reticulum stress through a SIRT1-dependent mechanism. Cell Stress Chaperones 19, 649–656 (2014)CrossRefPubMedPubMedCentral
39.
go back to reference C.W. Younce, M.A. Burmeister, J.E. Ayala, Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am. J. Physiol. Cell Physiol. 304, C508–C518 (2013)CrossRefPubMed C.W. Younce, M.A. Burmeister, J.E. Ayala, Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am. J. Physiol. Cell Physiol. 304, C508–C518 (2013)CrossRefPubMed
40.
go back to reference B. Yusta, L.L. Baggio, J.L. Estall, J.A. Koehler, D.P. Holland, H. Li, D. Pipeleers, Z. Ling, D.J. Drucker, GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 4, 391–406 (2006)CrossRefPubMed B. Yusta, L.L. Baggio, J.L. Estall, J.A. Koehler, D.P. Holland, H. Li, D. Pipeleers, Z. Ling, D.J. Drucker, GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 4, 391–406 (2006)CrossRefPubMed
41.
go back to reference S. Tsunekawa, N. Yamamoto, K. Tsukamoto, Y. Itoh, Y. Kaneko, T. Kimura, Y. Ariyoshi, Y. Miura, Y. Oiso, I. Niki, Protection of pancreatic beta-cells by exendin-4 may involve the reduction of endoplasmic reticulum stress; in vivo and in vitro studies. J. Endocrinol. 193, 65–74 (2007)CrossRefPubMed S. Tsunekawa, N. Yamamoto, K. Tsukamoto, Y. Itoh, Y. Kaneko, T. Kimura, Y. Ariyoshi, Y. Miura, Y. Oiso, I. Niki, Protection of pancreatic beta-cells by exendin-4 may involve the reduction of endoplasmic reticulum stress; in vivo and in vitro studies. J. Endocrinol. 193, 65–74 (2007)CrossRefPubMed
42.
go back to reference M. Shimoda, Y. Kanda, S. Hamamoto, K. Tawaramoto, M. Hashiramoto, M. Matsuki, K. Kaku, The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia 54, 1098–1108 (2011)CrossRefPubMedPubMedCentral M. Shimoda, Y. Kanda, S. Hamamoto, K. Tawaramoto, M. Hashiramoto, M. Matsuki, K. Kaku, The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia 54, 1098–1108 (2011)CrossRefPubMedPubMedCentral
43.
go back to reference B. Basha, S.M. Samuel, C.R. Triggle, H. Ding, Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress? Exp. Diabetes Res. 2012, 481840 (2012)CrossRefPubMedPubMedCentral B. Basha, S.M. Samuel, C.R. Triggle, H. Ding, Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress? Exp. Diabetes Res. 2012, 481840 (2012)CrossRefPubMedPubMedCentral
44.
go back to reference Z. Zhang, J. Li, X. Jiang, L. Yang, L. Lei, D. Cai, H. Zhang, H. Chen, GLP-1 ameliorates the proliferation activity of INS-1 cells inhibited by intermittent high glucose concentrations through the regulation of cyclins. Mol. Med. Rep. 10, 683–688 (2014)PubMed Z. Zhang, J. Li, X. Jiang, L. Yang, L. Lei, D. Cai, H. Zhang, H. Chen, GLP-1 ameliorates the proliferation activity of INS-1 cells inhibited by intermittent high glucose concentrations through the regulation of cyclins. Mol. Med. Rep. 10, 683–688 (2014)PubMed
45.
go back to reference Y.H. Cheong, M.K. Kim, M.H. Son, B.K. Kaang, Glucose exposure pattern determines glucagon-like peptide 1 receptor expression and signaling through endoplasmic reticulum stress in rat insulinoma cells. Biochem. Biophys. Res. Commun. 414, 220–225 (2011)CrossRefPubMed Y.H. Cheong, M.K. Kim, M.H. Son, B.K. Kaang, Glucose exposure pattern determines glucagon-like peptide 1 receptor expression and signaling through endoplasmic reticulum stress in rat insulinoma cells. Biochem. Biophys. Res. Commun. 414, 220–225 (2011)CrossRefPubMed
46.
go back to reference Q.R. Pan, W.H. Li, H. Wang, Q. Sun, X.H. Xiao, B. Brock, O. Schmitz, Glucose, metformin, and AICAR regulate the expression of G protein-coupled receptor members in INS-1 beta cell. Horm. Metab. Res. 41, 799–804 (2009)CrossRefPubMed Q.R. Pan, W.H. Li, H. Wang, Q. Sun, X.H. Xiao, B. Brock, O. Schmitz, Glucose, metformin, and AICAR regulate the expression of G protein-coupled receptor members in INS-1 beta cell. Horm. Metab. Res. 41, 799–804 (2009)CrossRefPubMed
47.
go back to reference I. Valverde, G.S. Wang, K. Burghardt, L.M. Kauri, A. Redondo, A. Acitores, M.L. Villanueva-Penacarrillo, P. Courtois, A. Sener, J. Cancelas, W.J. Malaisse, F.W. Scott, Bioactive GLP-1 in gut, receptor expression in pancreas, and insulin response to GLP-1 in diabetes-prone rats. Endocrine 23, 77–84 (2004)CrossRefPubMed I. Valverde, G.S. Wang, K. Burghardt, L.M. Kauri, A. Redondo, A. Acitores, M.L. Villanueva-Penacarrillo, P. Courtois, A. Sener, J. Cancelas, W.J. Malaisse, F.W. Scott, Bioactive GLP-1 in gut, receptor expression in pancreas, and insulin response to GLP-1 in diabetes-prone rats. Endocrine 23, 77–84 (2004)CrossRefPubMed
Metadata
Title
The pivotal role of high glucose-induced overexpression of PKCβ in the appearance of glucagon-like peptide-1 resistance in endothelial cells
Authors
Gemma Pujadas
Valeria De Nigris
Lucia La Sala
Roberto Testa
Stefano Genovese
Antonio Ceriello
Publication date
01-11-2016
Publisher
Springer US
Published in
Endocrine / Issue 2/2016
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-015-0799-z

Other articles of this Issue 2/2016

Endocrine 2/2016 Go to the issue