Skip to main content
Top
Published in: Endocrine 3/2015

01-04-2015 | Original Article

Adiponectin influences progesterone production from MA-10 Leydig cells in a dose-dependent manner

Authors: David Landry, Aurélie Paré, Stéphanie Jean, Luc J. Martin

Published in: Endocrine | Issue 3/2015

Login to get access

Abstract

Obesity in men is associated with lower testosterone levels, related to reduced sperm concentration and the development of various diseases with aging. Hormones produced by the adipose tissue may have influences on both metabolism and reproductive function. Among them, the production and secretion of adiponectin is inversely correlated to total body fat. Adiponectin receptors (AdipoR1 and AdipoR2) have been found to be expressed in testicular Leydig cells (producing testosterone). Since StAR and Cyp11a1 are essential for testosterone synthesis and adiponectin has been shown to regulate StAR mRNA in swine granulosa cells, we hypothesized that adiponectin might also regulate these genes in Leydig cells. Our objective was to determine whether adiponectin regulates StAR and Cyp11a1 genes in Leydig cells and to better define its mechanisms of action. Methods used in the current study are qPCR for the mRNA levels, transfections for promoter activities, and enzyme-linked immunosorbent assay for the progesterone concentration. We have found that adiponectin cooperates with cAMP-dependent stimulation to activate StAR and Cyp11a1 mRNA expressions in a dose-dependent manner in MA-10 Leydig cells as demonstrated by transfection of a luciferase reporter plasmid. These results led to a significant increase in progesterone production from MA-10 cells. Thus, our data suggest that high doses of adiponectin typical of normal body weight may promote testosterone production from Leydig cells.
Literature
1.
go back to reference F.X. Pi-Sunyer, The obesity epidemic: pathophysiology and consequences of obesity. Obes. Res. 10(Suppl 2), 97S–104S (2002)CrossRefPubMed F.X. Pi-Sunyer, The obesity epidemic: pathophysiology and consequences of obesity. Obes. Res. 10(Suppl 2), 97S–104S (2002)CrossRefPubMed
2.
go back to reference C.A. Derby, S. Zilber, D. Brambilla, K.H. Morales, J.B. McKinlay, Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts Male Ageing Study. Clin. Endocrinol. (Oxf.) 65, 125–131 (2006)CrossRef C.A. Derby, S. Zilber, D. Brambilla, K.H. Morales, J.B. McKinlay, Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts Male Ageing Study. Clin. Endocrinol. (Oxf.) 65, 125–131 (2006)CrossRef
3.
go back to reference M. Pardo, A. Roca-Rivada, L.M. Seoane, F.F. Casanueva, Obesidomics: contribution of adipose tissue secretome analysis to obesity research. Endocrine 41, 374–383 (2012)CrossRefPubMed M. Pardo, A. Roca-Rivada, L.M. Seoane, F.F. Casanueva, Obesidomics: contribution of adipose tissue secretome analysis to obesity research. Endocrine 41, 374–383 (2012)CrossRefPubMed
4.
go back to reference T. Yamauchi, J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, S. Kimura, R. Nagai, B.B. Kahn, T. Kadowaki, Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002)CrossRefPubMed T. Yamauchi, J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, S. Kimura, R. Nagai, B.B. Kahn, T. Kadowaki, Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002)CrossRefPubMed
5.
go back to reference J. Hoffstedt, E. Arvidsson, E. Sjölin, K. Wåhlén, P. Arner, Adipose tissue adiponectin production and adiponectin serum concentration in human obesity and insulin resistance. J. Clin. Endocrinol. Metab. 89, 1391–1396 (2004)CrossRefPubMed J. Hoffstedt, E. Arvidsson, E. Sjölin, K. Wåhlén, P. Arner, Adipose tissue adiponectin production and adiponectin serum concentration in human obesity and insulin resistance. J. Clin. Endocrinol. Metab. 89, 1391–1396 (2004)CrossRefPubMed
6.
go back to reference I.J. Neeland, C.R. Ayers, A.K. Rohatgi, A.T. Turer, J.D. Berry, S.R. Das, G.L. Vega, A. Khera, D.K. McGuire, S.M. Grundy, J.A. de Lemos, Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obes. (Silver Spring Md.) 21, E439–E447 (2013) I.J. Neeland, C.R. Ayers, A.K. Rohatgi, A.T. Turer, J.D. Berry, S.R. Das, G.L. Vega, A. Khera, D.K. McGuire, S.M. Grundy, J.A. de Lemos, Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obes. (Silver Spring Md.) 21, E439–E447 (2013)
7.
go back to reference M. Cnop, P.J. Havel, K.M. Utzschneider, D.B. Carr, M.K. Sinha, E.J. Boyko, B.M. Retzlaff, R.H. Knopp, J.D. Brunzell, S.E. Kahn, Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 46, 459–469 (2003)PubMed M. Cnop, P.J. Havel, K.M. Utzschneider, D.B. Carr, M.K. Sinha, E.J. Boyko, B.M. Retzlaff, R.H. Knopp, J.D. Brunzell, S.E. Kahn, Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 46, 459–469 (2003)PubMed
8.
go back to reference M. Bulló, J. Salas-Salvadó, P. García-Lorda, Adiponectin expression and adipose tissue lipolytic activity in lean and obese women. Obes. Surg. 15, 382–386 (2005)CrossRefPubMed M. Bulló, J. Salas-Salvadó, P. García-Lorda, Adiponectin expression and adipose tissue lipolytic activity in lean and obese women. Obes. Surg. 15, 382–386 (2005)CrossRefPubMed
9.
go back to reference S.K. Jacobi, K.M. Ajuwon, T.E. Weber, J.L. Kuske, C.J. Dyer, M.E. Spurlock, Cloning and expression of porcine adiponectin, and its relationship to adiposity, lipogenesis and the acute phase response. J. Endocrinol. 182, 133–144 (2004)CrossRefPubMed S.K. Jacobi, K.M. Ajuwon, T.E. Weber, J.L. Kuske, C.J. Dyer, M.E. Spurlock, Cloning and expression of porcine adiponectin, and its relationship to adiposity, lipogenesis and the acute phase response. J. Endocrinol. 182, 133–144 (2004)CrossRefPubMed
10.
go back to reference T. Yamauchi, J. Kamon, H. Waki, Y. Terauchi, N. Kubota, K. Hara, Y. Mori, T. Ide, K. Murakami, N. Tsuboyama-Kasaoka, O. Ezaki, Y. Akanuma, O. Gavrilova, C. Vinson, M.L. Reitman, H. Kagechika, K. Shudo, M. Yoda, Y. Nakano, K. Tobe, R. Nagai, S. Kimura, M. Tomita, P. Froguel, T. Kadowaki, The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946 (2001)CrossRefPubMed T. Yamauchi, J. Kamon, H. Waki, Y. Terauchi, N. Kubota, K. Hara, Y. Mori, T. Ide, K. Murakami, N. Tsuboyama-Kasaoka, O. Ezaki, Y. Akanuma, O. Gavrilova, C. Vinson, M.L. Reitman, H. Kagechika, K. Shudo, M. Yoda, Y. Nakano, K. Tobe, R. Nagai, S. Kimura, M. Tomita, P. Froguel, T. Kadowaki, The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946 (2001)CrossRefPubMed
11.
go back to reference C. Weyer, T. Funahashi, S. Tanaka, K. Hotta, Y. Matsuzawa, R.E. Pratley, P.A. Tataranni, Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86, 1930–1935 (2001)CrossRefPubMed C. Weyer, T. Funahashi, S. Tanaka, K. Hotta, Y. Matsuzawa, R.E. Pratley, P.A. Tataranni, Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86, 1930–1935 (2001)CrossRefPubMed
12.
go back to reference Y. Okamoto, Adiponectin provides cardiovascular protection in metabolic syndrome. Cardiol. Res. Pract. 2011, 313179 (2011)PubMedCentralPubMed Y. Okamoto, Adiponectin provides cardiovascular protection in metabolic syndrome. Cardiol. Res. Pract. 2011, 313179 (2011)PubMedCentralPubMed
13.
go back to reference J. Bai, Y. Liu, G.-F. Niu, L.-X. Bai, X.-Y. Xu, G.-Z. Zhang, L.-X. Wang, Relationship between adiponectin and testosterone in patients with type 2 diabetes. Biochem. Med. 21, 65–70 (2011) J. Bai, Y. Liu, G.-F. Niu, L.-X. Bai, X.-Y. Xu, G.-Z. Zhang, L.-X. Wang, Relationship between adiponectin and testosterone in patients with type 2 diabetes. Biochem. Med. 21, 65–70 (2011)
14.
go back to reference K. Robinson, J. Prins, B. Venkatesh, Clinical review: adiponectin biology and its role in inflammation and critical illness. Crit. Care Lond. Engl. 15, 221 (2011)CrossRef K. Robinson, J. Prins, B. Venkatesh, Clinical review: adiponectin biology and its role in inflammation and critical illness. Crit. Care Lond. Engl. 15, 221 (2011)CrossRef
15.
go back to reference K. Brochu-Gaudreau, C. Rehfeldt, R. Blouin, V. Bordignon, B.D. Murphy, M.-F. Palin, Adiponectin action from head to toe. Endocrine 37, 11–32 (2010)CrossRefPubMed K. Brochu-Gaudreau, C. Rehfeldt, R. Blouin, V. Bordignon, B.D. Murphy, M.-F. Palin, Adiponectin action from head to toe. Endocrine 37, 11–32 (2010)CrossRefPubMed
16.
go back to reference M. Calvani, A. Scarfone, L. Granato, E.V. Mora, G. Nanni, M. Castagneto, A.V. Greco, M. Manco, G. Mingrone, Restoration of adiponectin pulsatility in severely obese subjects after weight loss. Diabetes 53, 939–947 (2004)CrossRefPubMed M. Calvani, A. Scarfone, L. Granato, E.V. Mora, G. Nanni, M. Castagneto, A.V. Greco, M. Manco, G. Mingrone, Restoration of adiponectin pulsatility in severely obese subjects after weight loss. Diabetes 53, 939–947 (2004)CrossRefPubMed
17.
go back to reference T. Yamauchi, J. Kamon, Y. Ito, A. Tsuchida, T. Yokomizo, S. Kita, T. Sugiyama, M. Miyagishi, K. Hara, M. Tsunoda, K. Murakami, T. Ohteki, S. Uchida, S. Takekawa, H. Waki, N.H. Tsuno, Y. Shibata, Y. Terauchi, P. Froguel, K. Tobe, S. Koyasu, K. Taira, T. Kitamura, T. Shimizu, R. Nagai, T. Kadowaki, Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003)CrossRefPubMed T. Yamauchi, J. Kamon, Y. Ito, A. Tsuchida, T. Yokomizo, S. Kita, T. Sugiyama, M. Miyagishi, K. Hara, M. Tsunoda, K. Murakami, T. Ohteki, S. Uchida, S. Takekawa, H. Waki, N.H. Tsuno, Y. Shibata, Y. Terauchi, P. Froguel, K. Tobe, S. Koyasu, K. Taira, T. Kitamura, T. Shimizu, R. Nagai, T. Kadowaki, Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003)CrossRefPubMed
18.
go back to reference L.J. Martin, Implications of adiponectin in linking metabolism to testicular function. Endocrine 46, 16–28 (2014)CrossRefPubMed L.J. Martin, Implications of adiponectin in linking metabolism to testicular function. Endocrine 46, 16–28 (2014)CrossRefPubMed
19.
go back to reference K. Kos, A.L. Harte, N.F. da Silva, A. Tonchev, G. Chaldakov, S. James, D.R. Snead, B. Hoggart, J.P. O’Hare, P.G. McTernan, S. Kumar, Adiponectin and resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus. J. Clin. Endocrinol. Metab. 92, 1129–1136 (2007)CrossRefPubMed K. Kos, A.L. Harte, N.F. da Silva, A. Tonchev, G. Chaldakov, S. James, D.R. Snead, B. Hoggart, J.P. O’Hare, P.G. McTernan, S. Kumar, Adiponectin and resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus. J. Clin. Endocrinol. Metab. 92, 1129–1136 (2007)CrossRefPubMed
20.
go back to reference F. Rodriguez-Pacheco, A.J. Martinez-Fuentes, S. Tovar, L. Pinilla, M. Tena-Sempere, C. Dieguez, J.P. Castaño, M.M. Malagon, Regulation of pituitary cell function by adiponectin. Endocrinology 148, 401–410 (2007)CrossRefPubMed F. Rodriguez-Pacheco, A.J. Martinez-Fuentes, S. Tovar, L. Pinilla, M. Tena-Sempere, C. Dieguez, J.P. Castaño, M.M. Malagon, Regulation of pituitary cell function by adiponectin. Endocrinology 148, 401–410 (2007)CrossRefPubMed
21.
go back to reference J.E. Caminos, R. Nogueiras, F. Gaytán, R. Pineda, C.R. González, M.L. Barreiro, J.P. Castaño, M.M. Malagón, L. Pinilla, J. Toppari, C. Diéguez, M. Tena-Sempere, Novel expression and direct effects of adiponectin in the rat testis. Endocrinology 149, 3390–3402 (2008)CrossRefPubMed J.E. Caminos, R. Nogueiras, F. Gaytán, R. Pineda, C.R. González, M.L. Barreiro, J.P. Castaño, M.M. Malagón, L. Pinilla, J. Toppari, C. Diéguez, M. Tena-Sempere, Novel expression and direct effects of adiponectin in the rat testis. Endocrinology 149, 3390–3402 (2008)CrossRefPubMed
22.
go back to reference A.E. Civitarese, C.P. Jenkinson, D. Richardson, M. Bajaj, K. Cusi, S. Kashyap, R. Berria, R. Belfort, R.A. DeFronzo, L.J. Mandarino, E. Ravussin, Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of Type 2 diabetes. Diabetologia 47, 816–820 (2004)CrossRefPubMed A.E. Civitarese, C.P. Jenkinson, D. Richardson, M. Bajaj, K. Cusi, S. Kashyap, R. Berria, R. Belfort, R.A. DeFronzo, L.J. Mandarino, E. Ravussin, Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of Type 2 diabetes. Diabetologia 47, 816–820 (2004)CrossRefPubMed
23.
go back to reference E. Lord, S. Ledoux, B.D. Murphy, D. Beaudry, M.F. Palin, Expression of adiponectin and its receptors in swine. J. Anim. Sci. 83, 565–578 (2005)PubMed E. Lord, S. Ledoux, B.D. Murphy, D. Beaudry, M.F. Palin, Expression of adiponectin and its receptors in swine. J. Anim. Sci. 83, 565–578 (2005)PubMed
24.
go back to reference C. Chabrolle, L. Tosca, S. Crochet, S. Tesseraud, J. Dupont, Expression of adiponectin and its receptors (AdipoR1 and AdipoR2) in chicken ovary: potential role in ovarian steroidogenesis. Domest. Anim. Endocrinol. 33, 480–487 (2007)CrossRefPubMed C. Chabrolle, L. Tosca, S. Crochet, S. Tesseraud, J. Dupont, Expression of adiponectin and its receptors (AdipoR1 and AdipoR2) in chicken ovary: potential role in ovarian steroidogenesis. Domest. Anim. Endocrinol. 33, 480–487 (2007)CrossRefPubMed
25.
go back to reference C. Chabrolle, L. Tosca, J. Dupont, Regulation of adiponectin and its receptors in rat ovary by human chorionic gonadotrophin treatment and potential involvement of adiponectin in granulosa cell steroidogenesis. Reproduction 133, 719–731 (2007)CrossRefPubMed C. Chabrolle, L. Tosca, J. Dupont, Regulation of adiponectin and its receptors in rat ovary by human chorionic gonadotrophin treatment and potential involvement of adiponectin in granulosa cell steroidogenesis. Reproduction 133, 719–731 (2007)CrossRefPubMed
26.
go back to reference T.D. Challa, Y. Rais, E.M. Ornan, Effect of adiponectin on ATDC5 proliferation, differentiation and signaling pathways. Mol. Cell. Endocrinol. 323, 282–291 (2010)CrossRefPubMed T.D. Challa, Y. Rais, E.M. Ornan, Effect of adiponectin on ATDC5 proliferation, differentiation and signaling pathways. Mol. Cell. Endocrinol. 323, 282–291 (2010)CrossRefPubMed
27.
go back to reference M. Ascoli, Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology 108, 88–95 (1981)CrossRefPubMed M. Ascoli, Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology 108, 88–95 (1981)CrossRefPubMed
28.
go back to reference L.J. Martin, N. Boucher, C. Brousseau, J.J. Tremblay, The orphan nuclear receptor NUR77 regulates hormone-induced StAR transcription in Leydig cells through cooperation with Ca2+/calmodulin-dependent protein kinase I. Mol. Endocrinol. (Baltimore, Md.) 22, 2021–2037 (2008)CrossRef L.J. Martin, N. Boucher, C. Brousseau, J.J. Tremblay, The orphan nuclear receptor NUR77 regulates hormone-induced StAR transcription in Leydig cells through cooperation with Ca2+/calmodulin-dependent protein kinase I. Mol. Endocrinol. (Baltimore, Md.) 22, 2021–2037 (2008)CrossRef
29.
go back to reference J.J. Tremblay, R.S. Viger, GATA factors differentially activate multiple gonadal promoters through conserved GATA regulatory elements. Endocrinology 142, 977–986 (2001)PubMed J.J. Tremblay, R.S. Viger, GATA factors differentially activate multiple gonadal promoters through conserved GATA regulatory elements. Endocrinology 142, 977–986 (2001)PubMed
30.
go back to reference E. Sock, K. Schmidt, I. Hermanns-Borgmeyer, M.R. Bösl, M. Wegner, Idiopathic weight reduction in mice deficient in the high-mobility-group transcription factor Sox8. Mol. Cell. Biol. 21, 6951–6959 (2001)CrossRefPubMedCentralPubMed E. Sock, K. Schmidt, I. Hermanns-Borgmeyer, M.R. Bösl, M. Wegner, Idiopathic weight reduction in mice deficient in the high-mobility-group transcription factor Sox8. Mol. Cell. Biol. 21, 6951–6959 (2001)CrossRefPubMedCentralPubMed
31.
go back to reference D. Sinner, J.J. Kordich, J.R. Spence, R. Opoka, S. Rankin, S.-C.J. Lin, D. Jonatan, A.M. Zorn, J.M. Wells, Sox17 and Sox4 differentially regulate ?-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol. Cell. Biol. 27, 7802–7815 (2007)CrossRefPubMedCentralPubMed D. Sinner, J.J. Kordich, J.R. Spence, R. Opoka, S. Rankin, S.-C.J. Lin, D. Jonatan, A.M. Zorn, J.M. Wells, Sox17 and Sox4 differentially regulate ?-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol. Cell. Biol. 27, 7802–7815 (2007)CrossRefPubMedCentralPubMed
32.
go back to reference P.-J. Francin, C. Guillaume, A.-C. Humbert, P. Pottie, P. Netter, D. Mainard, N. Presle, Association between the chondrocyte phenotype and the expression of adipokines and their receptors: evidence for a role of leptin but not adiponectin in the expression of cartilage-specific markers. J. Cell. Physiol. 226, 2790–2797 (2011)CrossRefPubMed P.-J. Francin, C. Guillaume, A.-C. Humbert, P. Pottie, P. Netter, D. Mainard, N. Presle, Association between the chondrocyte phenotype and the expression of adipokines and their receptors: evidence for a role of leptin but not adiponectin in the expression of cartilage-specific markers. J. Cell. Physiol. 226, 2790–2797 (2011)CrossRefPubMed
33.
go back to reference U. Skalska, E. Kontny, Comparison of phenotype, chondrogenic and osteogenic potential of rheumatoid mesenchymal stem cells derived from articular and subcutaneous adipose tissue—the role of adipocytokines. Cent. Eur. J. Immunol. 38, 62–69 (2013)CrossRef U. Skalska, E. Kontny, Comparison of phenotype, chondrogenic and osteogenic potential of rheumatoid mesenchymal stem cells derived from articular and subcutaneous adipose tissue—the role of adipocytokines. Cent. Eur. J. Immunol. 38, 62–69 (2013)CrossRef
34.
35.
go back to reference Y. Li, D.H. Ramdhan, H. Naito, N. Yamagishi, Y. Ito, Y. Hayashi, Y. Yanagiba, A. Okamura, H. Tamada, F.J. Gonzalez, T. Nakajima, Ammonium perfluorooctanoate may cause testosterone reduction by adversely affecting testis in relation to PPARα. Toxicol. Lett. 205, 265–272 (2011)CrossRefPubMed Y. Li, D.H. Ramdhan, H. Naito, N. Yamagishi, Y. Ito, Y. Hayashi, Y. Yanagiba, A. Okamura, H. Tamada, F.J. Gonzalez, T. Nakajima, Ammonium perfluorooctanoate may cause testosterone reduction by adversely affecting testis in relation to PPARα. Toxicol. Lett. 205, 265–272 (2011)CrossRefPubMed
36.
go back to reference L. Brion, P.M. Maloberti, N.V. Gomez, C. Poderoso, A.B. Gorostizaga, M.M. Mori Sequeiros Garcia, A.B. Acquier, M. Cooke, C.F. Mendez, E.J. Podesta, C. Paz, MAPK phosphatase-1 (MKP-1) expression is up-regulated by hCG/cAMP and modulates steroidogenesis in MA-10 Leydig cells. Endocrinology 152, 2665–2677 (2011)CrossRefPubMed L. Brion, P.M. Maloberti, N.V. Gomez, C. Poderoso, A.B. Gorostizaga, M.M. Mori Sequeiros Garcia, A.B. Acquier, M. Cooke, C.F. Mendez, E.J. Podesta, C. Paz, MAPK phosphatase-1 (MKP-1) expression is up-regulated by hCG/cAMP and modulates steroidogenesis in MA-10 Leydig cells. Endocrinology 152, 2665–2677 (2011)CrossRefPubMed
37.
go back to reference S.W. Ahn, G.-T. Gang, S. Tadi, B. Nedumaran, Y.D. Kim, J.H. Park, G.R. Kweon, S.-H. Koo, K. Lee, R.-S. Ahn, Y.-H. Yim, C.-H. Lee, R.A. Harris, H.-S. Choi, Phosphoenolpyruvate carboxykinase and glucose-6-phosphatase are required for steroidogenesis in testicular Leydig cells. J. Biol. Chem. 287, 41875–41887 (2012)CrossRefPubMedCentralPubMed S.W. Ahn, G.-T. Gang, S. Tadi, B. Nedumaran, Y.D. Kim, J.H. Park, G.R. Kweon, S.-H. Koo, K. Lee, R.-S. Ahn, Y.-H. Yim, C.-H. Lee, R.A. Harris, H.-S. Choi, Phosphoenolpyruvate carboxykinase and glucose-6-phosphatase are required for steroidogenesis in testicular Leydig cells. J. Biol. Chem. 287, 41875–41887 (2012)CrossRefPubMedCentralPubMed
38.
go back to reference R. Ouedraogo, X. Wu, S.-Q. Xu, L. Fuchsel, H. Motoshima, K. Mahadev, K. Hough, R. Scalia, B.J. Goldstein, Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes 55, 1840–1846 (2006)CrossRefPubMed R. Ouedraogo, X. Wu, S.-Q. Xu, L. Fuchsel, H. Motoshima, K. Mahadev, K. Hough, R. Scalia, B.J. Goldstein, Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes 55, 1840–1846 (2006)CrossRefPubMed
39.
go back to reference P. Park, H. Huang, M.R. McMullen, K. Bryan, L.E. Nagy, Activation of cyclic-AMP response element binding protein contributes to adiponectin-stimulated interleukin-10 expression in RAW 264.7 macrophages. J. Leukoc. Biol. 83, 1258–1266 (2008)CrossRefPubMed P. Park, H. Huang, M.R. McMullen, K. Bryan, L.E. Nagy, Activation of cyclic-AMP response element binding protein contributes to adiponectin-stimulated interleukin-10 expression in RAW 264.7 macrophages. J. Leukoc. Biol. 83, 1258–1266 (2008)CrossRefPubMed
40.
go back to reference L.J. Martin, Implications of adiponectin in linking metabolism to testicular function. Endocrine. (2013) L.J. Martin, Implications of adiponectin in linking metabolism to testicular function. Endocrine. (2013)
41.
go back to reference A. Pfaehler, M.K. Nanjappa, E.S. Coleman, M. Mansour, D. Wanders, E.P. Plaisance, R.L. Judd, B.T. Akingbemi, Regulation of adiponectin secretion by soy isoflavones has implication for endocrine function of the testis. Toxicol. Lett. 209, 78–85 (2012)CrossRefPubMed A. Pfaehler, M.K. Nanjappa, E.S. Coleman, M. Mansour, D. Wanders, E.P. Plaisance, R.L. Judd, B.T. Akingbemi, Regulation of adiponectin secretion by soy isoflavones has implication for endocrine function of the testis. Toxicol. Lett. 209, 78–85 (2012)CrossRefPubMed
42.
go back to reference T.P. Combs, A.H. Berg, M.W. Rajala, S. Klebanov, P. Iyengar, J.C. Jimenez-Chillaron, M.E. Patti, S.L. Klein, R.S. Weinstein, P.E. Scherer, Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin. Diabetes 52, 268–276 (2003)CrossRefPubMed T.P. Combs, A.H. Berg, M.W. Rajala, S. Klebanov, P. Iyengar, J.C. Jimenez-Chillaron, M.E. Patti, S.L. Klein, R.S. Weinstein, P.E. Scherer, Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin. Diabetes 52, 268–276 (2003)CrossRefPubMed
43.
go back to reference J.E. Caminos, R. Nogueiras, R. Gallego, S. Bravo, S. Tovar, T. García-Caballero, F.F. Casanueva, C. Diéguez, Expression and regulation of adiponectin and receptor in human and rat placenta. J. Clin. Endocrinol. Metab. 90, 4276–4286 (2005)CrossRefPubMed J.E. Caminos, R. Nogueiras, R. Gallego, S. Bravo, S. Tovar, T. García-Caballero, F.F. Casanueva, C. Diéguez, Expression and regulation of adiponectin and receptor in human and rat placenta. J. Clin. Endocrinol. Metab. 90, 4276–4286 (2005)CrossRefPubMed
44.
go back to reference P. Li, F. Sun, H.-M. Cao, Q.-Y. Ma, C.-M. Pan, J.-H. Ma, X.-N. Zhang, H. Jiang, H.-D. Song, M.-D. Chen, Expression of adiponectin receptors in mouse adrenal glands and the adrenocortical Y-1 cell line: adiponectin regulates steroidogenesis. Biochem. Biophys. Res. Commun. 390, 1208–1213 (2009)CrossRefPubMed P. Li, F. Sun, H.-M. Cao, Q.-Y. Ma, C.-M. Pan, J.-H. Ma, X.-N. Zhang, H. Jiang, H.-D. Song, M.-D. Chen, Expression of adiponectin receptors in mouse adrenal glands and the adrenocortical Y-1 cell line: adiponectin regulates steroidogenesis. Biochem. Biophys. Res. Commun. 390, 1208–1213 (2009)CrossRefPubMed
45.
go back to reference D.V. Lagaly, P.Y. Aad, J.A. Grado-Ahuir, L.B. Hulsey, L.J. Spicer, Role of adiponectin in regulating ovarian theca and granulosa cell function. Mol. Cell. Endocrinol. 284, 38–45 (2008)CrossRefPubMed D.V. Lagaly, P.Y. Aad, J.A. Grado-Ahuir, L.B. Hulsey, L.J. Spicer, Role of adiponectin in regulating ovarian theca and granulosa cell function. Mol. Cell. Endocrinol. 284, 38–45 (2008)CrossRefPubMed
46.
go back to reference J.S. Richards, Z. Liu, T. Kawai, K. Tabata, H. Watanabe, D. Suresh, F.-T. Kuo, M.D. Pisarska, M. Shimada, Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human. Fertil. Steril. 98, 471–479.e1 (2012)CrossRefPubMedCentralPubMed J.S. Richards, Z. Liu, T. Kawai, K. Tabata, H. Watanabe, D. Suresh, F.-T. Kuo, M.D. Pisarska, M. Shimada, Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human. Fertil. Steril. 98, 471–479.e1 (2012)CrossRefPubMedCentralPubMed
47.
go back to reference J.-P. Wen, C. Liu, W.-K. Bi, Y.-T. Hu, Q. Chen, H. Huang, J.-X. Liang, L.-T. Li, L.-X. Lin, G. Chen, Adiponectin inhibits KISS1 gene transcription through AMPK and specificity protein-1 in the hypothalamic GT1-7 neurons. J. Endocrinol. 214, 177–189 (2012)CrossRefPubMed J.-P. Wen, C. Liu, W.-K. Bi, Y.-T. Hu, Q. Chen, H. Huang, J.-X. Liang, L.-T. Li, L.-X. Lin, G. Chen, Adiponectin inhibits KISS1 gene transcription through AMPK and specificity protein-1 in the hypothalamic GT1-7 neurons. J. Endocrinol. 214, 177–189 (2012)CrossRefPubMed
48.
go back to reference M.-C.M. Shih, Y.-N. Chiu, M.-C. Hu, I.-C. Guo, B. Chung, Regulation of steroid production: analysis of Cyp11a1 promoter. Mol. Cell. Endocrinol. 336, 80–84 (2011)CrossRefPubMed M.-C.M. Shih, Y.-N. Chiu, M.-C. Hu, I.-C. Guo, B. Chung, Regulation of steroid production: analysis of Cyp11a1 promoter. Mol. Cell. Endocrinol. 336, 80–84 (2011)CrossRefPubMed
49.
go back to reference T. Sugawara, M. Saito, S. Fujimoto, Sp1 and SF-1 interact and cooperate in the regulation of human steroidogenic acute regulatory protein gene expression. Endocrinology 141, 2895–2903 (2000)PubMed T. Sugawara, M. Saito, S. Fujimoto, Sp1 and SF-1 interact and cooperate in the regulation of human steroidogenic acute regulatory protein gene expression. Endocrinology 141, 2895–2903 (2000)PubMed
50.
go back to reference H. Lin, C.-H. Yu, C.-Y. Jen, C.-F. Cheng, Y. Chou, C.-C. Chang, S.-H. Juan, Adiponectin-mediated heme oxygenase-1 induction protects against iron-induced liver injury via a PPARα dependent mechanism. Am. J. Pathol. 177, 1697–1709 (2010)CrossRefPubMedCentralPubMed H. Lin, C.-H. Yu, C.-Y. Jen, C.-F. Cheng, Y. Chou, C.-C. Chang, S.-H. Juan, Adiponectin-mediated heme oxygenase-1 induction protects against iron-induced liver injury via a PPARα dependent mechanism. Am. J. Pathol. 177, 1697–1709 (2010)CrossRefPubMedCentralPubMed
51.
go back to reference L.-F. Liu, W.-J. Shen, Z.H. Zhang, L.J. Wang, F.B. Kraemer, Adipocytes decrease Runx2 expression in osteoblastic cells: roles of PPARγ and adiponectin. J. Cell. Physiol. 225, 837–845 (2010)CrossRefPubMed L.-F. Liu, W.-J. Shen, Z.H. Zhang, L.J. Wang, F.B. Kraemer, Adipocytes decrease Runx2 expression in osteoblastic cells: roles of PPARγ and adiponectin. J. Cell. Physiol. 225, 837–845 (2010)CrossRefPubMed
52.
go back to reference M. Otani, M. Kogo, S. Furukawa, S. Wakisaka, T. Maeda, The adiponectin paralog C1q/TNF-related protein 3 (CTRP3) stimulates testosterone production through the cAMP/PKA signaling pathway. Cytokine 58, 238–244 (2012)CrossRefPubMed M. Otani, M. Kogo, S. Furukawa, S. Wakisaka, T. Maeda, The adiponectin paralog C1q/TNF-related protein 3 (CTRP3) stimulates testosterone production through the cAMP/PKA signaling pathway. Cytokine 58, 238–244 (2012)CrossRefPubMed
53.
go back to reference L. Wu, B. Xu, W. Fan, X. Zhu, G. Wang, A. Zhang, Adiponectin protects Leydig cells against proinflammatory cytokines by suppressing the nuclear factor-κB signaling pathway. FEBS J. 280, 3920–3927 (2013)CrossRefPubMed L. Wu, B. Xu, W. Fan, X. Zhu, G. Wang, A. Zhang, Adiponectin protects Leydig cells against proinflammatory cytokines by suppressing the nuclear factor-κB signaling pathway. FEBS J. 280, 3920–3927 (2013)CrossRefPubMed
54.
go back to reference C.Y. Hong, J.H. Park, R.S. Ahn, S.Y. Im, H.-S. Choi, J. Soh, S.H. Mellon, K. Lee, Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol. Cell. Biol. 24, 2593–2604 (2004)CrossRefPubMedCentralPubMed C.Y. Hong, J.H. Park, R.S. Ahn, S.Y. Im, H.-S. Choi, J. Soh, S.H. Mellon, K. Lee, Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol. Cell. Biol. 24, 2593–2604 (2004)CrossRefPubMedCentralPubMed
55.
go back to reference P.-J. Francin, A. Abot, C. Guillaume, D. Moulin, A. Bianchi, P. Gegout-Pottie, J.-Y. Jouzeau, D. Mainard, N. Presle, Association between adiponectin and cartilage degradation in human osteoarthritis. Osteoarthr. Cartil. 22, 519–526 (2014)CrossRefPubMed P.-J. Francin, A. Abot, C. Guillaume, D. Moulin, A. Bianchi, P. Gegout-Pottie, J.-Y. Jouzeau, D. Mainard, N. Presle, Association between adiponectin and cartilage degradation in human osteoarthritis. Osteoarthr. Cartil. 22, 519–526 (2014)CrossRefPubMed
56.
57.
go back to reference A.H. Payne, Hormonal regulation of cytochrome P450 enzymes, cholesterol side-chain cleavage and 17 alpha-hydroxylase/C17-20 lyase in Leydig cells. Biol. Reprod. 42, 399–404 (1990)CrossRefPubMed A.H. Payne, Hormonal regulation of cytochrome P450 enzymes, cholesterol side-chain cleavage and 17 alpha-hydroxylase/C17-20 lyase in Leydig cells. Biol. Reprod. 42, 399–404 (1990)CrossRefPubMed
58.
go back to reference P.J. O’Shaughnessy, L. Willerton, P.J. Baker, Changes in Leydig cell gene expression during development in the mouse. Biol. Reprod. 66, 966–975 (2002)CrossRefPubMed P.J. O’Shaughnessy, L. Willerton, P.J. Baker, Changes in Leydig cell gene expression during development in the mouse. Biol. Reprod. 66, 966–975 (2002)CrossRefPubMed
59.
go back to reference R.S. Viger, B. Robaire, Steady state steroid 5 alpha-reductase messenger ribonucleic acid levels and immunocytochemical localization of the type 1 protein in the rat testis during postnatal development. Endocrinology 136, 5409–5415 (1995)PubMed R.S. Viger, B. Robaire, Steady state steroid 5 alpha-reductase messenger ribonucleic acid levels and immunocytochemical localization of the type 1 protein in the rat testis during postnatal development. Endocrinology 136, 5409–5415 (1995)PubMed
60.
go back to reference L. Sieminska, B. Marek, B. Kos-Kudla, D. Niedziolka, D. Kajdaniuk, M. Nowak, J. Glogowska-Szelag, Serum adiponectin in women with polycystic ovarian syndrome and its relation to clinical, metabolic and endocrine parameters. J. Endocrinol. Invest. 27, 528–534 (2004)CrossRefPubMed L. Sieminska, B. Marek, B. Kos-Kudla, D. Niedziolka, D. Kajdaniuk, M. Nowak, J. Glogowska-Szelag, Serum adiponectin in women with polycystic ovarian syndrome and its relation to clinical, metabolic and endocrine parameters. J. Endocrinol. Invest. 27, 528–534 (2004)CrossRefPubMed
61.
go back to reference Z.V. Wang, P.E. Scherer, Adiponectin, cardiovascular function, and hypertension. Hypertension 51, 8–14 (2008)CrossRefPubMed Z.V. Wang, P.E. Scherer, Adiponectin, cardiovascular function, and hypertension. Hypertension 51, 8–14 (2008)CrossRefPubMed
62.
go back to reference K. Hotta, T. Funahashi, Y. Arita, M. Takahashi, M. Matsuda, Y. Okamoto, H. Iwahashi, H. Kuriyama, N. Ouchi, K. Maeda, M. Nishida, S. Kihara, N. Sakai, T. Nakajima, K. Hasegawa, M. Muraguchi, Y. Ohmoto, T. Nakamura, S. Yamashita, T. Hanafusa, Y. Matsuzawa, Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20, 1595–1599 (2000)CrossRefPubMed K. Hotta, T. Funahashi, Y. Arita, M. Takahashi, M. Matsuda, Y. Okamoto, H. Iwahashi, H. Kuriyama, N. Ouchi, K. Maeda, M. Nishida, S. Kihara, N. Sakai, T. Nakajima, K. Hasegawa, M. Muraguchi, Y. Ohmoto, T. Nakamura, S. Yamashita, T. Hanafusa, Y. Matsuzawa, Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20, 1595–1599 (2000)CrossRefPubMed
63.
go back to reference E.K. Wei, E. Giovannucci, C.S. Fuchs, W.C. Willett, C.S. Mantzoros, Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J. Natl Cancer Inst. 97, 1688–1694 (2005)CrossRefPubMed E.K. Wei, E. Giovannucci, C.S. Fuchs, W.C. Willett, C.S. Mantzoros, Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J. Natl Cancer Inst. 97, 1688–1694 (2005)CrossRefPubMed
64.
go back to reference P.G. Cohen, The hypogonadal-obesity cycle: role of aromatase in modulating the testosterone-estradiol shunt—a major factor in the genesis of morbid obesity. Med. Hypotheses 52, 49–51 (1999)CrossRefPubMed P.G. Cohen, The hypogonadal-obesity cycle: role of aromatase in modulating the testosterone-estradiol shunt—a major factor in the genesis of morbid obesity. Med. Hypotheses 52, 49–51 (1999)CrossRefPubMed
65.
go back to reference H.K. Kley, H.G. Solbach, J.C. McKinnan, H.L. Krüskemper, Testosterone decrease and oestrogen increase in male patients with obesity. Acta Endocrinol. (Copenh.) 91, 553–563 (1979) H.K. Kley, H.G. Solbach, J.C. McKinnan, H.L. Krüskemper, Testosterone decrease and oestrogen increase in male patients with obesity. Acta Endocrinol. (Copenh.) 91, 553–563 (1979)
66.
go back to reference B. Zumoff, G.W. Strain, L.K. Miller, W. Rosner, R. Senie, D.S. Seres, R.S. Rosenfeld, Plasma free and non-sex-hormone-binding-globulin-bound testosterone are decreased in obese men in proportion to their degree of obesity. J. Clin. Endocrinol. Metab. 71, 929–931 (1990)CrossRefPubMed B. Zumoff, G.W. Strain, L.K. Miller, W. Rosner, R. Senie, D.S. Seres, R.S. Rosenfeld, Plasma free and non-sex-hormone-binding-globulin-bound testosterone are decreased in obese men in proportion to their degree of obesity. J. Clin. Endocrinol. Metab. 71, 929–931 (1990)CrossRefPubMed
67.
go back to reference S. Broos, P. Hulpiau, J. Galle, B. Hooghe, F. Van Roy, P. De Bleser, ConTra v2: a tool to identify transcription factor binding sites across species, update 2011. Nucleic Acids Res. 39, W74–W78 (2011)CrossRefPubMedCentralPubMed S. Broos, P. Hulpiau, J. Galle, B. Hooghe, F. Van Roy, P. De Bleser, ConTra v2: a tool to identify transcription factor binding sites across species, update 2011. Nucleic Acids Res. 39, W74–W78 (2011)CrossRefPubMedCentralPubMed
68.
go back to reference E. Wingender, P. Dietze, H. Karas, R. Knüppel, TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 24, 238–241 (1996)CrossRefPubMedCentralPubMed E. Wingender, P. Dietze, H. Karas, R. Knüppel, TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 24, 238–241 (1996)CrossRefPubMedCentralPubMed
Metadata
Title
Adiponectin influences progesterone production from MA-10 Leydig cells in a dose-dependent manner
Authors
David Landry
Aurélie Paré
Stéphanie Jean
Luc J. Martin
Publication date
01-04-2015
Publisher
Springer US
Published in
Endocrine / Issue 3/2015
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-014-0456-y

Other articles of this Issue 3/2015

Endocrine 3/2015 Go to the issue