Skip to main content
Top
Published in: Endocrine 3/2016

01-03-2016 | Original Article

The multimerization and secretion of adiponectin are regulated by TNF-alpha

Authors: Yiduo He, Linfang Lu, Xuan Wei, Dan Jin, Tao Qian, An Yu, Jun Sun, Jiesheng Cui, Zaiqing Yang

Published in: Endocrine | Issue 3/2016

Login to get access

Abstract

Obesity is often associated with insulin resistance, mild systemic inflammation, and decreased blood adiponectin. However, some adipokines are increased in the adipose tissue of obese individuals, and whether these adipokines are directly related to the reductions in serum adiponectin levels in an autocrine or paracrine manner remains unknown. This study indicates that the tumor necrosis factor alpha (TNF-α) suppresses the multimerization and secretion of adiponectin both in vitro and in vivo. Additionally, TNF-α remarkably suppressed the expression of the ER-resident chaperone proteins ERO1-La, DsbA-L, and ERp44. Overexpression of the transcription factor PPARγ antagonized the suppressive effect of TNF-α on ERO1-La and DsbA-L expressions. Further study revealed that PPARγ enhanced the transcription of ERO1-La and DsbA-L by directly binding to the PPRE element of ERO1-La and DsbA-L promoters. TNF-α treatment decreased this binding activity. Furthermore, TNF-α treatment enhanced the interaction between adiponectin and ERp44. In this study, we show that TNF-α impairs adiponectin multimerization and consequently decreases adiponectin secretion by altering disulfide bond modification in the endoplasmic reticulum. Altered adiponectin multimerization could explain declined adiponectin levels and altered distribution of adiponectin complexes in the plasma of obese insulin-resistant individuals.
Appendix
Available only for authorised users
Literature
1.
go back to reference Y. Arita, S. Kihara, N. Ouchi, M. Takahashi, K. Maeda, J. Miyagawa, K. Hotta, I. Shimomura, T. Nakamura, K. Miyaoka et al., Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257, 79–83 (1999)CrossRefPubMed Y. Arita, S. Kihara, N. Ouchi, M. Takahashi, K. Maeda, J. Miyagawa, K. Hotta, I. Shimomura, T. Nakamura, K. Miyaoka et al., Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257, 79–83 (1999)CrossRefPubMed
2.
go back to reference K. Hotta, T. Funahashi, Y. Arita, M. Takahashi, M. Matsuda, Y. Okamoto, H. Iwahashi, H. Kuriyama, N. Ouchi, K. Maeda et al., Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20, 1595–1599 (2000)CrossRefPubMed K. Hotta, T. Funahashi, Y. Arita, M. Takahashi, M. Matsuda, Y. Okamoto, H. Iwahashi, H. Kuriyama, N. Ouchi, K. Maeda et al., Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20, 1595–1599 (2000)CrossRefPubMed
3.
go back to reference J.J. Diez, P. Iglesias, The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur. J. Endocrinol. 148, 293–300 (2003)CrossRefPubMed J.J. Diez, P. Iglesias, The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur. J. Endocrinol. 148, 293–300 (2003)CrossRefPubMed
4.
go back to reference M. Chandran, S.A. Phillips, T. Ciaraldi, R.R. Henry, Adiponectin: more than just another fat cell hormone? Diabetes Care 26, 2442–2450 (2003)CrossRefPubMed M. Chandran, S.A. Phillips, T. Ciaraldi, R.R. Henry, Adiponectin: more than just another fat cell hormone? Diabetes Care 26, 2442–2450 (2003)CrossRefPubMed
5.
go back to reference M. Matsuda, I. Shimomura, M. Sata, Y. Arita, M. Nishida, N. Maeda, M. Kumada, Y. Okamoto, H. Nagaretani, H. Nishizawa et al., Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J. Biol. Chem. 277, 37487–37491 (2002)CrossRefPubMed M. Matsuda, I. Shimomura, M. Sata, Y. Arita, M. Nishida, N. Maeda, M. Kumada, Y. Okamoto, H. Nagaretani, H. Nishizawa et al., Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J. Biol. Chem. 277, 37487–37491 (2002)CrossRefPubMed
6.
go back to reference N. Kubota, Y. Terauchi, T. Yamauchi, T. Kubota, M. Moroi, J. Matsui, K. Eto, T. Yamashita, J. Kamon, H. Satoh et al., Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 277, 25863–25866 (2002)CrossRefPubMed N. Kubota, Y. Terauchi, T. Yamauchi, T. Kubota, M. Moroi, J. Matsui, K. Eto, T. Yamashita, J. Kamon, H. Satoh et al., Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 277, 25863–25866 (2002)CrossRefPubMed
7.
go back to reference A.S. Lihn, B. Richelsen, S.B. Pedersen, S.B. Haugaard, G.S. Rathje, S. Madsbad, O. Andersen, Increased expression of TNF-alpha, IL-6, and IL-8 in HALS: implications for reduced adiponectin expression and plasma levels. Am. J. Physiol. Endocrinol. Metab. 285, E1072–1080 (2003)CrossRefPubMed A.S. Lihn, B. Richelsen, S.B. Pedersen, S.B. Haugaard, G.S. Rathje, S. Madsbad, O. Andersen, Increased expression of TNF-alpha, IL-6, and IL-8 in HALS: implications for reduced adiponectin expression and plasma levels. Am. J. Physiol. Endocrinol. Metab. 285, E1072–1080 (2003)CrossRefPubMed
8.
go back to reference T. Hajri, H. Tao, J. Wattacheril, P. Marks-Shulman, N.N. Abumrad, Regulation of adiponectin production by insulin: interactions with tumor necrosis factor-alpha and interleukin-6. Am. J. Physiol. Endocrinol. Metab. 300, E350–360 (2011)PubMedCentralCrossRefPubMed T. Hajri, H. Tao, J. Wattacheril, P. Marks-Shulman, N.N. Abumrad, Regulation of adiponectin production by insulin: interactions with tumor necrosis factor-alpha and interleukin-6. Am. J. Physiol. Endocrinol. Metab. 300, E350–360 (2011)PubMedCentralCrossRefPubMed
9.
go back to reference P.A. Kern, S. Ranganathan, C. Li, L. Wood, G. Ranganathan, Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 280, E745–751 (2001)PubMed P.A. Kern, S. Ranganathan, C. Li, L. Wood, G. Ranganathan, Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 280, E745–751 (2001)PubMed
10.
go back to reference S. Kim, N. Moustaid-Moussa, Secretory, endocrine and autocrine/paracrine function of the adipocyte. J. Nutr. 130, 3110S–3115S (2000)PubMed S. Kim, N. Moustaid-Moussa, Secretory, endocrine and autocrine/paracrine function of the adipocyte. J. Nutr. 130, 3110S–3115S (2000)PubMed
11.
go back to reference E. Maury, S.M. Brichard, Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol. Cell. Endocrinol. 314, 1–16 (2010)CrossRefPubMed E. Maury, S.M. Brichard, Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol. Cell. Endocrinol. 314, 1–16 (2010)CrossRefPubMed
12.
go back to reference J.M. Olefsky, C.K. Glass, Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010)CrossRefPubMed J.M. Olefsky, C.K. Glass, Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010)CrossRefPubMed
13.
go back to reference G.S. Hotamisligil, N.S. Shargill, B.M. Spiegelman, Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993)CrossRefPubMed G.S. Hotamisligil, N.S. Shargill, B.M. Spiegelman, Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993)CrossRefPubMed
14.
go back to reference P.A. Kern, G.B. Di Gregorio, T. Lu, N. Rassouli, G. Ranganathan, Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 52, 1779–1785 (2003)CrossRefPubMed P.A. Kern, G.B. Di Gregorio, T. Lu, N. Rassouli, G. Ranganathan, Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 52, 1779–1785 (2003)CrossRefPubMed
15.
go back to reference U.B. Pajvani, X. Du, T.P. Combs, A.H. Berg, M.W. Rajala, T. Schulthess, J. Engel, M. Brownlee, P.E. Scherer, Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity. J. Biol. Chem. 278, 9073–9085 (2003)CrossRefPubMed U.B. Pajvani, X. Du, T.P. Combs, A.H. Berg, M.W. Rajala, T. Schulthess, J. Engel, M. Brownlee, P.E. Scherer, Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity. J. Biol. Chem. 278, 9073–9085 (2003)CrossRefPubMed
16.
go back to reference T.S. Tsao, H.E. Murrey, C. Hug, D.H. Lee, H.F. Lodish, Oligomerization state-dependent activation of NF-kappa B signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30). J. Biol. Chem. 277, 29359–29362 (2002)CrossRefPubMed T.S. Tsao, H.E. Murrey, C. Hug, D.H. Lee, H.F. Lodish, Oligomerization state-dependent activation of NF-kappa B signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30). J. Biol. Chem. 277, 29359–29362 (2002)CrossRefPubMed
17.
go back to reference U.B. Pajvani, M. Hawkins, T.P. Combs, M.W. Rajala, T. Doebber, J.P. Berger, J.A. Wagner, M. Wu, A. Knopps, A.H. Xiang et al., Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem. 279, 12152–12162 (2004)CrossRefPubMed U.B. Pajvani, M. Hawkins, T.P. Combs, M.W. Rajala, T. Doebber, J.P. Berger, J.A. Wagner, M. Wu, A. Knopps, A.H. Xiang et al., Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem. 279, 12152–12162 (2004)CrossRefPubMed
18.
go back to reference A.A. Richards, T. Stephens, H.K. Charlton, A. Jones, G.A. Macdonald, J.B. Prins, J.P. Whitehead, Adiponectin multimerization is dependent on conserved lysines in the collagenous domain: evidence for regulation of multimerization by alterations in posttranslational modifications. Mol. Endocrinol. 20, 1673–1687 (2006)CrossRefPubMed A.A. Richards, T. Stephens, H.K. Charlton, A. Jones, G.A. Macdonald, J.B. Prins, J.P. Whitehead, Adiponectin multimerization is dependent on conserved lysines in the collagenous domain: evidence for regulation of multimerization by alterations in posttranslational modifications. Mol. Endocrinol. 20, 1673–1687 (2006)CrossRefPubMed
19.
go back to reference L. Qiang, H. Wang, S.R. Farmer, Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-L alpha. Mol. Cell. Biol. 27, 4698–4707 (2007)PubMedCentralCrossRefPubMed L. Qiang, H. Wang, S.R. Farmer, Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-L alpha. Mol. Cell. Biol. 27, 4698–4707 (2007)PubMedCentralCrossRefPubMed
21.
go back to reference Z.V. Wang, T.D. Schraw, J.Y. Kim, T. Khan, M.W. Rajala, A. Follenzi, P.E. Scherer, Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention. Mol. Cell. Biol. 27, 3716–3731 (2007)PubMedCentralCrossRefPubMed Z.V. Wang, T.D. Schraw, J.Y. Kim, T. Khan, M.W. Rajala, A. Follenzi, P.E. Scherer, Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention. Mol. Cell. Biol. 27, 3716–3731 (2007)PubMedCentralCrossRefPubMed
22.
go back to reference J.Y. Lim, W.H. Kim, S.I. Park, GO6976 prevents TNF-alpha-induced suppression of adiponectin expression in 3T3-L1 adipocytes: putative involvement of protein kinase C. FEBS Lett. 582, 3473–3478 (2008)CrossRefPubMed J.Y. Lim, W.H. Kim, S.I. Park, GO6976 prevents TNF-alpha-induced suppression of adiponectin expression in 3T3-L1 adipocytes: putative involvement of protein kinase C. FEBS Lett. 582, 3473–3478 (2008)CrossRefPubMed
23.
go back to reference D. Konrad, A. Rudich, E.J. Schoenle, Improved glucose tolerance in mice receiving intraperitoneal transplantation of normal fat tissue. Diabetologia 50, 833–839 (2007)CrossRefPubMed D. Konrad, A. Rudich, E.J. Schoenle, Improved glucose tolerance in mice receiving intraperitoneal transplantation of normal fat tissue. Diabetologia 50, 833–839 (2007)CrossRefPubMed
24.
go back to reference H. Kobayashi, N. Ouchi, S. Kihara, K. Walsh, M. Kumada, Y. Abe, T. Funahashi, Y. Matsuzawa, Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ. Res. 94, e27–31 (2004)PubMedCentralCrossRefPubMed H. Kobayashi, N. Ouchi, S. Kihara, K. Walsh, M. Kumada, Y. Abe, T. Funahashi, Y. Matsuzawa, Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ. Res. 94, e27–31 (2004)PubMedCentralCrossRefPubMed
25.
go back to reference Y. Li, P. Wang, Y. Zhuang, H. Lin, Y. Li, L. Liu, Q. Meng, T. Cui, J. Liu, Z. Li, Activation of AMPK by berberine promotes adiponectin multimerization in 3T3-L1 adipocytes. FEBS Lett. 585, 1735–1740 (2011)CrossRefPubMed Y. Li, P. Wang, Y. Zhuang, H. Lin, Y. Li, L. Liu, Q. Meng, T. Cui, J. Liu, Z. Li, Activation of AMPK by berberine promotes adiponectin multimerization in 3T3-L1 adipocytes. FEBS Lett. 585, 1735–1740 (2011)CrossRefPubMed
26.
go back to reference J.V. Huang, C.R. Greyson, G.G. Schwartz, PPAR-gamma as a therapeutic target in cardiovascular disease: evidence and uncertainty. J. Lipid Res. 53, 1738–1754 (2012)PubMedCentralCrossRefPubMed J.V. Huang, C.R. Greyson, G.G. Schwartz, PPAR-gamma as a therapeutic target in cardiovascular disease: evidence and uncertainty. J. Lipid Res. 53, 1738–1754 (2012)PubMedCentralCrossRefPubMed
27.
go back to reference E.E. Kershaw, M. Schupp, H.P. Guan, N.P. Gardner, M.A. Lazar, J.S. Flier, PPARgamma regulates adipose triglyceride lipase in adipocytes in vitro and in vivo. Am. J. Physiol. Endocrinol. Metab. 293, E1736–1745 (2007)PubMedCentralCrossRefPubMed E.E. Kershaw, M. Schupp, H.P. Guan, N.P. Gardner, M.A. Lazar, J.S. Flier, PPARgamma regulates adipose triglyceride lipase in adipocytes in vitro and in vivo. Am. J. Physiol. Endocrinol. Metab. 293, E1736–1745 (2007)PubMedCentralCrossRefPubMed
28.
go back to reference S. Rodriguez-Cuenca, S. Carobbio, V.R. Velagapudi, N. Barbarroja, J.M. Moreno-Navarrete, F.J. Tinahones, J.M. Fernandez-Real, M. Oresic, A. Vidal-Puig, Peroxisome proliferator-activated receptor gamma-dependent regulation of lipolytic nodes and metabolic flexibility. Mol. Cell. Biol. 32, 1555–1565 (2012)PubMedCentralCrossRefPubMed S. Rodriguez-Cuenca, S. Carobbio, V.R. Velagapudi, N. Barbarroja, J.M. Moreno-Navarrete, F.J. Tinahones, J.M. Fernandez-Real, M. Oresic, A. Vidal-Puig, Peroxisome proliferator-activated receptor gamma-dependent regulation of lipolytic nodes and metabolic flexibility. Mol. Cell. Biol. 32, 1555–1565 (2012)PubMedCentralCrossRefPubMed
29.
go back to reference D. Jin, J. Sun, J. Huang, Y. He, A. Yu, X. Yu, Z. Yang, TNF-alpha reduces g0s2 expression and stimulates lipolysis through PPAR-gamma inhibition in 3T3-L1 adipocytes. Cytokine 69, 196–205 (2014)CrossRefPubMed D. Jin, J. Sun, J. Huang, Y. He, A. Yu, X. Yu, Z. Yang, TNF-alpha reduces g0s2 expression and stimulates lipolysis through PPAR-gamma inhibition in 3T3-L1 adipocytes. Cytokine 69, 196–205 (2014)CrossRefPubMed
30.
go back to reference M. Iwabu, T. Yamauchi, M. Okada-Iwabu, K. Sato, T. Nakagawa, M. Funata, M. Yamaguchi, S. Namiki, R. Nakayama, M. Tabata et al., Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 464, 1313–1319 (2010)CrossRefPubMed M. Iwabu, T. Yamauchi, M. Okada-Iwabu, K. Sato, T. Nakagawa, M. Funata, M. Yamaguchi, S. Namiki, R. Nakayama, M. Tabata et al., Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 464, 1313–1319 (2010)CrossRefPubMed
31.
go back to reference Z. Lin, H. Tian, K.S. Lam, S. Lin, R.C. Hoo, M. Konishi, N. Itoh, Y. Wang, S.R. Bornstein, A. Xu et al., Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 17, 779–789 (2013)CrossRefPubMed Z. Lin, H. Tian, K.S. Lam, S. Lin, R.C. Hoo, M. Konishi, N. Itoh, Y. Wang, S.R. Bornstein, A. Xu et al., Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 17, 779–789 (2013)CrossRefPubMed
32.
go back to reference M. Okada-Iwabu, T. Yamauchi, M. Iwabu, T. Honma, K. Hamagami, K. Matsuda, M. Yamaguchi, H. Tanabe, T. Kimura-Someya, M. Shirouzu et al., A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 503, 493–499 (2013)CrossRefPubMed M. Okada-Iwabu, T. Yamauchi, M. Iwabu, T. Honma, K. Hamagami, K. Matsuda, M. Yamaguchi, H. Tanabe, T. Kimura-Someya, M. Shirouzu et al., A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 503, 493–499 (2013)CrossRefPubMed
33.
go back to reference Y. Qi, N. Takahashi, S.M. Hileman, H.R. Patel, A.H. Berg, U.B. Pajvani, P.E. Scherer, R.S. Ahima, Adiponectin acts in the brain to decrease body weight. Nat. Med. 10, 524–529 (2004)CrossRefPubMed Y. Qi, N. Takahashi, S.M. Hileman, H.R. Patel, A.H. Berg, U.B. Pajvani, P.E. Scherer, R.S. Ahima, Adiponectin acts in the brain to decrease body weight. Nat. Med. 10, 524–529 (2004)CrossRefPubMed
34.
go back to reference C.C. Juan, T.Y. Chuang, C.L. Chang, S.W. Huang, L.T. Ho, Endothelin-1 regulates adiponectin gene expression and secretion in 3T3-L1 adipocytes via distinct signaling pathways. Endocrinology 148, 1835–1842 (2007)CrossRefPubMed C.C. Juan, T.Y. Chuang, C.L. Chang, S.W. Huang, L.T. Ho, Endothelin-1 regulates adiponectin gene expression and secretion in 3T3-L1 adipocytes via distinct signaling pathways. Endocrinology 148, 1835–1842 (2007)CrossRefPubMed
35.
go back to reference R.M. Blumer, C.P. van Roomen, A.J. Meijer, J.H. Houben-Weerts, H.P. Sauerwein, P.F. Dubbelhuis, Regulation of adiponectin secretion by insulin and amino acids in 3T3-L1 adipocytes. Metabolism 57, 1655–1662 (2008)CrossRefPubMed R.M. Blumer, C.P. van Roomen, A.J. Meijer, J.H. Houben-Weerts, H.P. Sauerwein, P.F. Dubbelhuis, Regulation of adiponectin secretion by insulin and amino acids in 3T3-L1 adipocytes. Metabolism 57, 1655–1662 (2008)CrossRefPubMed
36.
go back to reference K.Y. Kim, J.K. Kim, J.H. Jeon, S.R. Yoon, I. Choi, Y. Yang, c-Jun N-terminal kinase is involved in the suppression of adiponectin expression by TNF-alpha in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 327, 460–467 (2005)CrossRefPubMed K.Y. Kim, J.K. Kim, J.H. Jeon, S.R. Yoon, I. Choi, Y. Yang, c-Jun N-terminal kinase is involved in the suppression of adiponectin expression by TNF-alpha in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 327, 460–467 (2005)CrossRefPubMed
37.
go back to reference S.Y. Gilady, M. Bui, E.M. Lynes, M.D. Benson, R. Watts, J.E. Vance, T. Simmen, Ero1 alpha requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM). Cell Stress Chaperones 15, 619–629 (2010)PubMedCentralCrossRefPubMed S.Y. Gilady, M. Bui, E.M. Lynes, M.D. Benson, R. Watts, J.E. Vance, T. Simmen, Ero1 alpha requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM). Cell Stress Chaperones 15, 619–629 (2010)PubMedCentralCrossRefPubMed
Metadata
Title
The multimerization and secretion of adiponectin are regulated by TNF-alpha
Authors
Yiduo He
Linfang Lu
Xuan Wei
Dan Jin
Tao Qian
An Yu
Jun Sun
Jiesheng Cui
Zaiqing Yang
Publication date
01-03-2016
Publisher
Springer US
Published in
Endocrine / Issue 3/2016
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-015-0741-4

Other articles of this Issue 3/2016

Endocrine 3/2016 Go to the issue