Skip to main content
Top
Published in: Endocrine 2/2012

01-10-2012 | Review

Chemerin: a potential endocrine link between obesity and type 2 diabetes

Authors: Alexandra A. Roman, Sebastian D. Parlee, Christopher J. Sinal

Published in: Endocrine | Issue 2/2012

Login to get access

Abstract

Obesity and type 2 diabetes have reached epidemic levels and account for a substantial portion of the annual health expenditures of developed nations. While there is an abundance of epidemiological evidence demonstrating that obesity is a primary risk factor for developing type 2 diabetes, the mechanism(s) underlying this linkage are not completely understood. Given the enormous impact of these disorders on global health, considerable research effort has been devoted to elucidate the pathophysiological relationship between these two disorders. Two factors believed to contribute to the causal link between obesity and type 2 diabetes are chronic inflammation and altered secretion of adipose-derived signaling molecules (adipokines). Independent lines of investigation have implicated the novel adipokine chemerin as a regulator of adipogenesis, inflammation, and glucose metabolism through interactions with the cognate cell surface receptor chemokine-like receptor 1. Increased levels of chemerin that occur with obesity are hypothesized to be a causal factor in the development of type 2 diabetes as a consequence of dysregulation of the key physiological processes regulated by this adipokine. This review summarizes current research on the biological roles of chemerin and chemokine-like receptor 1, and highlights key questions to guide future research on the role of this adipokine in mediating obesity and the development of type 2 diabetes.
Literature
1.
go back to reference National Institute of Health, Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults–the evidence report. Obes. Res. 6(Suppl 2), 51S–209S (1998) National Institute of Health, Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults–the evidence report. Obes. Res. 6(Suppl 2), 51S–209S (1998)
2.
go back to reference H. Shamseddeen, J.Z. Getty, I.N. Hamdallah, M.R. Ali, Epidemiology and economic impact of obesity and type 2 diabetes. Surg. Clin. North. Am. 91(6), 1163–1172 (2011)PubMedCrossRef H. Shamseddeen, J.Z. Getty, I.N. Hamdallah, M.R. Ali, Epidemiology and economic impact of obesity and type 2 diabetes. Surg. Clin. North. Am. 91(6), 1163–1172 (2011)PubMedCrossRef
3.
go back to reference P.G. Kopelman, Obesity as a medical problem. Nature 404(6778), 635–643 (2000)PubMed P.G. Kopelman, Obesity as a medical problem. Nature 404(6778), 635–643 (2000)PubMed
4.
go back to reference O.T. Hardy, M.P. Czech, S. Corvera, What causes the insulin resistance underlying obesity? Curr. Opin. Endocrinol. Diabetes. Obes. 19(2), 81–87 (2012)PubMed O.T. Hardy, M.P. Czech, S. Corvera, What causes the insulin resistance underlying obesity? Curr. Opin. Endocrinol. Diabetes. Obes. 19(2), 81–87 (2012)PubMed
5.
go back to reference J. Conde, M. Scotece, R. Gomez, V. Lopez, J.J. Gomez-Reino, F. Lago, O. Gualillo, Adipokines: biofactors from white adipose tissue. A complex hub among inflammation, metabolism, and immunity. BioFactors 37(6), 413–420 (2011)PubMedCrossRef J. Conde, M. Scotece, R. Gomez, V. Lopez, J.J. Gomez-Reino, F. Lago, O. Gualillo, Adipokines: biofactors from white adipose tissue. A complex hub among inflammation, metabolism, and immunity. BioFactors 37(6), 413–420 (2011)PubMedCrossRef
6.
go back to reference E.E. Kershaw, J.S. Flier, Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89(6), 2548–2556 (2004)PubMedCrossRef E.E. Kershaw, J.S. Flier, Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89(6), 2548–2556 (2004)PubMedCrossRef
7.
go back to reference S.P. Poulos, D.B. Hausman, G.J. Hausman, The development and endocrine functions of adipose tissue. Mol. Cell. Endocrinol. 323(1), 20–34 (2010)PubMedCrossRef S.P. Poulos, D.B. Hausman, G.J. Hausman, The development and endocrine functions of adipose tissue. Mol. Cell. Endocrinol. 323(1), 20–34 (2010)PubMedCrossRef
8.
go back to reference N. Ouchi, J.L. Parker, J.J. Lugus, K. Walsh, Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11(2), 85–97 (2011)PubMedCrossRef N. Ouchi, J.L. Parker, J.J. Lugus, K. Walsh, Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11(2), 85–97 (2011)PubMedCrossRef
9.
go back to reference K. Brochu-Gaudreau, C. Rehfeldt, R. Blouin, V. Bordignon, B.D. Murphy, M.F. Palin, Adiponectin action from head to toe. Endocrine 37(1), 11–32 (2010)PubMedCrossRef K. Brochu-Gaudreau, C. Rehfeldt, R. Blouin, V. Bordignon, B.D. Murphy, M.F. Palin, Adiponectin action from head to toe. Endocrine 37(1), 11–32 (2010)PubMedCrossRef
10.
go back to reference M. Bluher, Vaspin in obesity and diabetes: pathophysiological and clinical significance. Endocrine 41(2), 176–182 (2012)PubMedCrossRef M. Bluher, Vaspin in obesity and diabetes: pathophysiological and clinical significance. Endocrine 41(2), 176–182 (2012)PubMedCrossRef
11.
go back to reference M. Pardo, A. Roca-Rivada, L.M. Seoane, F.F. Casanueva, Obesidomics: contribution of adipose tissue secretome analysis to obesity research. Endocrine 41(3), 374–383 (2012)PubMedCrossRef M. Pardo, A. Roca-Rivada, L.M. Seoane, F.F. Casanueva, Obesidomics: contribution of adipose tissue secretome analysis to obesity research. Endocrine 41(3), 374–383 (2012)PubMedCrossRef
12.
go back to reference I. Castan-Laurell, C. Dray, C. Attane, T. Duparc, C. Knauf, P. Valet, Apelin, diabetes, and obesity. Endocrine 40(1), 1–9 (2011)PubMedCrossRef I. Castan-Laurell, C. Dray, C. Attane, T. Duparc, C. Knauf, P. Valet, Apelin, diabetes, and obesity. Endocrine 40(1), 1–9 (2011)PubMedCrossRef
13.
go back to reference S. Baldasseroni, E. Mannucci, C. Di Serio, F. Orso, N. Bartoli, E. Mossello, A. Foschini, M. Monami, P. Valoti, S. Fumagalli, C. Colombi, S. Pellerito, G. Gensini, N. Marchionni, F. Tarantini, Resistin level in coronary artery disease and heart failure: the central role of kidney function. J Cardiovasc Med (Hagerstown) (2012) S. Baldasseroni, E. Mannucci, C. Di Serio, F. Orso, N. Bartoli, E. Mossello, A. Foschini, M. Monami, P. Valoti, S. Fumagalli, C. Colombi, S. Pellerito, G. Gensini, N. Marchionni, F. Tarantini, Resistin level in coronary artery disease and heart failure: the central role of kidney function. J Cardiovasc Med (Hagerstown) (2012)
14.
go back to reference G.S. Hotamisligil, P. Arner, J.F. Caro, R.L. Atkinson, B.M. Spiegelman, Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest. 95(5), 2409–2415 (1995)PubMedCrossRef G.S. Hotamisligil, P. Arner, J.F. Caro, R.L. Atkinson, B.M. Spiegelman, Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest. 95(5), 2409–2415 (1995)PubMedCrossRef
15.
go back to reference M. Okamoto, M. Ohara-Imaizumi, N. Kubota, S. Hashimoto, K. Eto, T. Kanno, T. Kubota, M. Wakui, R. Nagai, M. Noda, S. Nagamatsu, T. Kadowaki, Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. Diabetologia 51(5), 827–835 (2008)PubMedCrossRef M. Okamoto, M. Ohara-Imaizumi, N. Kubota, S. Hashimoto, K. Eto, T. Kanno, T. Kubota, M. Wakui, R. Nagai, M. Noda, S. Nagamatsu, T. Kadowaki, Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. Diabetologia 51(5), 827–835 (2008)PubMedCrossRef
16.
go back to reference H. Sell, J. Eckel, Chemotactic cytokines, obesity and type 2 diabetes: in vivo and in vitro evidence for a possible causal correlation? Proc. Nutr. Soc. 68(4), 378–384 (2009)PubMedCrossRef H. Sell, J. Eckel, Chemotactic cytokines, obesity and type 2 diabetes: in vivo and in vitro evidence for a possible causal correlation? Proc. Nutr. Soc. 68(4), 378–384 (2009)PubMedCrossRef
17.
go back to reference R. Coppari, M. Ichinose, C.E. Lee, A.E. Pullen, C.D. Kenny, R.A. McGovern, V. Tang, S.M. Liu, T. Ludwig, S.C. Chua Jr, B.B. Lowell, J.K. Elmquist, The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab. 1(1), 63–72 (2005)PubMedCrossRef R. Coppari, M. Ichinose, C.E. Lee, A.E. Pullen, C.D. Kenny, R.A. McGovern, V. Tang, S.M. Liu, T. Ludwig, S.C. Chua Jr, B.B. Lowell, J.K. Elmquist, The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab. 1(1), 63–72 (2005)PubMedCrossRef
18.
go back to reference M. Yang, G. Yang, J. Dong, Y. Liu, H. Zong, H. Liu, G. Boden, L. Li, Elevated plasma levels of chemerin in newly diagnosed type 2 diabetes mellitus with hypertension. J. Investig. Med. 58(7), 883–886 (2010)PubMed M. Yang, G. Yang, J. Dong, Y. Liu, H. Zong, H. Liu, G. Boden, L. Li, Elevated plasma levels of chemerin in newly diagnosed type 2 diabetes mellitus with hypertension. J. Investig. Med. 58(7), 883–886 (2010)PubMed
19.
go back to reference J. Hirosumi, G. Tuncman, L. Chang, C.Z. Gorgun, K.T. Uysal, K. Maeda, M. Karin, G.S. Hotamisligil, A central role for JNK in obesity and insulin resistance. Nature 420(6913), 333–336 (2002)PubMedCrossRef J. Hirosumi, G. Tuncman, L. Chang, C.Z. Gorgun, K.T. Uysal, K. Maeda, M. Karin, G.S. Hotamisligil, A central role for JNK in obesity and insulin resistance. Nature 420(6913), 333–336 (2002)PubMedCrossRef
20.
go back to reference S.I. Itani, N.B. Ruderman, F. Schmieder, G. Boden, Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51(7), 2005–2011 (2002)PubMedCrossRef S.I. Itani, N.B. Ruderman, F. Schmieder, G. Boden, Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51(7), 2005–2011 (2002)PubMedCrossRef
21.
go back to reference M.C. Arkan, A.L. Hevener, F.R. Greten, S. Maeda, Z.W. Li, J.M. Long, A. Wynshaw-Boris, G. Poli, J. Olefsky, M. Karin, IKK-beta links inflammation to obesity-induced insulin resistance. Nat. Med. 11(2), 191–198 (2005)PubMedCrossRef M.C. Arkan, A.L. Hevener, F.R. Greten, S. Maeda, Z.W. Li, J.M. Long, A. Wynshaw-Boris, G. Poli, J. Olefsky, M. Karin, IKK-beta links inflammation to obesity-induced insulin resistance. Nat. Med. 11(2), 191–198 (2005)PubMedCrossRef
22.
go back to reference T.J. Guzik, D. Mangalat, R. Korbut, Adipocytokines—novel link between inflammation and vascular function? J. Physiol. Pharmacol. 57(4), 505–528 (2006)PubMed T.J. Guzik, D. Mangalat, R. Korbut, Adipocytokines—novel link between inflammation and vascular function? J. Physiol. Pharmacol. 57(4), 505–528 (2006)PubMed
23.
go back to reference T. Yamauchi, Y. Nio, T. Maki, M. Kobayashi, T. Takazawa, M. Iwabu, M. Okada-Iwabu, S. Kawamoto, N. Kubota, T. Kubota, Y. Ito, J. Kamon, A. Tsuchida, K. Kumagai, H. Kozono, Y. Hada, H. Ogata, K. Tokuyama, M. Tsunoda, T. Ide, K. Murakami, M. Awazawa, I. Takamoto, P. Froguel, K. Hara, K. Tobe, R. Nagai, K. Ueki, T. Kadowaki, Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med. 13(3), 332–339 (2007)PubMedCrossRef T. Yamauchi, Y. Nio, T. Maki, M. Kobayashi, T. Takazawa, M. Iwabu, M. Okada-Iwabu, S. Kawamoto, N. Kubota, T. Kubota, Y. Ito, J. Kamon, A. Tsuchida, K. Kumagai, H. Kozono, Y. Hada, H. Ogata, K. Tokuyama, M. Tsunoda, T. Ide, K. Murakami, M. Awazawa, I. Takamoto, P. Froguel, K. Hara, K. Tobe, R. Nagai, K. Ueki, T. Kadowaki, Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med. 13(3), 332–339 (2007)PubMedCrossRef
24.
go back to reference T.P. Combs, U.B. Pajvani, A.H. Berg, Y. Lin, L.A. Jelicks, M. Laplante, A.R. Nawrocki, M.W. Rajala, A.F. Parlow, L. Cheeseboro, Y.Y. Ding, R.G. Russell, D. Lindemann, A. Hartley, G.R. Baker, S. Obici, Y. Deshaies, M. Ludgate, L. Rossetti, P.E. Scherer, A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 145(1), 367–383 (2004)PubMedCrossRef T.P. Combs, U.B. Pajvani, A.H. Berg, Y. Lin, L.A. Jelicks, M. Laplante, A.R. Nawrocki, M.W. Rajala, A.F. Parlow, L. Cheeseboro, Y.Y. Ding, R.G. Russell, D. Lindemann, A. Hartley, G.R. Baker, S. Obici, Y. Deshaies, M. Ludgate, L. Rossetti, P.E. Scherer, A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 145(1), 367–383 (2004)PubMedCrossRef
25.
go back to reference A. Petrone, S. Zavarella, A. Caiazzo, G. Leto, M. Spoletini, S. Potenziani, J. Osborn, A. Vania, R. Buzzetti, The promoter region of the adiponectin gene is a determinant in modulating insulin sensitivity in childhood obesity. Obesity (Silver Spring) 14(9), 1498–1504 (2006)CrossRef A. Petrone, S. Zavarella, A. Caiazzo, G. Leto, M. Spoletini, S. Potenziani, J. Osborn, A. Vania, R. Buzzetti, The promoter region of the adiponectin gene is a determinant in modulating insulin sensitivity in childhood obesity. Obesity (Silver Spring) 14(9), 1498–1504 (2006)CrossRef
26.
go back to reference S.M. Ruchat, R.J. Loos, T. Rankinen, M.C. Vohl, S.J. Weisnagel, J.P. Despres, C. Bouchard, L. Perusse, Associations between glucose tolerance, insulin sensitivity and insulin secretion phenotypes and polymorphisms in adiponectin and adiponectin receptor genes in the Quebec Family Study. Diabet. Med. 25(4), 400–406 (2008)PubMedCrossRef S.M. Ruchat, R.J. Loos, T. Rankinen, M.C. Vohl, S.J. Weisnagel, J.P. Despres, C. Bouchard, L. Perusse, Associations between glucose tolerance, insulin sensitivity and insulin secretion phenotypes and polymorphisms in adiponectin and adiponectin receptor genes in the Quebec Family Study. Diabet. Med. 25(4), 400–406 (2008)PubMedCrossRef
27.
go back to reference M.C. Ernst, C.J. Sinal, Chemerin: at the crossroads of inflammation and obesity. Trends Endocrinol. Metab. 21(11), 660–667 (2010)PubMedCrossRef M.C. Ernst, C.J. Sinal, Chemerin: at the crossroads of inflammation and obesity. Trends Endocrinol. Metab. 21(11), 660–667 (2010)PubMedCrossRef
28.
go back to reference D. Stejskal, M. Karpisek, Z. Hanulova, M. Svestak, Chemerin is an independent marker of the metabolic syndrome in a Caucasian population–a pilot study. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 152(2), 217–221 (2008)PubMed D. Stejskal, M. Karpisek, Z. Hanulova, M. Svestak, Chemerin is an independent marker of the metabolic syndrome in a Caucasian population–a pilot study. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 152(2), 217–221 (2008)PubMed
29.
go back to reference J. Weigert, M. Neumeier, J. Wanninger, M. Filarsky, S. Bauer, R. Wiest, S. Farkas, M.N. Scherer, A. Schaffler, C. Aslanidis, J. Scholmerich, C. Buechler, Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes. Clin. Endocrinol. (Oxf) 72(3), 342–348 (2010)CrossRef J. Weigert, M. Neumeier, J. Wanninger, M. Filarsky, S. Bauer, R. Wiest, S. Farkas, M.N. Scherer, A. Schaffler, C. Aslanidis, J. Scholmerich, C. Buechler, Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes. Clin. Endocrinol. (Oxf) 72(3), 342–348 (2010)CrossRef
30.
go back to reference D. M. Ouwens, M. Bekaert, B. Lapauw, Y. V. Nieuwenhove, S. Lehr, S. Hartwig, P. Calders, J. M. Kaufman, H. Sell, J. Eckel, J. B. Ruige, Chemerin as biomarker for insulin sensitivity in males without typical characteristics of metabolic syndrome. Arch Physiol Biochem (2012) [epub ahead of print] D. M. Ouwens, M. Bekaert, B. Lapauw, Y. V. Nieuwenhove, S. Lehr, S. Hartwig, P. Calders, J. M. Kaufman, H. Sell, J. Eckel, J. B. Ruige, Chemerin as biomarker for insulin sensitivity in males without typical characteristics of metabolic syndrome. Arch Physiol Biochem (2012) [epub ahead of print]
31.
go back to reference M. Bluher, A. Rudich, N. Kloting, R. Golan, Y. Henkin, E. Rubin, D. Schwarzfuchs, Y. Gepner, M.J. Stampfer, M. Fiedler, J. Thiery, M. Stumvoll, I. Shai, Two patterns of adipokine and other biomarker dynamics in a long-term weight loss intervention. Diabetes Care 35(2), 342–349 (2012)PubMedCrossRef M. Bluher, A. Rudich, N. Kloting, R. Golan, Y. Henkin, E. Rubin, D. Schwarzfuchs, Y. Gepner, M.J. Stampfer, M. Fiedler, J. Thiery, M. Stumvoll, I. Shai, Two patterns of adipokine and other biomarker dynamics in a long-term weight loss intervention. Diabetes Care 35(2), 342–349 (2012)PubMedCrossRef
32.
go back to reference R. Chakaroun, M. Raschpichler, N. Kloting, A. Oberbach, G. Flehmig, M. Kern, M.R. Schon, E. Shang, T. Lohmann, M. Dressler, M. Fasshauer, M. Stumvoll, M. Bluher, Effects of weight loss and exercise on chemerin serum concentrations and adipose tissue expression in human obesity. Metabolism 61(5), 706–714 (2011)PubMedCrossRef R. Chakaroun, M. Raschpichler, N. Kloting, A. Oberbach, G. Flehmig, M. Kern, M.R. Schon, E. Shang, T. Lohmann, M. Dressler, M. Fasshauer, M. Stumvoll, M. Bluher, Effects of weight loss and exercise on chemerin serum concentrations and adipose tissue expression in human obesity. Metabolism 61(5), 706–714 (2011)PubMedCrossRef
33.
go back to reference Verrijn Stuart, Altered plasma adipokine levels and in vitro adipocyte differentiation in pediatric type 1 diabetes. J. Clin. Endocrinol. Metab. 97(2), 463–472 (2012)CrossRef Verrijn Stuart, Altered plasma adipokine levels and in vitro adipocyte differentiation in pediatric type 1 diabetes. J. Clin. Endocrinol. Metab. 97(2), 463–472 (2012)CrossRef
34.
go back to reference Y.J. Hah, N.K. Kim, M.K. Kim, H.S. Kim, S.H. Hur, H.J. Yoon, Y.N. Kim, K.G. Park, Relationship between chemerin levels and cardiometabolic parameters and degree of coronary stenosis in Korean patients with coronary artery disease. Diabet. Metab. J. 35(3), 248–254 (2011)CrossRef Y.J. Hah, N.K. Kim, M.K. Kim, H.S. Kim, S.H. Hur, H.J. Yoon, Y.N. Kim, K.G. Park, Relationship between chemerin levels and cardiometabolic parameters and degree of coronary stenosis in Korean patients with coronary artery disease. Diabet. Metab. J. 35(3), 248–254 (2011)CrossRef
35.
go back to reference H.O. El-Mesallamy, M.O. El-Derany, N.M. Hamdy, Serum omentin-1 and chemerin levels are interrelated in patients with Type 2 diabetes mellitus with or without ischaemic heart disease. Diabet. Med. 28(10), 1194–1200 (2011)PubMedCrossRef H.O. El-Mesallamy, M.O. El-Derany, N.M. Hamdy, Serum omentin-1 and chemerin levels are interrelated in patients with Type 2 diabetes mellitus with or without ischaemic heart disease. Diabet. Med. 28(10), 1194–1200 (2011)PubMedCrossRef
36.
go back to reference M. Lehrke, A. Becker, M. Greif, R. Stark, R.P. Laubender, F. von Ziegler, C. Lebherz, J. Tittus, M. Reiser, C. Becker, B. Goke, A.W. Leber, K.G. Parhofer, U.C. Broedl, Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur. J. Endocrinol. 161(2), 339–344 (2009)PubMedCrossRef M. Lehrke, A. Becker, M. Greif, R. Stark, R.P. Laubender, F. von Ziegler, C. Lebherz, J. Tittus, M. Reiser, C. Becker, B. Goke, A.W. Leber, K.G. Parhofer, U.C. Broedl, Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur. J. Endocrinol. 161(2), 339–344 (2009)PubMedCrossRef
37.
go back to reference K. Bozaoglu, K. Bolton, J. McMillan, P. Zimmet, J. Jowett, G. Collier, K. Walder, D. Segal, Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148(10), 4687–4694 (2007)PubMedCrossRef K. Bozaoglu, K. Bolton, J. McMillan, P. Zimmet, J. Jowett, G. Collier, K. Walder, D. Segal, Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148(10), 4687–4694 (2007)PubMedCrossRef
38.
go back to reference C. Ress, A. Tschoner, J. Engl, A. Klaus, H. Tilg, C.F. Ebenbichler, J.R. Patsch, S. Kaser, Effect of bariatric surgery on circulating chemerin levels. Eur. J. Clin. Invest. 40(3), 277–280 (2010)PubMedCrossRef C. Ress, A. Tschoner, J. Engl, A. Klaus, H. Tilg, C.F. Ebenbichler, J.R. Patsch, S. Kaser, Effect of bariatric surgery on circulating chemerin levels. Eur. J. Clin. Invest. 40(3), 277–280 (2010)PubMedCrossRef
39.
go back to reference H. Sell, A. Divoux, C. Poitou, A. Basdevant, J.L. Bouillot, P. Bedossa, J. Tordjman, J. Eckel, K. Clement, Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J. Clin. Endocrinol. Metab. 95(6), 2892–2896 (2010)PubMedCrossRef H. Sell, A. Divoux, C. Poitou, A. Basdevant, J.L. Bouillot, P. Bedossa, J. Tordjman, J. Eckel, K. Clement, Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J. Clin. Endocrinol. Metab. 95(6), 2892–2896 (2010)PubMedCrossRef
40.
go back to reference B.K. Tan, J. Chen, S. Farhatullah, R. Adya, J. Kaur, D. Heutling, K.C. Lewandowski, J.P. O’Hare, H. Lehnert, H.S. Randeva, Insulin and metformin regulate circulating and adipose tissue chemerin. Diabetes 58(9), 1971–1977 (2009)PubMedCrossRef B.K. Tan, J. Chen, S. Farhatullah, R. Adya, J. Kaur, D. Heutling, K.C. Lewandowski, J.P. O’Hare, H. Lehnert, H.S. Randeva, Insulin and metformin regulate circulating and adipose tissue chemerin. Diabetes 58(9), 1971–1977 (2009)PubMedCrossRef
41.
go back to reference S. Nagpal, S. Patel, H. Jacobe, D. DiSepio, C. Ghosn, M. Malhotra, M. Teng, M. Duvic, R.A. Chandraratna, Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J. Invest. Dermatol. 109(1), 91–95 (1997)PubMedCrossRef S. Nagpal, S. Patel, H. Jacobe, D. DiSepio, C. Ghosn, M. Malhotra, M. Teng, M. Duvic, R.A. Chandraratna, Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J. Invest. Dermatol. 109(1), 91–95 (1997)PubMedCrossRef
42.
go back to reference V. Wittamer, J.D. Franssen, M. Vulcano, J.F. Mirjolet, E. Le Poul, I. Migeotte, S. Brezillon, R. Tyldesley, C. Blanpain, M. Detheux, A. Mantovani, S. Sozzani, G. Vassart, M. Parmentier, D. Communi, Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198(7), 977–985 (2003)PubMedCrossRef V. Wittamer, J.D. Franssen, M. Vulcano, J.F. Mirjolet, E. Le Poul, I. Migeotte, S. Brezillon, R. Tyldesley, C. Blanpain, M. Detheux, A. Mantovani, S. Sozzani, G. Vassart, M. Parmentier, D. Communi, Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198(7), 977–985 (2003)PubMedCrossRef
43.
go back to reference K.B. Goralski, T.C. McCarthy, E.A. Hanniman, B.A. Zabel, E.C. Butcher, S.D. Parlee, S. Muruganandan, C.J. Sinal, Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 282(38), 28175–28188 (2007)PubMedCrossRef K.B. Goralski, T.C. McCarthy, E.A. Hanniman, B.A. Zabel, E.C. Butcher, S.D. Parlee, S. Muruganandan, C.J. Sinal, Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 282(38), 28175–28188 (2007)PubMedCrossRef
44.
go back to reference S. Muruganandan, A.A. Roman, C.J. Sinal, Role of chemerin/CMKLR1 signaling in adipogenesis and osteoblastogenesis of bone marrow stem cells. J. Bone Miner. Res. 25(2), 222–234 (2010)PubMedCrossRef S. Muruganandan, A.A. Roman, C.J. Sinal, Role of chemerin/CMKLR1 signaling in adipogenesis and osteoblastogenesis of bone marrow stem cells. J. Bone Miner. Res. 25(2), 222–234 (2010)PubMedCrossRef
45.
go back to reference S. Muruganandan, S.D. Parlee, J.L. Rourke, M.C. Ernst, K.B. Goralski, C.J. Sinal, Chemerin, a novel peroxisome proliferator-activated receptor gamma (PPARgamma) target gene that promotes mesenchymal stem cell adipogenesis. J. Biol. Chem. 286(27), 23982–23995 (2011)PubMedCrossRef S. Muruganandan, S.D. Parlee, J.L. Rourke, M.C. Ernst, K.B. Goralski, C.J. Sinal, Chemerin, a novel peroxisome proliferator-activated receptor gamma (PPARgamma) target gene that promotes mesenchymal stem cell adipogenesis. J. Biol. Chem. 286(27), 23982–23995 (2011)PubMedCrossRef
46.
go back to reference B.A. Zabel, S. Nakae, L. Zuniga, J.Y. Kim, T. Ohyama, C. Alt, J. Pan, H. Suto, D. Soler, S.J. Allen, T.M. Handel, C.H. Song, S.J. Galli, E.C. Butcher, Mast cell-expressed orphan receptor CCRL2 binds chemerin and is required for optimal induction of IgE-mediated passive cutaneous anaphylaxis. J. Exp. Med. 205(10), 2207–2220 (2008)PubMedCrossRef B.A. Zabel, S. Nakae, L. Zuniga, J.Y. Kim, T. Ohyama, C. Alt, J. Pan, H. Suto, D. Soler, S.J. Allen, T.M. Handel, C.H. Song, S.J. Galli, E.C. Butcher, Mast cell-expressed orphan receptor CCRL2 binds chemerin and is required for optimal induction of IgE-mediated passive cutaneous anaphylaxis. J. Exp. Med. 205(10), 2207–2220 (2008)PubMedCrossRef
47.
go back to reference G. Barnea, W. Strapps, G. Herrada, Y. Berman, J. Ong, B. Kloss, R. Axel, K.J. Lee, The genetic design of signaling cascades to record receptor activation. Proc. Natl. Acad. Sci. USA 105(1), 64–69 (2008)PubMedCrossRef G. Barnea, W. Strapps, G. Herrada, Y. Berman, J. Ong, B. Kloss, R. Axel, K.J. Lee, The genetic design of signaling cascades to record receptor activation. Proc. Natl. Acad. Sci. USA 105(1), 64–69 (2008)PubMedCrossRef
48.
go back to reference X.Y. Du, B.A. Zabel, T. Myles, S.J. Allen, T.M. Handel, P.P. Lee, E.C. Butcher, L.L. Leung, Regulation of chemerin bioactivity by plasma carboxypeptidase N, carboxypeptidase B (activated thrombin-activable fibrinolysis inhibitor), and platelets. J. Biol. Chem. 284(2), 751–758 (2009)PubMedCrossRef X.Y. Du, B.A. Zabel, T. Myles, S.J. Allen, T.M. Handel, P.P. Lee, E.C. Butcher, L.L. Leung, Regulation of chemerin bioactivity by plasma carboxypeptidase N, carboxypeptidase B (activated thrombin-activable fibrinolysis inhibitor), and platelets. J. Biol. Chem. 284(2), 751–758 (2009)PubMedCrossRef
49.
go back to reference V. Wittamer, B. Bondue, A. Guillabert, G. Vassart, M. Parmentier, D. Communi, Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J. Immunol. 175(1), 487–493 (2005)PubMed V. Wittamer, B. Bondue, A. Guillabert, G. Vassart, M. Parmentier, D. Communi, Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J. Immunol. 175(1), 487–493 (2005)PubMed
50.
go back to reference A. Guillabert, V. Wittamer, B. Bondue, V. Godot, V. Imbault, M. Parmentier, D. Communi, Role of neutrophil proteinase 3 and mast cell chymase in chemerin proteolytic regulation. J. Leukoc. Biol. 84(6), 1530–1538 (2008)PubMedCrossRef A. Guillabert, V. Wittamer, B. Bondue, V. Godot, V. Imbault, M. Parmentier, D. Communi, Role of neutrophil proteinase 3 and mast cell chymase in chemerin proteolytic regulation. J. Leukoc. Biol. 84(6), 1530–1538 (2008)PubMedCrossRef
51.
go back to reference H. John, J. Hierer, O. Haas, W.G. Forssmann, Quantification of angiotensin-converting-enzyme-mediated degradation of human chemerin 145–154 in plasma by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Anal. Biochem. 362(1), 117–125 (2007)PubMedCrossRef H. John, J. Hierer, O. Haas, W.G. Forssmann, Quantification of angiotensin-converting-enzyme-mediated degradation of human chemerin 145–154 in plasma by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Anal. Biochem. 362(1), 117–125 (2007)PubMedCrossRef
52.
go back to reference B.A. Zabel, S.J. Allen, P. Kulig, J.A. Allen, J. Cichy, T.M. Handel, E.C. Butcher, Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J. Biol. Chem. 280(41), 34661–34666 (2005)PubMedCrossRef B.A. Zabel, S.J. Allen, P. Kulig, J.A. Allen, J. Cichy, T.M. Handel, E.C. Butcher, Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J. Biol. Chem. 280(41), 34661–34666 (2005)PubMedCrossRef
53.
go back to reference V. Wittamer, F. Gregoire, P. Robberecht, G. Vassart, D. Communi, M. Parmentier, The C-terminal nonapeptide of mature chemerin activates the chemerin receptor with low nanomolar potency. J. Biol. Chem. 279(11), 9956–9962 (2004)PubMedCrossRef V. Wittamer, F. Gregoire, P. Robberecht, G. Vassart, D. Communi, M. Parmentier, The C-terminal nonapeptide of mature chemerin activates the chemerin receptor with low nanomolar potency. J. Biol. Chem. 279(11), 9956–9962 (2004)PubMedCrossRef
54.
go back to reference W. Meder, M. Wendland, A. Busmann, C. Kutzleb, N. Spodsberg, H. John, R. Richter, D. Schleuder, M. Meyer, W.G. Forssmann, Characterization of human circulating TIG2 as a ligand for the orphan receptor ChemR23. FEBS Lett. 555(3), 495–499 (2003)PubMedCrossRef W. Meder, M. Wendland, A. Busmann, C. Kutzleb, N. Spodsberg, H. John, R. Richter, D. Schleuder, M. Meyer, W.G. Forssmann, Characterization of human circulating TIG2 as a ligand for the orphan receptor ChemR23. FEBS Lett. 555(3), 495–499 (2003)PubMedCrossRef
55.
go back to reference Y. Yamaguchi, X.Y. Du, L. Zhao, J. Morser, L.L. Leung, Proteolytic cleavage of chemerin protein is necessary for activation to the active form, Chem157S, which functions as a signaling molecule in glioblastoma. J. Biol. Chem. 286(45), 39510–39519 (2011)PubMedCrossRef Y. Yamaguchi, X.Y. Du, L. Zhao, J. Morser, L.L. Leung, Proteolytic cleavage of chemerin protein is necessary for activation to the active form, Chem157S, which functions as a signaling molecule in glioblastoma. J. Biol. Chem. 286(45), 39510–39519 (2011)PubMedCrossRef
56.
go back to reference L. Zhao, Y. Yamaguchi, S. Sharif, X.Y. Du, J.J. Song, D.M. Lee, L.D. Recht, W.H. Robinson, J. Morser, L.L. Leung, Chemerin158 K protein is the dominant chemerin isoform in synovial and cerebrospinal fluids but not in plasma. J. Biol. Chem. 286(45), 39520–39527 (2011)PubMedCrossRef L. Zhao, Y. Yamaguchi, S. Sharif, X.Y. Du, J.J. Song, D.M. Lee, L.D. Recht, W.H. Robinson, J. Morser, L.L. Leung, Chemerin158 K protein is the dominant chemerin isoform in synovial and cerebrospinal fluids but not in plasma. J. Biol. Chem. 286(45), 39520–39527 (2011)PubMedCrossRef
57.
go back to reference B.A. Zabel, A.M. Silverio, E.C. Butcher, Chemokine-like receptor 1 expression and chemerin-directed chemotaxis distinguish plasmacytoid from myeloid dendritic cells in human blood. J. Immunol. 174(1), 244–251 (2005)PubMed B.A. Zabel, A.M. Silverio, E.C. Butcher, Chemokine-like receptor 1 expression and chemerin-directed chemotaxis distinguish plasmacytoid from myeloid dendritic cells in human blood. J. Immunol. 174(1), 244–251 (2005)PubMed
58.
go back to reference W. Vermi, E. Riboldi, V. Wittamer, F. Gentili, W. Luini, S. Marrelli, A. Vecchi, J.D. Franssen, D. Communi, L. Massardi, M. Sironi, A. Mantovani, M. Parmentier, F. Facchetti, S. Sozzani, Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin. J. Exp. Med. 201(4), 509–515 (2005)PubMedCrossRef W. Vermi, E. Riboldi, V. Wittamer, F. Gentili, W. Luini, S. Marrelli, A. Vecchi, J.D. Franssen, D. Communi, L. Massardi, M. Sironi, A. Mantovani, M. Parmentier, F. Facchetti, S. Sozzani, Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin. J. Exp. Med. 201(4), 509–515 (2005)PubMedCrossRef
59.
go back to reference S. Parolini, A. Santoro, E. Marcenaro, W. Luini, L. Massardi, F. Facchetti, D. Communi, M. Parmentier, A. Majorana, M. Sironi, G. Tabellini, A. Moretta, S. Sozzani, The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood 109(9), 3625–3632 (2007)PubMedCrossRef S. Parolini, A. Santoro, E. Marcenaro, W. Luini, L. Massardi, F. Facchetti, D. Communi, M. Parmentier, A. Majorana, M. Sironi, G. Tabellini, A. Moretta, S. Sozzani, The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood 109(9), 3625–3632 (2007)PubMedCrossRef
60.
go back to reference R. Hart, D.R. Greaves, Chemerin contributes to inflammation by promoting macrophage adhesion to VCAM-1 and fibronectin through clustering of VLA-4 and VLA-5. J. Immunol. 185(6), 3728–3739 (2010)PubMedCrossRef R. Hart, D.R. Greaves, Chemerin contributes to inflammation by promoting macrophage adhesion to VCAM-1 and fibronectin through clustering of VLA-4 and VLA-5. J. Immunol. 185(6), 3728–3739 (2010)PubMedCrossRef
61.
go back to reference M. Kukla, K. Zwirska-Korczala, A. Gabriel, M. Waluga, I. Warakomska, B. Szczygiel, A. Berdowska, W. Mazur, E. Wozniak-Grygiel, W. Kryczka, Chemerin, vaspin and insulin resistance in chronic hepatitis C. J. Viral. Hepat. 17(9), 661–667 (2010)PubMed M. Kukla, K. Zwirska-Korczala, A. Gabriel, M. Waluga, I. Warakomska, B. Szczygiel, A. Berdowska, W. Mazur, E. Wozniak-Grygiel, W. Kryczka, Chemerin, vaspin and insulin resistance in chronic hepatitis C. J. Viral. Hepat. 17(9), 661–667 (2010)PubMed
62.
go back to reference H. Nakajima, K. Nakajima, Y. Nagano, M. Yamamoto, M. Tarutani, M. Takahashi, Y. Takahashi, S. Sano, Circulating level of chemerin is upregulated in psoriasis. J. Dermatol. Sci. 60(1), 45–47 (2010)PubMedCrossRef H. Nakajima, K. Nakajima, Y. Nagano, M. Yamamoto, M. Tarutani, M. Takahashi, Y. Takahashi, S. Sano, Circulating level of chemerin is upregulated in psoriasis. J. Dermatol. Sci. 60(1), 45–47 (2010)PubMedCrossRef
63.
go back to reference M. Arita, F. Bianchini, J. Aliberti, A. Sher, N. Chiang, S. Hong, R. Yang, N.A. Petasis, C.N. Serhan, Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J. Exp. Med. 201(5), 713–722 (2005)PubMedCrossRef M. Arita, F. Bianchini, J. Aliberti, A. Sher, N. Chiang, S. Hong, R. Yang, N.A. Petasis, C.N. Serhan, Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J. Exp. Med. 201(5), 713–722 (2005)PubMedCrossRef
64.
go back to reference M. Wan, C. Godson, P.J. Guiry, B. Agerberth, J.Z. Haeggstrom, Leukotriene B4/antimicrobial peptide LL-37 proinflammatory circuits are mediated by BLT1 and FPR2/ALX and are counterregulated by lipoxin A4 and resolvin E1. FASEB J. 25(5), 1697–1705 (2011)PubMedCrossRef M. Wan, C. Godson, P.J. Guiry, B. Agerberth, J.Z. Haeggstrom, Leukotriene B4/antimicrobial peptide LL-37 proinflammatory circuits are mediated by BLT1 and FPR2/ALX and are counterregulated by lipoxin A4 and resolvin E1. FASEB J. 25(5), 1697–1705 (2011)PubMedCrossRef
65.
go back to reference M. Arita, T. Ohira, Y.P. Sun, S. Elangovan, N. Chiang, C.N. Serhan, Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J. Immunol. 178(6), 3912–3917 (2007)PubMed M. Arita, T. Ohira, Y.P. Sun, S. Elangovan, N. Chiang, C.N. Serhan, Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J. Immunol. 178(6), 3912–3917 (2007)PubMed
66.
go back to reference J.L. Cash, R. Hart, A. Russ, J.P. Dixon, W.H. Colledge, J. Doran, A.G. Hendrick, M.B. Carlton, D.R. Greaves, Synthetic chemerin-derived peptides suppress inflammation through ChemR23. J. Exp. Med. 205(4), 767–775 (2008)PubMedCrossRef J.L. Cash, R. Hart, A. Russ, J.P. Dixon, W.H. Colledge, J. Doran, A.G. Hendrick, M.B. Carlton, D.R. Greaves, Synthetic chemerin-derived peptides suppress inflammation through ChemR23. J. Exp. Med. 205(4), 767–775 (2008)PubMedCrossRef
67.
go back to reference J.L. Cash, A.R. Christian, D.R. Greaves, Chemerin peptides promote phagocytosis in a ChemR23- and Syk-dependent manner. J. Immunol. 184(9), 5315–5324 (2010)PubMedCrossRef J.L. Cash, A.R. Christian, D.R. Greaves, Chemerin peptides promote phagocytosis in a ChemR23- and Syk-dependent manner. J. Immunol. 184(9), 5315–5324 (2010)PubMedCrossRef
68.
go back to reference S. Luangsay, V. Wittamer, B. Bondue, O. De Henau, L. Rouger, M. Brait, J.D. Franssen, P. de Nadai, F. Huaux, M. Parmentier, Mouse ChemR23 is expressed in dendritic cell subsets and macrophages, and mediates an anti-inflammatory activity of chemerin in a lung disease model. J. Immunol. 183(10), 6489–6499 (2009)PubMedCrossRef S. Luangsay, V. Wittamer, B. Bondue, O. De Henau, L. Rouger, M. Brait, J.D. Franssen, P. de Nadai, F. Huaux, M. Parmentier, Mouse ChemR23 is expressed in dendritic cell subsets and macrophages, and mediates an anti-inflammatory activity of chemerin in a lung disease model. J. Immunol. 183(10), 6489–6499 (2009)PubMedCrossRef
69.
go back to reference K. Shimamura, M. Matsuda, Y. Miyamoto, R. Yoshimoto, T. Seo, S. Tokita, Identification of a stable chemerin analog with potent activity toward ChemR23. Peptides 30(8), 1529–1538 (2009)PubMedCrossRef K. Shimamura, M. Matsuda, Y. Miyamoto, R. Yoshimoto, T. Seo, S. Tokita, Identification of a stable chemerin analog with potent activity toward ChemR23. Peptides 30(8), 1529–1538 (2009)PubMedCrossRef
70.
go back to reference M.C. Ernst, I.D. Haidl, L.A. Zuniga, H.J. Dranse, J.L. Rourke, B.A. Zabel, E.C. Butcher, C.J. Sinal, Disruption of the chemokine-like receptor-1 (CMKLR1) gene is associated with reduced adiposity and glucose intolerance. Endocrinology 153(2), 672–682 (2012)PubMedCrossRef M.C. Ernst, I.D. Haidl, L.A. Zuniga, H.J. Dranse, J.L. Rourke, B.A. Zabel, E.C. Butcher, C.J. Sinal, Disruption of the chemokine-like receptor-1 (CMKLR1) gene is associated with reduced adiposity and glucose intolerance. Endocrinology 153(2), 672–682 (2012)PubMedCrossRef
71.
go back to reference S. Kralisch, S. Weise, G. Sommer, J. Lipfert, U. Lossner, M. Bluher, M. Stumvoll, M. Fasshauer, Interleukin-1beta induces the novel adipokine chemerin in adipocytes in vitro. Regul. Pept. 154(1–3), 102–106 (2009)PubMedCrossRef S. Kralisch, S. Weise, G. Sommer, J. Lipfert, U. Lossner, M. Bluher, M. Stumvoll, M. Fasshauer, Interleukin-1beta induces the novel adipokine chemerin in adipocytes in vitro. Regul. Pept. 154(1–3), 102–106 (2009)PubMedCrossRef
72.
go back to reference M. Takahashi, Y. Takahashi, K. Takahashi, F.N. Zolotaryov, K.S. Hong, R. Kitazawa, K. Iida, Y. Okimura, H. Kaji, S. Kitazawa, M. Kasuga, K. Chihara, Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett. 582(5), 573–578 (2008)PubMedCrossRef M. Takahashi, Y. Takahashi, K. Takahashi, F.N. Zolotaryov, K.S. Hong, R. Kitazawa, K. Iida, Y. Okimura, H. Kaji, S. Kitazawa, M. Kasuga, K. Chihara, Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett. 582(5), 573–578 (2008)PubMedCrossRef
73.
go back to reference H. Sell, J. Laurencikiene, A. Taube, K. Eckardt, A. Cramer, A. Horrighs, P. Arner, J. Eckel, Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes 58(12), 2731–2740 (2009)PubMedCrossRef H. Sell, J. Laurencikiene, A. Taube, K. Eckardt, A. Cramer, A. Horrighs, P. Arner, J. Eckel, Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes 58(12), 2731–2740 (2009)PubMedCrossRef
74.
go back to reference M.C. Ernst, M. Issa, K.B. Goralski, C.J. Sinal, Chemerin exacerbates glucose intolerance in mouse models of obesity and diabetes. Endocrinology 151(5), 1998–2007 (2010)PubMedCrossRef M.C. Ernst, M. Issa, K.B. Goralski, C.J. Sinal, Chemerin exacerbates glucose intolerance in mouse models of obesity and diabetes. Endocrinology 151(5), 1998–2007 (2010)PubMedCrossRef
75.
go back to reference M. Takahashi, Y. Okimura, G. Iguchi, H. Nishizawa, M. Yamamoto, K. Suda, R. Kitazawa, W. Fujimoto, K. Takahashi, F.N. Zolotaryov, K.S. Hong, H. Kiyonari, T. Abe, H. Kaji, S. Kitazawa, M. Kasuga, K. Chihara, Y. Takahashi, Chemerin regulates beta-cell function in mice. Sci. Rep. 1, 123 (2011)PubMed M. Takahashi, Y. Okimura, G. Iguchi, H. Nishizawa, M. Yamamoto, K. Suda, R. Kitazawa, W. Fujimoto, K. Takahashi, F.N. Zolotaryov, K.S. Hong, H. Kiyonari, T. Abe, H. Kaji, S. Kitazawa, M. Kasuga, K. Chihara, Y. Takahashi, Chemerin regulates beta-cell function in mice. Sci. Rep. 1, 123 (2011)PubMed
76.
go back to reference Q. Yan, Y. Zhang, J. Hong, W. Gu, M. Dai, J. Shi, Y. Zhai, W. Wang, X. Li, G. Ning, The association of serum chemerin level with risk of coronary artery disease in Chinese adults. Endocrine 41(2), 281–288 (2012)PubMedCrossRef Q. Yan, Y. Zhang, J. Hong, W. Gu, M. Dai, J. Shi, Y. Zhai, W. Wang, X. Li, G. Ning, The association of serum chemerin level with risk of coronary artery disease in Chinese adults. Endocrine 41(2), 281–288 (2012)PubMedCrossRef
Metadata
Title
Chemerin: a potential endocrine link between obesity and type 2 diabetes
Authors
Alexandra A. Roman
Sebastian D. Parlee
Christopher J. Sinal
Publication date
01-10-2012
Publisher
Springer US
Published in
Endocrine / Issue 2/2012
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-012-9698-8

Other articles of this Issue 2/2012

Endocrine 2/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.