Skip to main content
Top
Published in: Endocrine 1/2011

01-02-2011 | Original Article

GnRH secretion is inhibited by adiponectin through activation of AMP-activated protein kinase and extracellular signal-regulated kinase

Authors: Xiao-Bing Cheng, Jun-Ping Wen, Jun Yang, Ying Yang, Guang Ning, Xiao-Ying Li

Published in: Endocrine | Issue 1/2011

Login to get access

Abstract

Adipokines produced from adipose tissues participate in regulation of reproduction, energy homeostasis, food intake, and neuroendocrine function in the hypothalamus. We have previously reported that adiponectin significantly reduced GnRH secretion from GT1-7 hypothalamic GnRH neuron cells. In this study, we further investigated the inhibition of GnRH secretion by adiponectin in vivo and found that extracellular signal-regulated kinase (ERK) was inhibited and AMPK activated. Furthermore, we found that activated AMPK by adiponectin reduced ERK phosphorylation, which possibly impaired GnRH secretion in GT1-7 cells.
Literature
1.
go back to reference R.S. Ahima, J.S. Flier, Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. 11, 327–332 (2000)CrossRefPubMed R.S. Ahima, J.S. Flier, Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. 11, 327–332 (2000)CrossRefPubMed
2.
go back to reference T.S. Tsao, H.F. Lodish, J. Fruebis, ACRP30 a new hormone controlling fat and glucose metabolism. Eur. J. Pharmacol. 440, 213–221 (2002)CrossRefPubMed T.S. Tsao, H.F. Lodish, J. Fruebis, ACRP30 a new hormone controlling fat and glucose metabolism. Eur. J. Pharmacol. 440, 213–221 (2002)CrossRefPubMed
3.
go back to reference N. Kubota, W. Yano, T. Kubota, T. Yamauchi, S. Itoh, H. Kumagai, H. Kozono, I. Takamoto, S. Okamoto, T. Shiuchi, R. Suzuki, H. Satoh, A. Tsuchida, M. Moroi, K. Sugi, T. Noda, H. Ebinuma, Y. Ueta, T. Kondo, E. Araki, O. Ezaki, R. Nagai, K. Tobe, Y. Terauchi, K. Ueki, Y. Minokoshi, T. Kadowaki, Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 6, 55–68 (2007)CrossRefPubMed N. Kubota, W. Yano, T. Kubota, T. Yamauchi, S. Itoh, H. Kumagai, H. Kozono, I. Takamoto, S. Okamoto, T. Shiuchi, R. Suzuki, H. Satoh, A. Tsuchida, M. Moroi, K. Sugi, T. Noda, H. Ebinuma, Y. Ueta, T. Kondo, E. Araki, O. Ezaki, R. Nagai, K. Tobe, Y. Terauchi, K. Ueki, Y. Minokoshi, T. Kadowaki, Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 6, 55–68 (2007)CrossRefPubMed
4.
5.
go back to reference U.B. Pajvani, X. Du, T.P. Combs, A.H. Berg, M.W. Rajala, T. Schulthess, J. Engel, M. Brownlee, P.E. Scherer, Structure–function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J. Biol. Chem. 278, 9073–9085 (2003)CrossRefPubMed U.B. Pajvani, X. Du, T.P. Combs, A.H. Berg, M.W. Rajala, T. Schulthess, J. Engel, M. Brownlee, P.E. Scherer, Structure–function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J. Biol. Chem. 278, 9073–9085 (2003)CrossRefPubMed
6.
go back to reference T. Yamauchi, J. Kamon, Y. Ito, A. Tsuchida, T. Yokomizo, S. Kita, T. Sugiyama, M. Miyagishi, K. Hara, M. Tsunoda, K. Murakami, T. Ohteki, S. Uchida, S. Takekawa, H. Waki, N.H. Tsuno, Y. Shibata, Y. Terauchi, P. Froguel, K. Tobe, S. Koyasu, K. Taira, T. Kitamura, T. Shimizu, R. Nagai, T. Kadowaki, Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003)CrossRefPubMed T. Yamauchi, J. Kamon, Y. Ito, A. Tsuchida, T. Yokomizo, S. Kita, T. Sugiyama, M. Miyagishi, K. Hara, M. Tsunoda, K. Murakami, T. Ohteki, S. Uchida, S. Takekawa, H. Waki, N.H. Tsuno, Y. Shibata, Y. Terauchi, P. Froguel, K. Tobe, S. Koyasu, K. Taira, T. Kitamura, T. Shimizu, R. Nagai, T. Kadowaki, Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003)CrossRefPubMed
7.
go back to reference K. Kos, A.L. Harte, N.F. da Silva, A. Tonchev, G. Chaldakov, S. James, D.R. Snead, B. Hoggart, J.P. O’Hare, P.G. McTernan, S. Kumar, Adiponectin and resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus. J. Clin. Endocrinol. Metab. 92, 1129–1136 (2007)CrossRefPubMed K. Kos, A.L. Harte, N.F. da Silva, A. Tonchev, G. Chaldakov, S. James, D.R. Snead, B. Hoggart, J.P. O’Hare, P.G. McTernan, S. Kumar, Adiponectin and resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus. J. Clin. Endocrinol. Metab. 92, 1129–1136 (2007)CrossRefPubMed
8.
go back to reference M. Fry, P.M. Smith, T.D. Hoyda, M. Duncan, R.S. Ahima, K.A. Sharkey, A.V. Ferguson, Area postrema neurons are modulated by the adipocyte hormone adiponectin. J. Neurosci. 26, 9695–9702 (2006)CrossRefPubMed M. Fry, P.M. Smith, T.D. Hoyda, M. Duncan, R.S. Ahima, K.A. Sharkey, A.V. Ferguson, Area postrema neurons are modulated by the adipocyte hormone adiponectin. J. Neurosci. 26, 9695–9702 (2006)CrossRefPubMed
9.
go back to reference F. Rodriguez-Pacheco, A.J. Martinez-Fuentes, S. Tovar, L. Pinilla, M. Tena-Sempere, C. Dieguez, J.P. Castano, M.M. Malagon, Regulation of pituitary cell function by adiponectin. Endocrinology 148, 401–410 (2007)CrossRefPubMed F. Rodriguez-Pacheco, A.J. Martinez-Fuentes, S. Tovar, L. Pinilla, M. Tena-Sempere, C. Dieguez, J.P. Castano, M.M. Malagon, Regulation of pituitary cell function by adiponectin. Endocrinology 148, 401–410 (2007)CrossRefPubMed
10.
go back to reference J.P. Wen, W.S. Lv, J. Yang, A.F. Nie, X.B. Cheng, Y. Yang, Y. Ge, X.Y. Li, G. Ning, Globular adiponectin inhibits GnRH secretion from GT1-7 hypothalamic GnRH neurons by induction of hyperpolarization of membrane potential. Biochem. Biophys. Res. Commun. 371, 756–761 (2008)CrossRefPubMed J.P. Wen, W.S. Lv, J. Yang, A.F. Nie, X.B. Cheng, Y. Yang, Y. Ge, X.Y. Li, G. Ning, Globular adiponectin inhibits GnRH secretion from GT1-7 hypothalamic GnRH neurons by induction of hyperpolarization of membrane potential. Biochem. Biophys. Res. Commun. 371, 756–761 (2008)CrossRefPubMed
11.
go back to reference E. Guillod-Maximin, A.F. Roy, C.M. Vacher, A. Aubourg, V. Bailleux, A. Lorsignol, L. Penicaud, M. Parquet, M. Taouis, Adiponectin receptors are expressed in hypothalamus and colocalized with proopiomelanocortin and neuropeptide Y in rodent arcuate neurons. J. Endocrinol. 200(1), 93–105 (2009)CrossRefPubMed E. Guillod-Maximin, A.F. Roy, C.M. Vacher, A. Aubourg, V. Bailleux, A. Lorsignol, L. Penicaud, M. Parquet, M. Taouis, Adiponectin receptors are expressed in hypothalamus and colocalized with proopiomelanocortin and neuropeptide Y in rodent arcuate neurons. J. Endocrinol. 200(1), 93–105 (2009)CrossRefPubMed
12.
go back to reference Y. Qi, N. Takahashi, S.M. Hileman, H.R. Patel, A.H. Berg, U.B. Pajvani, P.E. Scherer, R.S. Ahima, Adiponectin acts in the brain to decrease body weight. Nat. Med. 10, 524–529 (2004)CrossRefPubMed Y. Qi, N. Takahashi, S.M. Hileman, H.R. Patel, A.H. Berg, U.B. Pajvani, P.E. Scherer, R.S. Ahima, Adiponectin acts in the brain to decrease body weight. Nat. Med. 10, 524–529 (2004)CrossRefPubMed
13.
go back to reference M. Lu, Q. Tang, J.M. Olefsky, P.L. Mellon, N.J. Webster, Adiponectin activates AMPK and decreases luteinizing hormone secretion in L{beta}T2 gonadotropes. Mol. Endocrinol. 22, 760–771 (2008)CrossRefPubMed M. Lu, Q. Tang, J.M. Olefsky, P.L. Mellon, N.J. Webster, Adiponectin activates AMPK and decreases luteinizing hormone secretion in L{beta}T2 gonadotropes. Mol. Endocrinol. 22, 760–771 (2008)CrossRefPubMed
14.
go back to reference A. Bottner, J. Kratzsch, G. Muller, T.M. Kapellen, S. Bluher, E. Keller, M. Bluher, W. Kiess, Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels. J. Clin. Endocrinol. Metab. 89, 4053–4061 (2004)CrossRefPubMed A. Bottner, J. Kratzsch, G. Muller, T.M. Kapellen, S. Bluher, E. Keller, M. Bluher, W. Kiess, Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels. J. Clin. Endocrinol. Metab. 89, 4053–4061 (2004)CrossRefPubMed
15.
go back to reference F. Lanfranco, M. Zitzmann, M. Simoni, E. Nieschlag, Serum adiponectin levels in hypogonadal males: influence of testosterone replacement therapy. Clin. Endocrinol. (Oxf.) 60, 500–507 (2004)CrossRef F. Lanfranco, M. Zitzmann, M. Simoni, E. Nieschlag, Serum adiponectin levels in hypogonadal males: influence of testosterone replacement therapy. Clin. Endocrinol. (Oxf.) 60, 500–507 (2004)CrossRef
16.
go back to reference D. Modan-Moses, D. Stein, C. Pariente, A. Yaroslavsky, A. Ram, M. Faigin, R. Loewenthal, E. Yissachar, R. Hemi, H. Kanety, Modulation of adiponectin and leptin during refeeding of female anorexia nervosa patients. J. Clin. Endocrinol. Metab. 92, 1843–1847 (2007)CrossRefPubMed D. Modan-Moses, D. Stein, C. Pariente, A. Yaroslavsky, A. Ram, M. Faigin, R. Loewenthal, E. Yissachar, R. Hemi, H. Kanety, Modulation of adiponectin and leptin during refeeding of female anorexia nervosa patients. J. Clin. Endocrinol. Metab. 92, 1843–1847 (2007)CrossRefPubMed
17.
go back to reference C.A. Stackpole, I.J. Clarke, K.M. Breen, A.I. Turner, F.J. Karsch, A.J. Tilbrook, Sex difference in the suppressive effect of cortisol on pulsatile secretion of luteinizing hormone in sheep. Endocrinology 147, 5921–5931 (2006)CrossRefPubMed C.A. Stackpole, I.J. Clarke, K.M. Breen, A.I. Turner, F.J. Karsch, A.J. Tilbrook, Sex difference in the suppressive effect of cortisol on pulsatile secretion of luteinizing hormone in sheep. Endocrinology 147, 5921–5931 (2006)CrossRefPubMed
18.
go back to reference F.J. Karsch, J.T. Cummins, G.B. Thomas, I.J. Clarke, Steroid feedback inhibition of pulsatile secretion of gonadotropin-releasing hormone in the ewe. Biol. Reprod. 36, 1207–1218 (1987)CrossRefPubMed F.J. Karsch, J.T. Cummins, G.B. Thomas, I.J. Clarke, Steroid feedback inhibition of pulsatile secretion of gonadotropin-releasing hormone in the ewe. Biol. Reprod. 36, 1207–1218 (1987)CrossRefPubMed
19.
go back to reference A.C. Gore, G. Yeung, J.H. Morrison, T. Oung, Neuroendocrine aging in the female rat: the changing relationship of hypothalamic gonadotropin-releasing hormone neurons and N-methyl-D-aspartate receptors. Endocrinology 141, 4757–4767 (2000)CrossRefPubMed A.C. Gore, G. Yeung, J.H. Morrison, T. Oung, Neuroendocrine aging in the female rat: the changing relationship of hypothalamic gonadotropin-releasing hormone neurons and N-methyl-D-aspartate receptors. Endocrinology 141, 4757–4767 (2000)CrossRefPubMed
20.
go back to reference I. Merchenthaler, T. Gorcs, G. Setalo, P. Petrusz, B. Flerko, Gonadotropin-releasing hormone (GnRH) neurons and pathways in the rat brain. Cell Tissue Res. 237, 15–29 (1984)CrossRefPubMed I. Merchenthaler, T. Gorcs, G. Setalo, P. Petrusz, B. Flerko, Gonadotropin-releasing hormone (GnRH) neurons and pathways in the rat brain. Cell Tissue Res. 237, 15–29 (1984)CrossRefPubMed
21.
go back to reference H. Ebinuma, T. Miida, T. Yamauchi, Y. Hada, K. Hara, N. Kubota, T. Kadowaki, Improved ELISA for selective measurement of adiponectin multimers and identification of adiponectin in human cerebrospinal fluid. Clin. Chem. 53, 1541–1544 (2007)CrossRefPubMed H. Ebinuma, T. Miida, T. Yamauchi, Y. Hada, K. Hara, N. Kubota, T. Kadowaki, Improved ELISA for selective measurement of adiponectin multimers and identification of adiponectin in human cerebrospinal fluid. Clin. Chem. 53, 1541–1544 (2007)CrossRefPubMed
22.
go back to reference P.L. Mellon, J.J. Windle, P.C. Goldsmith, C.A. Padula, J.L. Roberts, R.I. Weiner, Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5, 1–10 (1990)CrossRefPubMed P.L. Mellon, J.J. Windle, P.C. Goldsmith, C.A. Padula, J.L. Roberts, R.I. Weiner, Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5, 1–10 (1990)CrossRefPubMed
23.
go back to reference Y. Yang, L.B. Zhou, S.Q. Liu, J.F. Tang, F.Y. Li, R.Y. Li, H.D. Song, M.D. Chen, Expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in control of GnRH secretion. Acta Pharmacol. Sin. 26, 976–981 (2005)CrossRefPubMed Y. Yang, L.B. Zhou, S.Q. Liu, J.F. Tang, F.Y. Li, R.Y. Li, H.D. Song, M.D. Chen, Expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in control of GnRH secretion. Acta Pharmacol. Sin. 26, 976–981 (2005)CrossRefPubMed
24.
go back to reference B. Kola, M. Boscaro, G.A. Rutter, A.B. Grossman, M. Korbonits, Expanding role of AMPK in endocrinology. Trends Endocrinol. Metab. 17, 205–215 (2006)CrossRefPubMed B. Kola, M. Boscaro, G.A. Rutter, A.B. Grossman, M. Korbonits, Expanding role of AMPK in endocrinology. Trends Endocrinol. Metab. 17, 205–215 (2006)CrossRefPubMed
25.
go back to reference R.B. Ceddia, R. Somwar, A. Maida, X. Fang, G. Bikopoulos, G. Sweeney, Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 48, 132–139 (2005)CrossRefPubMed R.B. Ceddia, R. Somwar, A. Maida, X. Fang, G. Bikopoulos, G. Sweeney, Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 48, 132–139 (2005)CrossRefPubMed
26.
go back to reference X. Wu, H. Motoshima, K. Mahadev, T.J. Stalker, R. Scalia, B.J. Goldstein, Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52, 1355–1363 (2003)CrossRefPubMed X. Wu, H. Motoshima, K. Mahadev, T.J. Stalker, R. Scalia, B.J. Goldstein, Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52, 1355–1363 (2003)CrossRefPubMed
27.
go back to reference T. Yamauchi, J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, S. Kimura, R. Nagai, B.B. Kahn, T. Kadowaki, Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002)CrossRefPubMed T. Yamauchi, J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, S. Kimura, R. Nagai, B.B. Kahn, T. Kadowaki, Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002)CrossRefPubMed
28.
go back to reference S. Coyral-Castel, L. Tosca, G. Ferreira, E. Jeanpierre, C. Rame, D. Lomet, A. Caraty, P. Monget, C. Chabrolle, J. Dupont, The effect of AMPK activation on GnRH secretion in GT1-7 cells and its potential role in hypothalamic regulation of the oestrous cyclicity in rats. J. Neuroendocrinol. 20(3), 335–346 (2008)CrossRefPubMed S. Coyral-Castel, L. Tosca, G. Ferreira, E. Jeanpierre, C. Rame, D. Lomet, A. Caraty, P. Monget, C. Chabrolle, J. Dupont, The effect of AMPK activation on GnRH secretion in GT1-7 cells and its potential role in hypothalamic regulation of the oestrous cyclicity in rats. J. Neuroendocrinol. 20(3), 335–346 (2008)CrossRefPubMed
29.
go back to reference J. Kim, M.Y. Yoon, S.L. Choi, I. Kang, S.S. Kim, Y.S. Kim, Y.K. Choi, J. Ha, Effects of stimulation of AMP-activated protein kinase on insulin-like growth factor 1- and epidermal growth factor-dependent extracellular signal-regulated kinase pathway. J. Biol. Chem. 276, 19102–19110 (2001)CrossRefPubMed J. Kim, M.Y. Yoon, S.L. Choi, I. Kang, S.S. Kim, Y.S. Kim, Y.K. Choi, J. Ha, Effects of stimulation of AMP-activated protein kinase on insulin-like growth factor 1- and epidermal growth factor-dependent extracellular signal-regulated kinase pathway. J. Biol. Chem. 276, 19102–19110 (2001)CrossRefPubMed
30.
go back to reference R. Shibata, N. Ouchi, M. Ito, S. Kihara, I. Shiojima, D.R. Pimentel, M. Kumada, K. Sato, S. Schiekofer, K. Ohashi, T. Funahashi, W.S. Colucci, K. Walsh, Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat. Med. 10, 1384–1389 (2004)CrossRefPubMed R. Shibata, N. Ouchi, M. Ito, S. Kihara, I. Shiojima, D.R. Pimentel, M. Kumada, K. Sato, S. Schiekofer, K. Ohashi, T. Funahashi, W.S. Colucci, K. Walsh, Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat. Med. 10, 1384–1389 (2004)CrossRefPubMed
31.
go back to reference H.J. Schaeffer, M.J. Weber, Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19, 2435–2444 (1999)PubMed H.J. Schaeffer, M.J. Weber, Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19, 2435–2444 (1999)PubMed
32.
go back to reference R. Sasson, R.K. Dearth, R.S. White, P.E. Chappell, P.L. Mellon, Orexin A induces GnRH gene expression and secretion from GT1-7 hypothalamic GnRH neurons. Neuroendocrinology 84, 353–363 (2006)CrossRefPubMed R. Sasson, R.K. Dearth, R.S. White, P.E. Chappell, P.L. Mellon, Orexin A induces GnRH gene expression and secretion from GT1-7 hypothalamic GnRH neurons. Neuroendocrinology 84, 353–363 (2006)CrossRefPubMed
33.
go back to reference A.B. Sprenkle, S.P. Davies, D. Carling, D.G. Hardie, T.W. Sturgill, Identification of Raf-1 Ser621 kinase activity from NIH 3T3 cells as AMP-activated protein kinase. FEBS Lett. 403, 254–258 (1997)CrossRefPubMed A.B. Sprenkle, S.P. Davies, D. Carling, D.G. Hardie, T.W. Sturgill, Identification of Raf-1 Ser621 kinase activity from NIH 3T3 cells as AMP-activated protein kinase. FEBS Lett. 403, 254–258 (1997)CrossRefPubMed
Metadata
Title
GnRH secretion is inhibited by adiponectin through activation of AMP-activated protein kinase and extracellular signal-regulated kinase
Authors
Xiao-Bing Cheng
Jun-Ping Wen
Jun Yang
Ying Yang
Guang Ning
Xiao-Ying Li
Publication date
01-02-2011
Publisher
Springer US
Published in
Endocrine / Issue 1/2011
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-010-9375-8

Other articles of this Issue 1/2011

Endocrine 1/2011 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.