Skip to main content
Top
Published in: Clinical Reviews in Bone and Mineral Metabolism 1/2009

01-03-2009 | Original Paper

The Functional Metabolism and Molecular Biology of Vitamin D Action

Authors: Lori A. Plum, Hector F. DeLuca

Published in: Clinical & Translational Metabolism | Issue 1/2009

Login to get access

Abstract

The evolution of our understanding of the biological impact of vitamin D is briefly reviewed, with a focus on the physiology and endocrinology of the vitamin D system. This chapter attempts to bring the molecular discoveries in vitamin D metabolism and mechanisms of action into focus on known physiology and endocrinology. The latest developments on metabolism of vitamin D, the enzymes involved, and the genes responsible are presented. The impact of the molecular discoveries on current views of the importance of vitamin D in public health is also presented.
Literature
1.
go back to reference Mellanby E. An experimental investigation on rickets. Lancet. 1919;1:407–12. Mellanby E. An experimental investigation on rickets. Lancet. 1919;1:407–12.
2.
go back to reference McCollum EV, Simmonds N, Becker JE, et al. Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem. 1922;53:293–312. McCollum EV, Simmonds N, Becker JE, et al. Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem. 1922;53:293–312.
3.
go back to reference Huldshinsky K. Heilung von rachitis durch kunstlickhe hohensonne. Dtsch Med Wochenschr. 1919;45:712–3. Huldshinsky K. Heilung von rachitis durch kunstlickhe hohensonne. Dtsch Med Wochenschr. 1919;45:712–3.
4.
go back to reference Chick H, Palzell EJ, Hume EM. Studies of rickets in Vienna 1919–1922. Medical Research Council; 1923. Chick H, Palzell EJ, Hume EM. Studies of rickets in Vienna 1919–1922. Medical Research Council; 1923.
5.
go back to reference Hess A. The history of rickets. In: Hess A, editor. Rickets, including osteomalacia and tetany. Philadelphia: Lee & Febiger; 1929. p. 22–37. Hess A. The history of rickets. In: Hess A, editor. Rickets, including osteomalacia and tetany. Philadelphia: Lee & Febiger; 1929. p. 22–37.
6.
go back to reference Sebrell WH, Harris RS. Vitamin D group. The vitamins. New York: Academic Press; 1954. p. 1131–266. Sebrell WH, Harris RS. Vitamin D group. The vitamins. New York: Academic Press; 1954. p. 1131–266.
7.
go back to reference Steenbock H, Black A. Fat-soluble vitamins. XVII. The induction of growth-promoting and calcifying properties in a ration by exposure to ultraviolet light. J Biol Chem. 1924;61:405–22. Steenbock H, Black A. Fat-soluble vitamins. XVII. The induction of growth-promoting and calcifying properties in a ration by exposure to ultraviolet light. J Biol Chem. 1924;61:405–22.
8.
go back to reference Scriver CR, Reade TM, DeLuca HF, et al. Serum 1,25-(OH)2D3 levels in normal subjects and in patients with hereditary rickets or bone disease. N Engl J Med. 1978;299:976–9.PubMed Scriver CR, Reade TM, DeLuca HF, et al. Serum 1,25-(OH)2D3 levels in normal subjects and in patients with hereditary rickets or bone disease. N Engl J Med. 1978;299:976–9.PubMed
9.
go back to reference Fraser D, Kooh SW, Kind HP, et al. Pathogenesis of hereditary vitamin D-dependent rickets: An inborn error of vitamin D metabolism involving defective conversion of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. N Engl J Med. 1973;289:817–22.PubMed Fraser D, Kooh SW, Kind HP, et al. Pathogenesis of hereditary vitamin D-dependent rickets: An inborn error of vitamin D metabolism involving defective conversion of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. N Engl J Med. 1973;289:817–22.PubMed
10.
go back to reference Kim CJ, Kaplan LE, Perwad F, et al. Vitamin D 1α-hydroxylase deficiency. J Clin Endocrinol Metab. 2007;92(8):3177–82.PubMedCrossRef Kim CJ, Kaplan LE, Perwad F, et al. Vitamin D 1α-hydroxylase deficiency. J Clin Endocrinol Metab. 2007;92(8):3177–82.PubMedCrossRef
11.
go back to reference Porcu L, Meloni A, Casula L, et al. A novel splicing defect (IVS6 + 1G—>T) in a patient with pseudovitamin D deficiency rickets. J Endocrinol Invest. 2002;25:557–60.PubMed Porcu L, Meloni A, Casula L, et al. A novel splicing defect (IVS6 + 1G—>T) in a patient with pseudovitamin D deficiency rickets. J Endocrinol Invest. 2002;25:557–60.PubMed
12.
go back to reference Wang X, Zhang MYH, Miller WL, et al. Novel gene mutations in patients with 1α-hydroxylase deficiency that confer partial enzyme activity in vitro. J Clin Endocrinol Metab. 2002;87(6):2424–30.PubMedCrossRef Wang X, Zhang MYH, Miller WL, et al. Novel gene mutations in patients with 1α-hydroxylase deficiency that confer partial enzyme activity in vitro. J Clin Endocrinol Metab. 2002;87(6):2424–30.PubMedCrossRef
13.
go back to reference Wang JT, Lin C-J, Burridge SM, et al. Genetics of vitamin D 1α-hydroxylase deficiency in 17 families. Am J Hum Genet. 1998;63:1694–702.PubMedCrossRef Wang JT, Lin C-J, Burridge SM, et al. Genetics of vitamin D 1α-hydroxylase deficiency in 17 families. Am J Hum Genet. 1998;63:1694–702.PubMedCrossRef
14.
go back to reference Fu GK, Lin D, Zhang MYH, et al. Cloning of human 25-hydroxyvitamin D-1α-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol. 1997;11:1961–70.PubMedCrossRef Fu GK, Lin D, Zhang MYH, et al. Cloning of human 25-hydroxyvitamin D-1α-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol. 1997;11:1961–70.PubMedCrossRef
15.
go back to reference Kitanaka S, Murayama A, Sakaki T, et al. No enzyme activity of 25-hydroxyvitamin D3 1α-hydroxylase gene product in pseudovitamin D deficiency rickets, including that with mild clinical manifestation. J Clin Endocrinol Metab. 1999;84:4111–7.PubMedCrossRef Kitanaka S, Murayama A, Sakaki T, et al. No enzyme activity of 25-hydroxyvitamin D3 1α-hydroxylase gene product in pseudovitamin D deficiency rickets, including that with mild clinical manifestation. J Clin Endocrinol Metab. 1999;84:4111–7.PubMedCrossRef
16.
go back to reference Kitanaka S, Takeyama K-I, Murayama A, et al. Inactivating mutations in the 25-hydroxyvitamin D3 1α-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med. 1998;338:653–61.PubMedCrossRef Kitanaka S, Takeyama K-I, Murayama A, et al. Inactivating mutations in the 25-hydroxyvitamin D3 1α-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med. 1998;338:653–61.PubMedCrossRef
17.
go back to reference Yoshida T, Monkawa T, Tenenhouse HS, et al. Two novel 1α-hydroxylase mutations in French-Canadians with vitamin D dependency rickets type I. Kidney Int. 1998;54:1437–43.PubMedCrossRef Yoshida T, Monkawa T, Tenenhouse HS, et al. Two novel 1α-hydroxylase mutations in French-Canadians with vitamin D dependency rickets type I. Kidney Int. 1998;54:1437–43.PubMedCrossRef
18.
go back to reference Smith SJ, Rucka AK, Berry JL, et al. Novel mutations in the 1α-hydroxylase (P450c1) gene in three families with pseudovitamin D-deficiency rickets resulting in loss of functional enzyme activity in blood-derived macrophages. J Bone Miner Res. 1999;14:730–9.PubMedCrossRef Smith SJ, Rucka AK, Berry JL, et al. Novel mutations in the 1α-hydroxylase (P450c1) gene in three families with pseudovitamin D-deficiency rickets resulting in loss of functional enzyme activity in blood-derived macrophages. J Bone Miner Res. 1999;14:730–9.PubMedCrossRef
19.
go back to reference Brommage R, Jarnagin K, DeLuca HF, et al. 1-hydroxylation but not 24-hydroxylation of vitamin D is required for skeletal mineralization in rats. Am J Physiol. 1983;244:E298–304.PubMed Brommage R, Jarnagin K, DeLuca HF, et al. 1-hydroxylation but not 24-hydroxylation of vitamin D is required for skeletal mineralization in rats. Am J Physiol. 1983;244:E298–304.PubMed
20.
go back to reference Eil C, Lieberman UA, Rosen JF, et al. A cellular defect in hereditary vitamin D-dependent rickets type II: defective nuclear uptake of 1,25-dihydroxyvitamin D in cultured skin fibroblasts. N Engl J Med. 1981;304:1588–91.PubMed Eil C, Lieberman UA, Rosen JF, et al. A cellular defect in hereditary vitamin D-dependent rickets type II: defective nuclear uptake of 1,25-dihydroxyvitamin D in cultured skin fibroblasts. N Engl J Med. 1981;304:1588–91.PubMed
21.
go back to reference Bell NH, Hamstra AJ, DeLuca HF. Vitamin D-dependent rickets type II: resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med. 1978;298:996–9.PubMed Bell NH, Hamstra AJ, DeLuca HF. Vitamin D-dependent rickets type II: resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med. 1978;298:996–9.PubMed
22.
go back to reference Rosen JF, Fleischman AR, Finberg L, et al. Rickets with alopecia: an inborn error of vitamin D metabolism. J Pediatrics. 1979;94:729–35.CrossRef Rosen JF, Fleischman AR, Finberg L, et al. Rickets with alopecia: an inborn error of vitamin D metabolism. J Pediatrics. 1979;94:729–35.CrossRef
23.
go back to reference Marx SJ, Liberman UA, Eil C, et al. Hereditary resistance to 1,25-dihydroxyvitamin D. Recent Prog Horm Res. 1984;40:589–620.PubMed Marx SJ, Liberman UA, Eil C, et al. Hereditary resistance to 1,25-dihydroxyvitamin D. Recent Prog Horm Res. 1984;40:589–620.PubMed
24.
go back to reference Wiese RJ, Goto H, Prahl JM, et al. Vitamin D-dependency rickets type II: truncated vitamin D receptor in three kindreds. Mol Cell Endocrinol. 1993;90:197–201.PubMedCrossRef Wiese RJ, Goto H, Prahl JM, et al. Vitamin D-dependency rickets type II: truncated vitamin D receptor in three kindreds. Mol Cell Endocrinol. 1993;90:197–201.PubMedCrossRef
25.
go back to reference Liberman UA, Marx SJ. Vitamin D dependent rickets. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 1st ed. Richmond: William Byrd Press; 1990. p. 178–82. Liberman UA, Marx SJ. Vitamin D dependent rickets. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 1st ed. Richmond: William Byrd Press; 1990. p. 178–82.
27.
go back to reference Underwood JL, DeLuca HF. Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol. 1983;246:E493–8. Underwood JL, DeLuca HF. Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol. 1983;246:E493–8.
28.
30.
go back to reference Schachter D, Rosen SM. Active transport of Ca45 by the small intestine and its dependence on vitamin D. Am J Physiol. 1959;196:357–62.PubMed Schachter D, Rosen SM. Active transport of Ca45 by the small intestine and its dependence on vitamin D. Am J Physiol. 1959;196:357–62.PubMed
31.
go back to reference Higaki M, Takahashi M, Suzuki T, et al. Metabolic activities of vitamin D in animals. III. Biogenesis of vitamin D sulfate in animal tissues. J Vitaminol. 1965;11:261–5. Higaki M, Takahashi M, Suzuki T, et al. Metabolic activities of vitamin D in animals. III. Biogenesis of vitamin D sulfate in animal tissues. J Vitaminol. 1965;11:261–5.
32.
go back to reference Martin DL, DeLuca HF. Calcium transport and the role of vitamin D. Arch Biochem Biophys. 1969;134:139–48.PubMedCrossRef Martin DL, DeLuca HF. Calcium transport and the role of vitamin D. Arch Biochem Biophys. 1969;134:139–48.PubMedCrossRef
33.
go back to reference Walling MW, Rothman SS. Phosphate-independent, carrier-mediated active transport of calcium by rat intestine. Am J Physiol. 1969;217:1144–8.PubMed Walling MW, Rothman SS. Phosphate-independent, carrier-mediated active transport of calcium by rat intestine. Am J Physiol. 1969;217:1144–8.PubMed
34.
go back to reference Wasserman RH, Kallfelz FA, Comar CL. Active transport of calcium by rat duodenum in vivo. Science. 1961;133:883–4.PubMedCrossRef Wasserman RH, Kallfelz FA, Comar CL. Active transport of calcium by rat duodenum in vivo. Science. 1961;133:883–4.PubMedCrossRef
35.
go back to reference Schachter D. Vitamin D and the active transport of calcium by the small intestine. In: Wasserman RH, editor. The transfer of calcium and strontium across biological membranes. New York: Academic Press; 1963. p. 197–210. Schachter D. Vitamin D and the active transport of calcium by the small intestine. In: Wasserman RH, editor. The transfer of calcium and strontium across biological membranes. New York: Academic Press; 1963. p. 197–210.
36.
go back to reference Chen TC, Castillo L, Korycka-Dahl M, et al. Role of vitamin D metabolites in phosphate transport of rat intestine. J Nutr. 1974;104:1056–60.PubMed Chen TC, Castillo L, Korycka-Dahl M, et al. Role of vitamin D metabolites in phosphate transport of rat intestine. J Nutr. 1974;104:1056–60.PubMed
37.
go back to reference Walling MW. Effects of 1,25-dihydroxyvitamin D3 on active intestinal inorganic phosphate absorption. In: Norman AW, Schaefer K, Coburn JW, editors. Vitamin D: biochemical, chemical, and clinical aspects related to calcium metabolism. Berlin: Walter de Gruyter; 1977. p. 321–30. Walling MW. Effects of 1,25-dihydroxyvitamin D3 on active intestinal inorganic phosphate absorption. In: Norman AW, Schaefer K, Coburn JW, editors. Vitamin D: biochemical, chemical, and clinical aspects related to calcium metabolism. Berlin: Walter de Gruyter; 1977. p. 321–30.
38.
go back to reference Harrison HE, Harrison HC. Intestinal transport of phosphate: action of vitamin D, calcium, and potassium. Am J Physiol. 1962;201:1007–12. Harrison HE, Harrison HC. Intestinal transport of phosphate: action of vitamin D, calcium, and potassium. Am J Physiol. 1962;201:1007–12.
39.
go back to reference Nicolaysen R, Eeg-Larsen N. The mode of action of vitamin D. In: Wolstenholme GWE, O’Connor CM, editors. Ciba foundation symposium on bone structure and metabolism. Boston: Little, Brown, and Co.; 1956. p. 175–86.CrossRef Nicolaysen R, Eeg-Larsen N. The mode of action of vitamin D. In: Wolstenholme GWE, O’Connor CM, editors. Ciba foundation symposium on bone structure and metabolism. Boston: Little, Brown, and Co.; 1956. p. 175–86.CrossRef
40.
go back to reference Yamamoto M, Kawanobe Y, Takahashi H, et al. Vitamin D deficiency and renal calcium transport in the rat. J Clin Invest. 1984;74:507–13.PubMedCrossRef Yamamoto M, Kawanobe Y, Takahashi H, et al. Vitamin D deficiency and renal calcium transport in the rat. J Clin Invest. 1984;74:507–13.PubMedCrossRef
41.
go back to reference Carlsson A. Tracer experiments on the effect of vitamin D on the skeletal metabolism of calcium and phosphorus. Acta Physiol Scand. 1952;26:212–20.PubMedCrossRef Carlsson A. Tracer experiments on the effect of vitamin D on the skeletal metabolism of calcium and phosphorus. Acta Physiol Scand. 1952;26:212–20.PubMedCrossRef
42.
go back to reference Rasmussen H, DeLuca H, Arnaud C, et al. The relationship between vitamin D and parathyroid hormone. J Clin Invest. 1963;42:1940–6.PubMedCrossRef Rasmussen H, DeLuca H, Arnaud C, et al. The relationship between vitamin D and parathyroid hormone. J Clin Invest. 1963;42:1940–6.PubMedCrossRef
43.
go back to reference Morii H, Lund J, Neville PF, et al. Biological activity of a vitamin D metabolite. Arch Biochem Biophys. 1967;120(3):508–12.CrossRef Morii H, Lund J, Neville PF, et al. Biological activity of a vitamin D metabolite. Arch Biochem Biophys. 1967;120(3):508–12.CrossRef
44.
go back to reference Steenbock H, Herting DC. Vitamin D and growth. J Nutr. 1955;57:449–68.PubMed Steenbock H, Herting DC. Vitamin D and growth. J Nutr. 1955;57:449–68.PubMed
45.
go back to reference Cramer JW, Steenbock H. Calcium metabolism and growth in the rat on a low phosphorus diet as affected by vitamin D and increases in calcium intake. Arch Biochem Biophys. 1956;63:9–13.PubMedCrossRef Cramer JW, Steenbock H. Calcium metabolism and growth in the rat on a low phosphorus diet as affected by vitamin D and increases in calcium intake. Arch Biochem Biophys. 1956;63:9–13.PubMedCrossRef
46.
go back to reference Darwish HM, DeLuca HF. Analysis of binding of the 1,25-dihydroxyvitamin D3 receptor to positive and negative vitamin D response elements. Arch Biochem Biophys. 1996;334:223–34.PubMedCrossRef Darwish HM, DeLuca HF. Analysis of binding of the 1,25-dihydroxyvitamin D3 receptor to positive and negative vitamin D response elements. Arch Biochem Biophys. 1996;334:223–34.PubMedCrossRef
47.
go back to reference Demay MB, Kiernan MS, DeLuca HF, et al. Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA. 1992;89:8097–101.PubMedCrossRef Demay MB, Kiernan MS, DeLuca HF, et al. Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA. 1992;89:8097–101.PubMedCrossRef
48.
go back to reference Silver J, Naveh-Many T, Mayer H, et al. Regulation of vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J Clin Invest. 1986;78:1296–301.PubMedCrossRef Silver J, Naveh-Many T, Mayer H, et al. Regulation of vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J Clin Invest. 1986;78:1296–301.PubMedCrossRef
49.
go back to reference DeLuca HF. The transformation of a vitamin into a hormone—the vitamin D story. Harvey Lect. 1981;75:333–79. DeLuca HF. The transformation of a vitamin into a hormone—the vitamin D story. Harvey Lect. 1981;75:333–79.
50.
go back to reference DeLuca HF. The vitamin D-calcium axis—1983. In: Rubin RP, Weiss GB, Putney Jr JW, editors. Calcium in biological systems, vol. 53. New York: Plenum Publishing Corp; 1985. p. 491–511. DeLuca HF. The vitamin D-calcium axis—1983. In: Rubin RP, Weiss GB, Putney Jr JW, editors. Calcium in biological systems, vol. 53. New York: Plenum Publishing Corp; 1985. p. 491–511.
51.
go back to reference Liu S, Tang W, Zhou J, et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006;17(5):1305–15. (Epub 2006, April 5).PubMedCrossRef Liu S, Tang W, Zhou J, et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006;17(5):1305–15. (Epub 2006, April 5).PubMedCrossRef
52.
go back to reference Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):562–658. Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):562–658.
53.
go back to reference Bellin SA, Herting DC, Cramer JW, et al. The effect of vitamin D on urinary citrate in relation to calcium phosphorus and urinary phosphorus. Arch Biochem Biophys. 1954;80:18–23.CrossRef Bellin SA, Herting DC, Cramer JW, et al. The effect of vitamin D on urinary citrate in relation to calcium phosphorus and urinary phosphorus. Arch Biochem Biophys. 1954;80:18–23.CrossRef
54.
go back to reference Neville PF, DeLuca HF. The synthesis of [1, 2-3H]vitamin D3 and the tissue localization of a 0.25 μg (10 IU) dose per rat. Biochemistry. 1966;5:2201–7.PubMedCrossRef Neville PF, DeLuca HF. The synthesis of [1, 2-3H]vitamin D3 and the tissue localization of a 0.25 μg (10 IU) dose per rat. Biochemistry. 1966;5:2201–7.PubMedCrossRef
55.
go back to reference Norman AW, Lund J, DeLuca HF. Biologically active forms of vitamin D3 in kidney and intestine. Arch Biochem Biophys. 1964;108:12–21.PubMedCrossRef Norman AW, Lund J, DeLuca HF. Biologically active forms of vitamin D3 in kidney and intestine. Arch Biochem Biophys. 1964;108:12–21.PubMedCrossRef
56.
go back to reference Lund J, DeLuca HF. Biologically active metabolites of vitamin D3 from bone, liver, and blood serum. J Lipid Res. 1966;7:739–44.PubMed Lund J, DeLuca HF. Biologically active metabolites of vitamin D3 from bone, liver, and blood serum. J Lipid Res. 1966;7:739–44.PubMed
57.
go back to reference DeLuca HF. Vitamin D: the vitamin and the hormone. Fed Proc. 1974;33:2211–9.PubMed DeLuca HF. Vitamin D: the vitamin and the hormone. Fed Proc. 1974;33:2211–9.PubMed
58.
go back to reference Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr. 1999;69:842–56.PubMed Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr. 1999;69:842–56.PubMed
59.
go back to reference Windus A, Bock F. Uber das provitamin aus dem sterin der schweineschwarte. Z Physiol Chem. 1937;245:168–70. Windus A, Bock F. Uber das provitamin aus dem sterin der schweineschwarte. Z Physiol Chem. 1937;245:168–70.
60.
go back to reference Esvelt RP, Schnoes HK, DeLuca HF. Vitamin D3 from rat skins irradiated in vitro with ultraviolet light. Arch Biochem Biophys. 1978;188:282–6.PubMedCrossRef Esvelt RP, Schnoes HK, DeLuca HF. Vitamin D3 from rat skins irradiated in vitro with ultraviolet light. Arch Biochem Biophys. 1978;188:282–6.PubMedCrossRef
61.
go back to reference Windus A, Schenck F, Weder Fv. Uber das antirachitisch wirksame bestrahlungs-produkt aus 7-dehydro-cholesterin. Hoppe-Seylers Z Physiol Chem. 1936;241:100–3. Windus A, Schenck F, Weder Fv. Uber das antirachitisch wirksame bestrahlungs-produkt aus 7-dehydro-cholesterin. Hoppe-Seylers Z Physiol Chem. 1936;241:100–3.
62.
go back to reference Velluz L, Amiard G. Chimie organique-le precalciferol. Compt Rend. 1949;228:692–4. Velluz L, Amiard G. Chimie organique-le precalciferol. Compt Rend. 1949;228:692–4.
63.
go back to reference Holick MF, Clark MB. The photobiogenesis and metabolism of vitamin D. Fed Proc. 1978;37:2567–74.PubMed Holick MF, Clark MB. The photobiogenesis and metabolism of vitamin D. Fed Proc. 1978;37:2567–74.PubMed
64.
go back to reference Ponchon G, DeLuca HF, Suda T. Metabolism of [1, 2-3H-vitamin D3 and [26,27-3H-25-hydroxyvitamin D3 in rachitic chicks. Arch Biochem Biophys. 1970;141:397–408.PubMedCrossRef Ponchon G, DeLuca HF, Suda T. Metabolism of [1, 2-3H-vitamin D3 and [26,27-3H-25-hydroxyvitamin D3 in rachitic chicks. Arch Biochem Biophys. 1970;141:397–408.PubMedCrossRef
65.
go back to reference Horsting M, DeLuca HF. In vitro production of 25-hydroxycholecalciferol. Biochem Biophys Commun. 1969;36:251–6.CrossRef Horsting M, DeLuca HF. In vitro production of 25-hydroxycholecalciferol. Biochem Biophys Commun. 1969;36:251–6.CrossRef
66.
go back to reference Prosser DE, Jones G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci. 2004;29(13):664–73.PubMedCrossRef Prosser DE, Jones G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci. 2004;29(13):664–73.PubMedCrossRef
67.
go back to reference Guo Y-D, Strugnell S, Back DW, et al. Transfected human liver cytochrome P-450 hydroxylates vitamin D analogs at different side-chain positions. Proc Natl Acad Sci USA. 1993;90:8668–72.PubMedCrossRef Guo Y-D, Strugnell S, Back DW, et al. Transfected human liver cytochrome P-450 hydroxylates vitamin D analogs at different side-chain positions. Proc Natl Acad Sci USA. 1993;90:8668–72.PubMedCrossRef
68.
go back to reference Pikuleva IA, Bjorkhem I, Waterman MR. Expression, purification, and enzymatic properties of recombinant human cytochrome P450c27 (CYP27). Arch Biochem Biophys. 1997;343(1):123–30.PubMedCrossRef Pikuleva IA, Bjorkhem I, Waterman MR. Expression, purification, and enzymatic properties of recombinant human cytochrome P450c27 (CYP27). Arch Biochem Biophys. 1997;343(1):123–30.PubMedCrossRef
69.
go back to reference Rosen H, Reshef A, Maeda N, et al. Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted sterol 27-hydroxylase gene. J Biol Chem. 1998;273(24):14805–12.PubMedCrossRef Rosen H, Reshef A, Maeda N, et al. Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted sterol 27-hydroxylase gene. J Biol Chem. 1998;273(24):14805–12.PubMedCrossRef
70.
go back to reference Repa JJ, Mangelsdorf DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol. 2000;16:459–81.PubMedCrossRef Repa JJ, Mangelsdorf DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol. 2000;16:459–81.PubMedCrossRef
71.
go back to reference Ohyama Y, Yamasaki T. Eight cytochrome P450 s catalyze vitamin D metabolism. Front Biosci. 2004;9:3007–18.PubMedCrossRef Ohyama Y, Yamasaki T. Eight cytochrome P450 s catalyze vitamin D metabolism. Front Biosci. 2004;9:3007–18.PubMedCrossRef
72.
go back to reference Fraser DR, Kodicek E. Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature. 1970;228:764–6.PubMedCrossRef Fraser DR, Kodicek E. Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature. 1970;228:764–6.PubMedCrossRef
73.
go back to reference Gray R, Boyle I, DeLuca HF. Vitamin D metabolism: the role of kidney tissue. Science. 1971;172:1232–4.PubMedCrossRef Gray R, Boyle I, DeLuca HF. Vitamin D metabolism: the role of kidney tissue. Science. 1971;172:1232–4.PubMedCrossRef
74.
go back to reference Boyle IT, Miravet L, Gray RW, et al. The response of intestinal calcium transport to 25-hydroxy and 1,25-dihydroxyvitamin D in nephrectomized rats. Endocrinology. 1972;90:605–8.PubMed Boyle IT, Miravet L, Gray RW, et al. The response of intestinal calcium transport to 25-hydroxy and 1,25-dihydroxyvitamin D in nephrectomized rats. Endocrinology. 1972;90:605–8.PubMed
75.
go back to reference Holick MF, Garabedian M, DeLuca HF. 1,25-Dihydroxycholecalciferol: metabolite of vitamin D3 active on bone in anephric rats. Science. 1972;176:1146–7.PubMedCrossRef Holick MF, Garabedian M, DeLuca HF. 1,25-Dihydroxycholecalciferol: metabolite of vitamin D3 active on bone in anephric rats. Science. 1972;176:1146–7.PubMedCrossRef
76.
go back to reference Wong RG, Norman AW, Reddy CR, et al. Biologic effects of 1,25-dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats. J Clin Invest. 1972;51:1287–91.PubMedCrossRef Wong RG, Norman AW, Reddy CR, et al. Biologic effects of 1,25-dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats. J Clin Invest. 1972;51:1287–91.PubMedCrossRef
77.
go back to reference Dardenne O, Prud’Homme J, Arabian A. Targeted inactivation of the 25-hydroxyvitamin D3-1α-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology. 2001;142:3135–41.PubMedCrossRef Dardenne O, Prud’Homme J, Arabian A. Targeted inactivation of the 25-hydroxyvitamin D3-1α-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology. 2001;142:3135–41.PubMedCrossRef
78.
go back to reference Panda DK, Miao D, Tremblay ML, et al. Targeted ablation of the 25-hydroxyvitamin D 1α-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA. 2001;98(13):7498–503.PubMedCrossRef Panda DK, Miao D, Tremblay ML, et al. Targeted ablation of the 25-hydroxyvitamin D 1α-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA. 2001;98(13):7498–503.PubMedCrossRef
79.
go back to reference Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr. 2008;88:491S–9S.PubMedCrossRef Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr. 2008;88:491S–9S.PubMedCrossRef
80.
go back to reference Bikle DD, Chang S, Crumrine D, et al. 25 Hydroxyvitamin D 1α-hydroxylase is required for optimal epidermal differentiation and permeability barrier homeostasis. J Invest Dermatol. 2004;122:984–92.PubMedCrossRef Bikle DD, Chang S, Crumrine D, et al. 25 Hydroxyvitamin D 1α-hydroxylase is required for optimal epidermal differentiation and permeability barrier homeostasis. J Invest Dermatol. 2004;122:984–92.PubMedCrossRef
81.
go back to reference Hewison M, Adams JS. Extra-renal 1α-hydroxylase activity and human disease. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 79. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1379–400. Hewison M, Adams JS. Extra-renal 1α-hydroxylase activity and human disease. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 79. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1379–400.
82.
go back to reference Barbour GL, Coburn JW, Slatopolsky E, et al. Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1,25-dihydroxyvitamin D. N Engl J Med. 1981;305(8):440–3.PubMed Barbour GL, Coburn JW, Slatopolsky E, et al. Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1,25-dihydroxyvitamin D. N Engl J Med. 1981;305(8):440–3.PubMed
83.
go back to reference Jones G, Ramshaw H, Zhang A, et al. Expression and activity of vitamin D-metabolizing cytochrome P450s (CYP1α and CYP24) in human nonsmall cell lung carcinomas. Endocrinology. 1999;140(7):3303–10.PubMedCrossRef Jones G, Ramshaw H, Zhang A, et al. Expression and activity of vitamin D-metabolizing cytochrome P450s (CYP1α and CYP24) in human nonsmall cell lung carcinomas. Endocrinology. 1999;140(7):3303–10.PubMedCrossRef
84.
go back to reference Reeve L, Tanaka Y, DeLuca HF. Studies on the site of 1,25-dihydroxyvitamin D3 synthesis in vivo. J Biol Chem. 1983;258(6):3615–7.PubMed Reeve L, Tanaka Y, DeLuca HF. Studies on the site of 1,25-dihydroxyvitamin D3 synthesis in vivo. J Biol Chem. 1983;258(6):3615–7.PubMed
85.
go back to reference Shultz TD, Fox J, Heath H 3rd, et al. Do tissues other than the kidney produce 1,25-dihydroxyvitamin D3 in vivo? A reexamination. Proc Natl Acad Sci USA. 1983;80(6):1746–50.PubMedCrossRef Shultz TD, Fox J, Heath H 3rd, et al. Do tissues other than the kidney produce 1,25-dihydroxyvitamin D3 in vivo? A reexamination. Proc Natl Acad Sci USA. 1983;80(6):1746–50.PubMedCrossRef
86.
go back to reference Vanhooke JL, Prahl JM, Kimmel-Jehan C, et al. CYP27B1 null mice with LacZ reporter gene display no 25-hydroxyvitamin D3-1α-hydroxylase promoter activity in the skin. Proc Natl Acad Sci USA. 2006;103(1):75–80.PubMedCrossRef Vanhooke JL, Prahl JM, Kimmel-Jehan C, et al. CYP27B1 null mice with LacZ reporter gene display no 25-hydroxyvitamin D3-1α-hydroxylase promoter activity in the skin. Proc Natl Acad Sci USA. 2006;103(1):75–80.PubMedCrossRef
87.
go back to reference Pedersen JI, Shobaki HH, Holmberg I, et al. 25-Hydroxyvitamin D3-24-hydroxylase in rat kidney mitochondria. J Biol Chem. 1983;258:742–6.PubMed Pedersen JI, Shobaki HH, Holmberg I, et al. 25-Hydroxyvitamin D3-24-hydroxylase in rat kidney mitochondria. J Biol Chem. 1983;258:742–6.PubMed
88.
go back to reference Omdahl JL, Morris HA, May BK. Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. Annu Rev Nutr. 2002;22:139–66.PubMedCrossRef Omdahl JL, Morris HA, May BK. Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. Annu Rev Nutr. 2002;22:139–66.PubMedCrossRef
89.
go back to reference Akiyoshi-Shibata M, Sakaki T, Ohyama Y. Further oxidation of hydroxycalcidiol by calcidiol 24-hydroxylase. Eur J Biochem. 1994;224:335–43.PubMedCrossRef Akiyoshi-Shibata M, Sakaki T, Ohyama Y. Further oxidation of hydroxycalcidiol by calcidiol 24-hydroxylase. Eur J Biochem. 1994;224:335–43.PubMedCrossRef
90.
go back to reference Beckman MJ, Tadikonda P, Werner E, et al. Human 25-hydroxyvitamin D3-24-hydroxylase, a multicatalytic enzyme. Biochemistry. 1996;35:8465–72.PubMedCrossRef Beckman MJ, Tadikonda P, Werner E, et al. Human 25-hydroxyvitamin D3-24-hydroxylase, a multicatalytic enzyme. Biochemistry. 1996;35:8465–72.PubMedCrossRef
91.
go back to reference Makin G, Lohnes D, Byford V, et al. Target cell metabolism of 1,25-dihydroxyvitamin D3 to calcitroic acid. Evidence for a pathway in kidney and bone involving 24-oxidation. Biochem J. 1989;262(1):173–80.PubMed Makin G, Lohnes D, Byford V, et al. Target cell metabolism of 1,25-dihydroxyvitamin D3 to calcitroic acid. Evidence for a pathway in kidney and bone involving 24-oxidation. Biochem J. 1989;262(1):173–80.PubMed
92.
go back to reference Reddy GS, Tserng KY. Calcitroic acid end product of renal metabolism of 1,25-dihydroxyvitamin D3 through C-24 oxidation pathway. Biochemistry. 1989;28(4):1763–9.PubMedCrossRef Reddy GS, Tserng KY. Calcitroic acid end product of renal metabolism of 1,25-dihydroxyvitamin D3 through C-24 oxidation pathway. Biochemistry. 1989;28(4):1763–9.PubMedCrossRef
93.
go back to reference Esvelt RP, Rivizzani MA, Paaren HE. Synthesis of calcitroic acid, a metabolite of 1,25-dihydroxycholecalciferol. J Org Chem. 1981;46:456–8.CrossRef Esvelt RP, Rivizzani MA, Paaren HE. Synthesis of calcitroic acid, a metabolite of 1,25-dihydroxycholecalciferol. J Org Chem. 1981;46:456–8.CrossRef
94.
go back to reference Onisko BL, Esvelt RP, Schnoes HK, et al. Metabolites of 1,25-dihydroxyvitamin D3 in rat bile. Biochemistry. 1980;19:4124–30.PubMedCrossRef Onisko BL, Esvelt RP, Schnoes HK, et al. Metabolites of 1,25-dihydroxyvitamin D3 in rat bile. Biochemistry. 1980;19:4124–30.PubMedCrossRef
95.
go back to reference Rasmussen H, Bordier P. Vitamin D and bone. Metab Bone Dis Relat Res. 1978;1:7–13.CrossRef Rasmussen H, Bordier P. Vitamin D and bone. Metab Bone Dis Relat Res. 1978;1:7–13.CrossRef
96.
go back to reference Ornoy A, Goodwin D, Noff D, Edelstein S. 24,25-dihydroxyvitamin D is a metabolite of vitamin D essential for bone formation. Nature. 1978;276:517–9.PubMedCrossRef Ornoy A, Goodwin D, Noff D, Edelstein S. 24,25-dihydroxyvitamin D is a metabolite of vitamin D essential for bone formation. Nature. 1978;276:517–9.PubMedCrossRef
97.
go back to reference Henry HL, Taylor AN, Norman AW. Response of chick parathyroid glands to the vitamin D metabolites 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. J Nutr. 1977;107:1918–26.PubMed Henry HL, Taylor AN, Norman AW. Response of chick parathyroid glands to the vitamin D metabolites 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. J Nutr. 1977;107:1918–26.PubMed
98.
go back to reference Garabedian M, Lieberherr M, Nguyen TM, et al. In vitro production and activity of 24,25-dihydroxycholecalciferol in cartilage and calvarium. Clin Orthop Relat Res. 1978;135:241–8.PubMed Garabedian M, Lieberherr M, Nguyen TM, et al. In vitro production and activity of 24,25-dihydroxycholecalciferol in cartilage and calvarium. Clin Orthop Relat Res. 1978;135:241–8.PubMed
99.
go back to reference Henry HL, Norman AW. Vitamin D: two dihydroxylated metabolites are required for normal chicken egg hatchability. Science. 1978;201:835–7.PubMedCrossRef Henry HL, Norman AW. Vitamin D: two dihydroxylated metabolites are required for normal chicken egg hatchability. Science. 1978;201:835–7.PubMedCrossRef
100.
go back to reference Jarnagin K, Brommage R, DeLuca HF. 1-But not 24-hydroxylation of vitamin D is required for growth and reproduction in rats. Am J Physiol. 1983;244:E290–7.PubMed Jarnagin K, Brommage R, DeLuca HF. 1-But not 24-hydroxylation of vitamin D is required for growth and reproduction in rats. Am J Physiol. 1983;244:E290–7.PubMed
101.
go back to reference Halloran BP, DeLuca HF, Barthell E. An examination of the importance of 24-hydroxylation to the function of vitamin D during early development. Endocrinology. 1981;108:2067–71.PubMed Halloran BP, DeLuca HF, Barthell E. An examination of the importance of 24-hydroxylation to the function of vitamin D during early development. Endocrinology. 1981;108:2067–71.PubMed
102.
go back to reference Miller SC, Halloran BP, DeLuca HF. Studies on the role of 24-hydroxylation of vitamin D in the mineralization of cartilage and bone of vitamin D-deficient rats. Calcif Tissue Int. 1981;33:489–97.PubMedCrossRef Miller SC, Halloran BP, DeLuca HF. Studies on the role of 24-hydroxylation of vitamin D in the mineralization of cartilage and bone of vitamin D-deficient rats. Calcif Tissue Int. 1981;33:489–97.PubMedCrossRef
103.
go back to reference St-Arnaud R, Arabian A, Glorieux FH. Abnormal bone development in mice deficient for the vitamin D 24-hydroxylase gene. In: ASBMR 18th Annual Meeting. Seattle, WA, p. S126. St-Arnaud R, Arabian A, Glorieux FH. Abnormal bone development in mice deficient for the vitamin D 24-hydroxylase gene. In: ASBMR 18th Annual Meeting. Seattle, WA, p. S126.
104.
go back to reference St-Arnaud R, Arabian A, Travers R. Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology. 2000;141(7):2658–66.PubMedCrossRef St-Arnaud R, Arabian A, Travers R. Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology. 2000;141(7):2658–66.PubMedCrossRef
105.
go back to reference Brown EM, Gamba G, Riccardi D. Cloning and characterization of an extracellular Ca+2-sensing receptor from bovine parathyroid. Nature. 1993;366:575–80.PubMedCrossRef Brown EM, Gamba G, Riccardi D. Cloning and characterization of an extracellular Ca+2-sensing receptor from bovine parathyroid. Nature. 1993;366:575–80.PubMedCrossRef
106.
go back to reference Omdahl JL, Gray RW, Boyle IT, et al. Regulation of metabolism of 25-hydroxycholecalciferol metabolism by kidney tissue in vitro by dietary calcium. Nature New Biol. 1972;237:63–4.PubMed Omdahl JL, Gray RW, Boyle IT, et al. Regulation of metabolism of 25-hydroxycholecalciferol metabolism by kidney tissue in vitro by dietary calcium. Nature New Biol. 1972;237:63–4.PubMed
107.
go back to reference Garabedian M, Holick MF, DeLuca HF, et al. Control of 25-hydroxycholecalciferol metabolism by the parathyroid glands. Proc Natl Acad Sci USA. 1972;69:1673–6.PubMedCrossRef Garabedian M, Holick MF, DeLuca HF, et al. Control of 25-hydroxycholecalciferol metabolism by the parathyroid glands. Proc Natl Acad Sci USA. 1972;69:1673–6.PubMedCrossRef
108.
go back to reference Fraser DR, Kodicek E. Regulation of 25-hydroxycholecalciferol-1-hydroxylase activity in kidney by parathyroid hormone. Nature New Biol. 1973;241:163–6.PubMed Fraser DR, Kodicek E. Regulation of 25-hydroxycholecalciferol-1-hydroxylase activity in kidney by parathyroid hormone. Nature New Biol. 1973;241:163–6.PubMed
109.
go back to reference Garabedian M, Tanaka Y, Holick MF, et al. Response of intestinal calcium transport and bone calcium mobilization to 1,25-dihydroxyvitamin D3 in thyroparathyroidectomized rats. Endocrinology. 1974;94:1022–7.PubMed Garabedian M, Tanaka Y, Holick MF, et al. Response of intestinal calcium transport and bone calcium mobilization to 1,25-dihydroxyvitamin D3 in thyroparathyroidectomized rats. Endocrinology. 1974;94:1022–7.PubMed
110.
go back to reference Forte LR, Nickols GA, Anast CS. Renal adenylate cyclase and the interrelationship between parathyroid hormone and vitamin D in the regulation of urinary phosphate and adenosine cyclin 3′, 5′monophosphate excretion. J Clin Invest. 1976;57:559–68.PubMedCrossRef Forte LR, Nickols GA, Anast CS. Renal adenylate cyclase and the interrelationship between parathyroid hormone and vitamin D in the regulation of urinary phosphate and adenosine cyclin 3′, 5′monophosphate excretion. J Clin Invest. 1976;57:559–68.PubMedCrossRef
111.
go back to reference Tanaka Y, DeLuca HF. The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys. 1973;154:566–74.PubMedCrossRef Tanaka Y, DeLuca HF. The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys. 1973;154:566–74.PubMedCrossRef
112.
go back to reference Baxter LA, DeLuca HF. Stimulation of 25-hydroxyvitamin D3-1-hydroxylase by phosphate depletion. J Biol Chem. 1976;251:3158–61.PubMed Baxter LA, DeLuca HF. Stimulation of 25-hydroxyvitamin D3-1-hydroxylase by phosphate depletion. J Biol Chem. 1976;251:3158–61.PubMed
113.
go back to reference Hughes MR, Brumbaugh PF, Haussler MR. Regulation of serum 1,25-dihydroxyvitamin D3 by calcium and phosphate in the rat. Science. 1975;190:578–80.PubMedCrossRef Hughes MR, Brumbaugh PF, Haussler MR. Regulation of serum 1,25-dihydroxyvitamin D3 by calcium and phosphate in the rat. Science. 1975;190:578–80.PubMedCrossRef
114.
go back to reference Gray RW. Evidence that somatomedins mediate the effect of hypophosphatemia to increase serum 1,25-dihydroxyvitamin D3 levels in rats. Endocrinology. 1987;121:504–12.PubMed Gray RW. Evidence that somatomedins mediate the effect of hypophosphatemia to increase serum 1,25-dihydroxyvitamin D3 levels in rats. Endocrinology. 1987;121:504–12.PubMed
115.
go back to reference Halloran BP, Spencer EM. Dietary phosphorus and 1,25-dihydroxyvitamin D metabolism: influence of insulin-like growth factor-1. Endocrinology. 1988;123:1225–9.PubMed Halloran BP, Spencer EM. Dietary phosphorus and 1,25-dihydroxyvitamin D metabolism: influence of insulin-like growth factor-1. Endocrinology. 1988;123:1225–9.PubMed
116.
go back to reference Spencer EM, Tobiassen O. The mechanism of the action of growth hormone on vitamin D metabolism in the rat. Endocrinology. 1981;108:1064–70.PubMed Spencer EM, Tobiassen O. The mechanism of the action of growth hormone on vitamin D metabolism in the rat. Endocrinology. 1981;108:1064–70.PubMed
117.
go back to reference Gray RW. Control of plasma 1,25-(OH)2-vitamin D concentrations by calcium and phosphorus in the rat: effects of hypophysectomy. Calcif Tissue Int. 1981;33:485–8.PubMedCrossRef Gray RW. Control of plasma 1,25-(OH)2-vitamin D concentrations by calcium and phosphorus in the rat: effects of hypophysectomy. Calcif Tissue Int. 1981;33:485–8.PubMedCrossRef
118.
go back to reference Pahuja DN, DeLuca HF. Role of the hypophysis in the regulation of vitamin D metabolism. Mol Cell Endocrinol. 1981;23:345–50.PubMedCrossRef Pahuja DN, DeLuca HF. Role of the hypophysis in the regulation of vitamin D metabolism. Mol Cell Endocrinol. 1981;23:345–50.PubMedCrossRef
119.
go back to reference Brown DJ, Spanos E, MacIntyre I. Role of pituitary hormones in regulating renal vitamin D metabolism in man. Br Med J. 1980;280:277.PubMedCrossRef Brown DJ, Spanos E, MacIntyre I. Role of pituitary hormones in regulating renal vitamin D metabolism in man. Br Med J. 1980;280:277.PubMedCrossRef
120.
go back to reference Liu S, Zhou J, Tang W. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab. 2006;291(1):E38–49.PubMedCrossRef Liu S, Zhou J, Tang W. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab. 2006;291(1):E38–49.PubMedCrossRef
121.
go back to reference Tanaka Y, Frank H, DeLuca HF. Biological activity of 1,25-dihydroxyvitamin D3 in the rat. Endocrinology. 1973;92:417–22.PubMed Tanaka Y, Frank H, DeLuca HF. Biological activity of 1,25-dihydroxyvitamin D3 in the rat. Endocrinology. 1973;92:417–22.PubMed
122.
go back to reference Tanaka Y, Lorenc RS, DeLuca HF. The role of 1,25-dihydroxyvitamin D3 and parathyroid hormone in the regulation of chick renal 25-hydroxyvitamin D3-24-hydroxylase. Arch Biochem Biophys. 1975;171:521–6.CrossRef Tanaka Y, Lorenc RS, DeLuca HF. The role of 1,25-dihydroxyvitamin D3 and parathyroid hormone in the regulation of chick renal 25-hydroxyvitamin D3-24-hydroxylase. Arch Biochem Biophys. 1975;171:521–6.CrossRef
123.
go back to reference Tanaka Y, DeLuca HF. Stimulation of 24,25-dihydroxyvitamin D3 production by 1,25-dihydroxyvitamin D3. Science. 1974;183:1198–200.PubMedCrossRef Tanaka Y, DeLuca HF. Stimulation of 24,25-dihydroxyvitamin D3 production by 1,25-dihydroxyvitamin D3. Science. 1974;183:1198–200.PubMedCrossRef
124.
go back to reference Shinki T, Jin CH, Nishimura A. Parathyroid hormone inhibits 25-hydroxyvitamin D3-24-hydroxylase mRNA expression stimulated by 1,25-dihydroxyvitamin D3 in rat kidney but not in intestine. J Biol Chem. 1992;267:13757–62.PubMed Shinki T, Jin CH, Nishimura A. Parathyroid hormone inhibits 25-hydroxyvitamin D3-24-hydroxylase mRNA expression stimulated by 1,25-dihydroxyvitamin D3 in rat kidney but not in intestine. J Biol Chem. 1992;267:13757–62.PubMed
125.
go back to reference Zierold C, Darwish HM, DeLuca HF. Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. Proc Natl Acad Sci USA. 1994;91:900–2.PubMedCrossRef Zierold C, Darwish HM, DeLuca HF. Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. Proc Natl Acad Sci USA. 1994;91:900–2.PubMedCrossRef
126.
go back to reference Ohyama Y, Ozono K, Uchida M. Identification of a vitamin D-responsive element in the 5′-flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J Biol Chem. 1994;269:10545–50.PubMed Ohyama Y, Ozono K, Uchida M. Identification of a vitamin D-responsive element in the 5′-flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J Biol Chem. 1994;269:10545–50.PubMed
127.
go back to reference Wu SX, Finch J, Zhong M. Expression of the renal 25-hydroxyvitamin D-24-hydroxylase gene-regulation by dietary phosphate. Am J Phys. 1996;40:F203–8. Wu SX, Finch J, Zhong M. Expression of the renal 25-hydroxyvitamin D-24-hydroxylase gene-regulation by dietary phosphate. Am J Phys. 1996;40:F203–8.
128.
go back to reference Brenza HL, Kimmel-Jehan C, Jehan F. Parathyroid hormone activation of the 25-hydroxyvitamin D3-1α-hydroxylase gene promoter. Proc Natl Acad Sci USA. 1998;95:1387–91.PubMedCrossRef Brenza HL, Kimmel-Jehan C, Jehan F. Parathyroid hormone activation of the 25-hydroxyvitamin D3-1α-hydroxylase gene promoter. Proc Natl Acad Sci USA. 1998;95:1387–91.PubMedCrossRef
129.
go back to reference Brenza HL. Regulation of 25-hydroxyvitamin D3-1α-hydroxylase gene expression. PhD Thesis. University of Wisconsin-Madison; 2002. Brenza HL. Regulation of 25-hydroxyvitamin D3-1α-hydroxylase gene expression. PhD Thesis. University of Wisconsin-Madison; 2002.
130.
go back to reference Strom M, Sandgren ME, Brown TA, et al. 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA. 1989;86:9770–3.PubMedCrossRef Strom M, Sandgren ME, Brown TA, et al. 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA. 1989;86:9770–3.PubMedCrossRef
131.
go back to reference Healy KD, Zella JB, Prahl JM, et al. Regulation of the murine renal vitamin D receptor by 1,25-dihydroxyvitamin D3 and calcium. Proc Natl Acad Sci USA. 2003;100(17):9733–7.PubMedCrossRef Healy KD, Zella JB, Prahl JM, et al. Regulation of the murine renal vitamin D receptor by 1,25-dihydroxyvitamin D3 and calcium. Proc Natl Acad Sci USA. 2003;100(17):9733–7.PubMedCrossRef
132.
go back to reference Sandgren ME, DeLuca HF. Serum calcium and vitamin D regulate 1,25-dihydroxyvitamin D3 receptor concentration in rat kidney in vivo. Proc Natl Acad Sci USA. 1990;87(11):4312–4.PubMedCrossRef Sandgren ME, DeLuca HF. Serum calcium and vitamin D regulate 1,25-dihydroxyvitamin D3 receptor concentration in rat kidney in vivo. Proc Natl Acad Sci USA. 1990;87(11):4312–4.PubMedCrossRef
133.
go back to reference Goff JP, Reinhardt TA, Beckman MJ, et al. Contrasting effects of exogenous 1,25-dihydroxyvitamin D [1,25-(OH)2D] versus endogenous 1,25-(OH)2D, induced by dietary calcium restriction, on vitamin D receptors. Endocrinology. 1990;126(2):1031–5.PubMed Goff JP, Reinhardt TA, Beckman MJ, et al. Contrasting effects of exogenous 1,25-dihydroxyvitamin D [1,25-(OH)2D] versus endogenous 1,25-(OH)2D, induced by dietary calcium restriction, on vitamin D receptors. Endocrinology. 1990;126(2):1031–5.PubMed
134.
go back to reference Beckman MJ, DeLuca HF. Regulation of renal vitamin D receptor is an important determinant of 1α, 25-dihydroxyvitamin D3 levels in vivo. Arch Biochem Biophys. 2002;401(1):44–52.PubMedCrossRef Beckman MJ, DeLuca HF. Regulation of renal vitamin D receptor is an important determinant of 1α, 25-dihydroxyvitamin D3 levels in vivo. Arch Biochem Biophys. 2002;401(1):44–52.PubMedCrossRef
135.
go back to reference Naveh-Many T, Silver J. Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat. J Clin Invest. 1990;86:1313–9.PubMedCrossRef Naveh-Many T, Silver J. Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat. J Clin Invest. 1990;86:1313–9.PubMedCrossRef
136.
go back to reference Stumpf WE, Sar M, DeLuca HF. Sites of action of 1,25(OH)2vitamin D3 identified by thaw-mount autoradiography. In: Cohn DV, Talmage RV, Matthews JL, editors. Hormonal control of calcium metabolism. Amsterdam, Oxford, Princeton: Excerpta Medica; 1981. p. 222–9. Stumpf WE, Sar M, DeLuca HF. Sites of action of 1,25(OH)2vitamin D3 identified by thaw-mount autoradiography. In: Cohn DV, Talmage RV, Matthews JL, editors. Hormonal control of calcium metabolism. Amsterdam, Oxford, Princeton: Excerpta Medica; 1981. p. 222–9.
137.
go back to reference Brumbaugh PF, Haussler MR. Nuclear and cytoplasmic binding components for vitamin D metabolites. Life Sci. 1975;16:353.PubMedCrossRef Brumbaugh PF, Haussler MR. Nuclear and cytoplasmic binding components for vitamin D metabolites. Life Sci. 1975;16:353.PubMedCrossRef
138.
go back to reference Kream BE, Reynolds RD, Knutson JC. Intestinal cytosol binders of 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3. Arch Biochem Biophys. 1976;176:779–87.PubMedCrossRef Kream BE, Reynolds RD, Knutson JC. Intestinal cytosol binders of 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3. Arch Biochem Biophys. 1976;176:779–87.PubMedCrossRef
139.
go back to reference Baker AR, McDonnell DP, Hughes M. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA. 1988;85:3294–8.PubMedCrossRef Baker AR, McDonnell DP, Hughes M. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA. 1988;85:3294–8.PubMedCrossRef
140.
go back to reference Burmester JK, Wiese RJ, Maeda N, et al. Structure and regulation of the rat 1,25-dihydroxyvitamin D3 receptor. Proc Natl Acad Sci USA. 1988;85:9499–502.PubMedCrossRef Burmester JK, Wiese RJ, Maeda N, et al. Structure and regulation of the rat 1,25-dihydroxyvitamin D3 receptor. Proc Natl Acad Sci USA. 1988;85:9499–502.PubMedCrossRef
141.
go back to reference Pike JW, Shevde NK. The vitamin D receptor. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 11. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 167–91. Pike JW, Shevde NK. The vitamin D receptor. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 11. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 167–91.
142.
go back to reference McDonnell DP, Scott RA, Kerner SA, et al. Functional domains of the human vitamin D3 receptor regulate osteocalcin gene expression. Mol Endocrinol. 1989;3:635–44.PubMedCrossRef McDonnell DP, Scott RA, Kerner SA, et al. Functional domains of the human vitamin D3 receptor regulate osteocalcin gene expression. Mol Endocrinol. 1989;3:635–44.PubMedCrossRef
143.
go back to reference Umesono K, Murakami KK, Thompson CC. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991;65:1255–66.PubMedCrossRef Umesono K, Murakami KK, Thompson CC. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991;65:1255–66.PubMedCrossRef
144.
go back to reference Zella LA, Kim S, Shevde NK, et al. Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. Mol Endocrinol. 2006;20(6):1231–47.PubMedCrossRef Zella LA, Kim S, Shevde NK, et al. Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. Mol Endocrinol. 2006;20(6):1231–47.PubMedCrossRef
145.
go back to reference Kim S, Yamazaki M, Zella LA. Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol. 2006;26(17):6469–86.PubMedCrossRef Kim S, Yamazaki M, Zella LA. Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol. 2006;26(17):6469–86.PubMedCrossRef
147.
go back to reference Kutuzova GD, DeLuca HF. Gene expression profiles in rat intestine identify pathways for 1,25-dihydroxyvitamin D3 stimulated calcium absorption and clarify its immunomodulatory properties. Arch Biochem Biophys. 2004;432(2):152–66.PubMedCrossRef Kutuzova GD, DeLuca HF. Gene expression profiles in rat intestine identify pathways for 1,25-dihydroxyvitamin D3 stimulated calcium absorption and clarify its immunomodulatory properties. Arch Biochem Biophys. 2004;432(2):152–66.PubMedCrossRef
148.
go back to reference Kutuzova GD, DeLuca HF. 1,25-Dihydroxyvitamin D3 regulates genes responsible for detoxification in intestine. Toxicol Appl Pharmacol. 2007;218(1):37–44.PubMedCrossRef Kutuzova GD, DeLuca HF. 1,25-Dihydroxyvitamin D3 regulates genes responsible for detoxification in intestine. Toxicol Appl Pharmacol. 2007;218(1):37–44.PubMedCrossRef
149.
go back to reference Chen KS, DeLuca HF. Cloning of the human 1α,25-dihydroxyvitamin D3 24-hydroxylase gene promoter and identification of two vitamin D-responsive elements. Biochim Biophys Acta. 1995;1263(1):1–9.PubMed Chen KS, DeLuca HF. Cloning of the human 1α,25-dihydroxyvitamin D3 24-hydroxylase gene promoter and identification of two vitamin D-responsive elements. Biochim Biophys Acta. 1995;1263(1):1–9.PubMed
150.
go back to reference Carlberg C, Dunlop TW, Frank C. Molecular basis of the diversity of vitamin D target genes. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 18. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 313–25. Carlberg C, Dunlop TW, Frank C. Molecular basis of the diversity of vitamin D target genes. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 18. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 313–25.
151.
go back to reference Nagai M, Sato N. Reciprocal gene expression of osteoclastogenesis inhibitory factor and osteoclast differentiation factor regulates osteoclast formation. Biochem Biophys Res Commun. 1999;257:719–23.PubMedCrossRef Nagai M, Sato N. Reciprocal gene expression of osteoclastogenesis inhibitory factor and osteoclast differentiation factor regulates osteoclast formation. Biochem Biophys Res Commun. 1999;257:719–23.PubMedCrossRef
152.
go back to reference Strom M, Sandgren ME, Brown TA, et al. 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA. 1989;86(24):9770–3.PubMedCrossRef Strom M, Sandgren ME, Brown TA, et al. 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA. 1989;86(24):9770–3.PubMedCrossRef
153.
go back to reference Naveh-Many T, Marx R, Keshet E. Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo. J Clin Invest. 1990;86(6):1968–75.PubMedCrossRef Naveh-Many T, Marx R, Keshet E. Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo. J Clin Invest. 1990;86(6):1968–75.PubMedCrossRef
154.
go back to reference Huang L, Xu J, Wood DJ, et al. Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone. Possible involvement in tumor cell-induced osteoclast-like cell formation. Am J Pathol. 2000;156(3):761–7.PubMed Huang L, Xu J, Wood DJ, et al. Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone. Possible involvement in tumor cell-induced osteoclast-like cell formation. Am J Pathol. 2000;156(3):761–7.PubMed
155.
go back to reference Shevde NK, Plum LA, Clagett-Dame M, et al. A potent analog of 1α, 25-dihydroxyvitamin D3 selectively induced bone formation. Proc Natl Acad Sci USA. 2002;99(21):13487–91.PubMedCrossRef Shevde NK, Plum LA, Clagett-Dame M, et al. A potent analog of 1α, 25-dihydroxyvitamin D3 selectively induced bone formation. Proc Natl Acad Sci USA. 2002;99(21):13487–91.PubMedCrossRef
156.
go back to reference Fleet JC. Rapid, membrane-initiated actions of 1,25 dihydroxyvitamin D: what are they and what do they mean? J Nutr. 2004;134:3215–8.PubMed Fleet JC. Rapid, membrane-initiated actions of 1,25 dihydroxyvitamin D: what are they and what do they mean? J Nutr. 2004;134:3215–8.PubMed
157.
go back to reference Norman AW, Mizwicki MT, Norman DPG. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov. 2004;3(1):27–41.PubMedCrossRef Norman AW, Mizwicki MT, Norman DPG. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov. 2004;3(1):27–41.PubMedCrossRef
158.
go back to reference Demay MB. Mouse models of vitamin D receptor ablation. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 20. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 341–9. Demay MB. Mouse models of vitamin D receptor ablation. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 20. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 341–9.
159.
go back to reference Nemere I, Yoshimoto Y, Norman AW. Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D3. Endocrinology. 1984;115(4):1476–83.PubMed Nemere I, Yoshimoto Y, Norman AW. Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D3. Endocrinology. 1984;115(4):1476–83.PubMed
160.
go back to reference Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocrine Rev. 2005;26(5):662–87.CrossRef Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocrine Rev. 2005;26(5):662–87.CrossRef
161.
go back to reference Dusso AS, Negrea L, Gunawardhana S, et al. On the mechanisms for the selective action of vitamin D analogs. Endocrinology. 1991;128(4):1687–92.PubMed Dusso AS, Negrea L, Gunawardhana S, et al. On the mechanisms for the selective action of vitamin D analogs. Endocrinology. 1991;128(4):1687–92.PubMed
162.
go back to reference Binderup L, Binderup E, Godtfredsen WO. Development of new vitamin D analogs. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 84. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1489–510. Binderup L, Binderup E, Godtfredsen WO. Development of new vitamin D analogs. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 84. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1489–510.
163.
go back to reference Kissmeyer A-M, Binderup L. Calcipotriol (MC 903): pharmacokinetics in rats and biological activities of metabolites. A comparative study with 1,25(OH)2D3. Biochem Pharmacol. 1991;41(11):1601–6.PubMedCrossRef Kissmeyer A-M, Binderup L. Calcipotriol (MC 903): pharmacokinetics in rats and biological activities of metabolites. A comparative study with 1,25(OH)2D3. Biochem Pharmacol. 1991;41(11):1601–6.PubMedCrossRef
164.
go back to reference Segaert S, Duvold LB. Calcipotriol cream: a review of its use in the management of psoriasis. J Dermatolog Treat. 2006;17(6):327–37.PubMedCrossRef Segaert S, Duvold LB. Calcipotriol cream: a review of its use in the management of psoriasis. J Dermatolog Treat. 2006;17(6):327–37.PubMedCrossRef
165.
go back to reference Sicinski RR, Prahl JM, Smith CM. New 1α, 25-dihydroxy-19-norvitamin D3 compounds of high biological activity: synthesis and biological evaluation of 2-hydroxymethyl, 2-methyl, and 2-methylene analogues. J Med Chem. 1998;41(23):4662–74.PubMedCrossRef Sicinski RR, Prahl JM, Smith CM. New 1α, 25-dihydroxy-19-norvitamin D3 compounds of high biological activity: synthesis and biological evaluation of 2-hydroxymethyl, 2-methyl, and 2-methylene analogues. J Med Chem. 1998;41(23):4662–74.PubMedCrossRef
166.
go back to reference Ke HZ, Qi H, Crawford DT, et al. A new vitamin D analog, 2MD, restores trabecular and cortical bone mass and strength in ovariectomized rats with established osteopenia. J Bone Miner Res. 2005;20:1742–55.PubMedCrossRef Ke HZ, Qi H, Crawford DT, et al. A new vitamin D analog, 2MD, restores trabecular and cortical bone mass and strength in ovariectomized rats with established osteopenia. J Bone Miner Res. 2005;20:1742–55.PubMedCrossRef
167.
go back to reference Plum LA, Fitzpatrick LA, Ma X, et al. 2MD, a new anabolic agent for osteoporosis treatment. Osteoporos Int. 2006;17(5):704–15.PubMedCrossRef Plum LA, Fitzpatrick LA, Ma X, et al. 2MD, a new anabolic agent for osteoporosis treatment. Osteoporos Int. 2006;17(5):704–15.PubMedCrossRef
168.
go back to reference Slatopolsky E, Finch JL, Brown AJ. Effect of 2-methylene-19-nor(20S)-1α-hydroxy-bishomopregnacalciferol (2MbisP), an analog of vitamin D, on secondary hyperparathyroidism. J Bone Miner Res. 2007;22:686–94.PubMedCrossRef Slatopolsky E, Finch JL, Brown AJ. Effect of 2-methylene-19-nor(20S)-1α-hydroxy-bishomopregnacalciferol (2MbisP), an analog of vitamin D, on secondary hyperparathyroidism. J Bone Miner Res. 2007;22:686–94.PubMedCrossRef
169.
go back to reference DeLuca HF, Plum LA, Clagett-Dame M. Selective analogs of 1α, 25-dihydroxyvitamin D3 for the study of specific functions of vitamin D. J Steroid Biochem Mol Biol. 2007;103(3–5):263–8.PubMedCrossRef DeLuca HF, Plum LA, Clagett-Dame M. Selective analogs of 1α, 25-dihydroxyvitamin D3 for the study of specific functions of vitamin D. J Steroid Biochem Mol Biol. 2007;103(3–5):263–8.PubMedCrossRef
170.
go back to reference Brown AJ, Slatopolsky E. Drug insight: vitamin D analogs in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. Nat Clin Pract Endocrinol Metab. 2007;3(2):134–44.PubMedCrossRef Brown AJ, Slatopolsky E. Drug insight: vitamin D analogs in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. Nat Clin Pract Endocrinol Metab. 2007;3(2):134–44.PubMedCrossRef
171.
go back to reference Slatopolsky E, Finch J, Ritter C, et al. A new analog of calcitriol, 19-nor-1,25-(OH)2D2, suppresses parathyroid hormone secretion in uremic rats in the absence of hypercalcemia. Am J Kidney Dis. 1995;26(5):852–60.PubMedCrossRef Slatopolsky E, Finch J, Ritter C, et al. A new analog of calcitriol, 19-nor-1,25-(OH)2D2, suppresses parathyroid hormone secretion in uremic rats in the absence of hypercalcemia. Am J Kidney Dis. 1995;26(5):852–60.PubMedCrossRef
172.
go back to reference Tocchini-Valentini G, Rochel N, Wurtz JM, et al. Crystal structures of the vitamin D receptor complexed to superagonist 20-epi ligands. Proc Natl Acad Sci USA. 2001;98(10):5491–6.PubMedCrossRef Tocchini-Valentini G, Rochel N, Wurtz JM, et al. Crystal structures of the vitamin D receptor complexed to superagonist 20-epi ligands. Proc Natl Acad Sci USA. 2001;98(10):5491–6.PubMedCrossRef
173.
go back to reference Tocchini-Valentini G, Rochel N, Wurtz J-M, et al. Crystal structures of the vitamin D nuclear receptor liganded with the vitamin D side chain analogues calcipotriol and seocalcitol, receptor agonists of clinical importance. Insights into a structural basis for the switching of calcipotriol to a receptor antagonist by further side chain modification. J Med Chem. 2004;47:1956–61.PubMedCrossRef Tocchini-Valentini G, Rochel N, Wurtz J-M, et al. Crystal structures of the vitamin D nuclear receptor liganded with the vitamin D side chain analogues calcipotriol and seocalcitol, receptor agonists of clinical importance. Insights into a structural basis for the switching of calcipotriol to a receptor antagonist by further side chain modification. J Med Chem. 2004;47:1956–61.PubMedCrossRef
174.
go back to reference Rochel N, Wurtz JM, Mitschler A, et al. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell. 2000;5:173–9.PubMedCrossRef Rochel N, Wurtz JM, Mitschler A, et al. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell. 2000;5:173–9.PubMedCrossRef
175.
go back to reference Vanhooke JL, Benning MM, Bauer CB, et al. Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D3 hormone analogues and a LXXLL-containing coactivator peptide. Biochemistry. 2004;43(14):4101–10.PubMedCrossRef Vanhooke JL, Benning MM, Bauer CB, et al. Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D3 hormone analogues and a LXXLL-containing coactivator peptide. Biochemistry. 2004;43(14):4101–10.PubMedCrossRef
176.
go back to reference Vanhooke JL, Tadi BP, Benning MM, et al. New analogs of 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 with conformationally restricted side chains: evaluation of biological activity and structural determination of VDR-bound conformations. Arch Biochem Biophys. 2007;460:161–5.PubMedCrossRef Vanhooke JL, Tadi BP, Benning MM, et al. New analogs of 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 with conformationally restricted side chains: evaluation of biological activity and structural determination of VDR-bound conformations. Arch Biochem Biophys. 2007;460:161–5.PubMedCrossRef
177.
go back to reference Van den Bemd GC, Pols HA, Birkenhäger JC, et al. Conformational change and enhanced stabilization of the vitamin D receptor by the 1,25-dihydroxyvitamin D3 analog KH1060. Proc Natl Acad Sci USA. 1996;93(20):10685–90.PubMedCrossRef Van den Bemd GC, Pols HA, Birkenhäger JC, et al. Conformational change and enhanced stabilization of the vitamin D receptor by the 1,25-dihydroxyvitamin D3 analog KH1060. Proc Natl Acad Sci USA. 1996;93(20):10685–90.PubMedCrossRef
178.
go back to reference Väisänen S, Juntunen K, Itkonen A, et al. Conformational studies of human vitamin-D receptor by antipeptide antibodies, partial proteolytic digestion and ligand binding. Eur J Biochem. 1997;248(1):156–62.PubMedCrossRef Väisänen S, Juntunen K, Itkonen A, et al. Conformational studies of human vitamin-D receptor by antipeptide antibodies, partial proteolytic digestion and ligand binding. Eur J Biochem. 1997;248(1):156–62.PubMedCrossRef
179.
go back to reference Castillo AI, Sánchez-Martinez R, Jiménez-Lara AM, et al. Characterization of vitamin D receptor ligands with cell-specific and dissociated activity. Mol Endocrinol. 2006;20(12):3093–104.PubMedCrossRef Castillo AI, Sánchez-Martinez R, Jiménez-Lara AM, et al. Characterization of vitamin D receptor ligands with cell-specific and dissociated activity. Mol Endocrinol. 2006;20(12):3093–104.PubMedCrossRef
180.
go back to reference Yamamoto H, Shevde NK, Warrier A, et al. 2-Methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 potently stimulates gene-specific DNA binding of the vitamin D receptor in osteoblasts. J Biol Chem. 2003;278(34):31756–65.PubMedCrossRef Yamamoto H, Shevde NK, Warrier A, et al. 2-Methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 potently stimulates gene-specific DNA binding of the vitamin D receptor in osteoblasts. J Biol Chem. 2003;278(34):31756–65.PubMedCrossRef
181.
go back to reference Peleg S, Sastry M, Collins ED. Distinct conformational changes induced by 20-epi analogues of 1α, 25-dihydroxyvitamin D3 are associated with enhanced activation of the vitamin D receptor. J Biol Chem. 1995;270(18):10551–8.PubMedCrossRef Peleg S, Sastry M, Collins ED. Distinct conformational changes induced by 20-epi analogues of 1α, 25-dihydroxyvitamin D3 are associated with enhanced activation of the vitamin D receptor. J Biol Chem. 1995;270(18):10551–8.PubMedCrossRef
182.
go back to reference Christakos S, Norman AW. Studies on the mode of action of calciferol. XVIII. Evidence for a specific high affinity binding protein for 1,25 dihydroxyvitamin D3 in chick kidney and pancreas. Biochem Biophys Res Commun. 1979;89(1):56–63.PubMedCrossRef Christakos S, Norman AW. Studies on the mode of action of calciferol. XVIII. Evidence for a specific high affinity binding protein for 1,25 dihydroxyvitamin D3 in chick kidney and pancreas. Biochem Biophys Res Commun. 1979;89(1):56–63.PubMedCrossRef
183.
go back to reference Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D3 receptor in the immune system. Arch Biochem Biophys. 2000;374(2):334–8.PubMedCrossRef Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D3 receptor in the immune system. Arch Biochem Biophys. 2000;374(2):334–8.PubMedCrossRef
184.
go back to reference Evans KN, Bulmer JN, Kilby MD, et al. Vitamin D and placental-decidual function. J Soc Gynecol Investig. 2004;11(5):263–71.PubMedCrossRef Evans KN, Bulmer JN, Kilby MD, et al. Vitamin D and placental-decidual function. J Soc Gynecol Investig. 2004;11(5):263–71.PubMedCrossRef
185.
go back to reference Merke J, Milde P, Lewicka S, et al. Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest. 1989;83(6):1903–15.PubMedCrossRef Merke J, Milde P, Lewicka S, et al. Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest. 1989;83(6):1903–15.PubMedCrossRef
186.
go back to reference Perez A, Raab R, Chen TC. Safety and efficacy of oral calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol. 1996;134(6):1070–8.PubMedCrossRef Perez A, Raab R, Chen TC. Safety and efficacy of oral calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol. 1996;134(6):1070–8.PubMedCrossRef
187.
go back to reference Pèrez A, Chen TC, Turner A. Efficacy and safety of topical calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol. 1996;134(2):238–46.PubMedCrossRef Pèrez A, Chen TC, Turner A. Efficacy and safety of topical calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol. 1996;134(2):238–46.PubMedCrossRef
188.
go back to reference Yang S, Smith C, Prahl JM, et al. Vitamin D deficiency suppresses cell-mediated immunity in vivo. Arch Biochem Biophys. 1993;303(1):98–106.PubMedCrossRef Yang S, Smith C, Prahl JM, et al. Vitamin D deficiency suppresses cell-mediated immunity in vivo. Arch Biochem Biophys. 1993;303(1):98–106.PubMedCrossRef
189.
go back to reference Yang S, Smith C, DeLuca HF. 1α, 25-Dihydroxyvitamin D3 and 19-nor-1α, 25-dihydroxyvitamin D2 suppress immunoglobulin production and thymic lymphocyte proliferation in vivo. Biochim Biophys Acta. 1993;1158(3):279–86.PubMed Yang S, Smith C, DeLuca HF. 1α, 25-Dihydroxyvitamin D3 and 19-nor-1α, 25-dihydroxyvitamin D2 suppress immunoglobulin production and thymic lymphocyte proliferation in vivo. Biochim Biophys Acta. 1993;1158(3):279–86.PubMed
190.
go back to reference Niino M, Fukazawa T, Kikuchi S. Therapeutic potential of vitamin D for multiple sclerosis. Curr Med Chem. 2008;15:499–505.PubMedCrossRef Niino M, Fukazawa T, Kikuchi S. Therapeutic potential of vitamin D for multiple sclerosis. Curr Med Chem. 2008;15:499–505.PubMedCrossRef
191.
go back to reference DeLuca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J. 2001;15(14):2569–85.CrossRef DeLuca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J. 2001;15(14):2569–85.CrossRef
192.
go back to reference Tai K, Need AG, Horowitz M, Chapman IM. Vitamin D, glucose, insulin, and insulin sensitivity. Nutrition. 2008;24:269–85. Tai K, Need AG, Horowitz M, Chapman IM. Vitamin D, glucose, insulin, and insulin sensitivity. Nutrition. 2008;24:269–85.
193.
go back to reference Abe J, Nakamura K, Takita Y. Prevention of immunological disorders in MRL/l mice by a new synthetic analogue of vitamin D3: 22-oxa-1α, 25-dihydroxyvitamin D3. J Nutr Sci Vitaminol (Tokyo). 1990;6(1):21–31. Abe J, Nakamura K, Takita Y. Prevention of immunological disorders in MRL/l mice by a new synthetic analogue of vitamin D3: 22-oxa-1α, 25-dihydroxyvitamin D3. J Nutr Sci Vitaminol (Tokyo). 1990;6(1):21–31.
194.
go back to reference Deeb K, Trump DL, Johnson CS. Vitamin D signaling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684–700.PubMedCrossRef Deeb K, Trump DL, Johnson CS. Vitamin D signaling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684–700.PubMedCrossRef
195.
go back to reference Garland CF, Gorham ED, Mohr SB. Vitamin D and prevention of breast cancer: pooled analysis. J Steroid Biochem Mol Biol. 2007;103(3–5):708–11.PubMedCrossRef Garland CF, Gorham ED, Mohr SB. Vitamin D and prevention of breast cancer: pooled analysis. J Steroid Biochem Mol Biol. 2007;103(3–5):708–11.PubMedCrossRef
196.
go back to reference Gorham ED, Garland CF, Garland FC. Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med. 2007;32(3):210–6.PubMedCrossRef Gorham ED, Garland CF, Garland FC. Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med. 2007;32(3):210–6.PubMedCrossRef
197.
go back to reference Munger KL, Levin LI, Hollis BW. Elevated serum 25-hydroxyvitamin D predicts a decreased risk of MS. Mult Scler. 2007;13:280–307. Munger KL, Levin LI, Hollis BW. Elevated serum 25-hydroxyvitamin D predicts a decreased risk of MS. Mult Scler. 2007;13:280–307.
198.
go back to reference Giovannucci E, Liu Y, Hollis BW, et al. 25-Hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med. 2008;168(11):1174–80.PubMedCrossRef Giovannucci E, Liu Y, Hollis BW, et al. 25-Hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med. 2008;168(11):1174–80.PubMedCrossRef
199.
go back to reference Sayre RM, Dowdy JC, Shepherd JG. Reintroduction of a classic vitamin D ultraviolet source. J Steroid Biochem Mol Biol. 2007;103(3–5):686–8.PubMedCrossRef Sayre RM, Dowdy JC, Shepherd JG. Reintroduction of a classic vitamin D ultraviolet source. J Steroid Biochem Mol Biol. 2007;103(3–5):686–8.PubMedCrossRef
200.
go back to reference Rajakumar K, Greenspan SL, Thomas SB, et al. SOLAR ultraviolet radiation and vitamin D a historical perspective. Am J Public Health. 2007;97(10):1746–54.PubMedCrossRef Rajakumar K, Greenspan SL, Thomas SB, et al. SOLAR ultraviolet radiation and vitamin D a historical perspective. Am J Public Health. 2007;97(10):1746–54.PubMedCrossRef
201.
go back to reference Lim HW, Carucci JA, Spencer JM, et al. Commentary: a responsible approach to maintaining adequate serum vitamin D levels. J Am Acad Dermatol. 2007;57:594–5.PubMedCrossRef Lim HW, Carucci JA, Spencer JM, et al. Commentary: a responsible approach to maintaining adequate serum vitamin D levels. J Am Acad Dermatol. 2007;57:594–5.PubMedCrossRef
202.
go back to reference Rosenstreich S, Rich C, Volwiler W. Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat. J Clin Invest. 1971;50:679–87.PubMedCrossRef Rosenstreich S, Rich C, Volwiler W. Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat. J Clin Invest. 1971;50:679–87.PubMedCrossRef
204.
go back to reference Shepard RM, DeLuca HF. Determination of vitamin D and its metabolites in plasma. Methods Enzymol. 1980;67:393–413.PubMedCrossRef Shepard RM, DeLuca HF. Determination of vitamin D and its metabolites in plasma. Methods Enzymol. 1980;67:393–413.PubMedCrossRef
205.
go back to reference MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76(4):1536–8.PubMedCrossRef MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76(4):1536–8.PubMedCrossRef
206.
go back to reference Aksnes L, Rodland O, Aarskog D. Serum levels of vitamin D3 and 25-hydroxyvitamin D3 in elderly and young adults. Bone Miner. 1988;3:351–7.PubMed Aksnes L, Rodland O, Aarskog D. Serum levels of vitamin D3 and 25-hydroxyvitamin D3 in elderly and young adults. Bone Miner. 1988;3:351–7.PubMed
207.
go back to reference Clemens TL, Adams JS, Henderson SL, et al. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1981;1(8263):74–6. Clemens TL, Adams JS, Henderson SL, et al. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1981;1(8263):74–6.
208.
go back to reference Matsuoka LY, Wortsman J, Haddad JG, et al. Skin types and epidermal photosynthesis of vitamin D3. J Am Acad Dermatol. 1990;23:525–6.PubMedCrossRef Matsuoka LY, Wortsman J, Haddad JG, et al. Skin types and epidermal photosynthesis of vitamin D3. J Am Acad Dermatol. 1990;23:525–6.PubMedCrossRef
209.
go back to reference Matsuoka LY, Wortsman J, Haddad JG, et al. Racial pigmentation and the cutaneous synthesis of vitamin D. Arch Dermatol. 1991;127:536–8.PubMedCrossRef Matsuoka LY, Wortsman J, Haddad JG, et al. Racial pigmentation and the cutaneous synthesis of vitamin D. Arch Dermatol. 1991;127:536–8.PubMedCrossRef
210.
go back to reference Liel Y, Ulmer E, Shary J, et al. Low circulating vitamin D in obesity. Calcif Tissue Int. 1988;43:199–201.PubMedCrossRef Liel Y, Ulmer E, Shary J, et al. Low circulating vitamin D in obesity. Calcif Tissue Int. 1988;43:199–201.PubMedCrossRef
211.
go back to reference Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3. (Erratum: Am J Clin Nutr 2003;77:1342).PubMed Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3. (Erratum: Am J Clin Nutr 2003;77:1342).PubMed
212.
go back to reference Matsuoka LY, Ide L, Wortsman J, et al. Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab. 1987;64:1165–8.PubMed Matsuoka LY, Ide L, Wortsman J, et al. Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab. 1987;64:1165–8.PubMed
213.
go back to reference Loré F, Di Cairano G, Periti P, et al. Effect of the administration of 1,25-dihydroxyvitamin D3 on serum levels of 25-hydroxyvitamin D in postmenopausal osteoporosis. Calcif Tissue Int. 1982;34:539–41.PubMedCrossRef Loré F, Di Cairano G, Periti P, et al. Effect of the administration of 1,25-dihydroxyvitamin D3 on serum levels of 25-hydroxyvitamin D in postmenopausal osteoporosis. Calcif Tissue Int. 1982;34:539–41.PubMedCrossRef
214.
go back to reference Baran DT, Milne ML. 1,25 Dihydroxyvitamin D-induced inhibition of 3H-25 hydroxyvitamin D production by the rachitic rat liver in vitro. Calcif Tissue Int. 1983;35(4–5):461–4.PubMedCrossRef Baran DT, Milne ML. 1,25 Dihydroxyvitamin D-induced inhibition of 3H-25 hydroxyvitamin D production by the rachitic rat liver in vitro. Calcif Tissue Int. 1983;35(4–5):461–4.PubMedCrossRef
215.
go back to reference Bell NH, Shaw S, Turner RT. Evidence that 1,25-dihydroxyvitamin D3 inhibits the hepatic production of 25-hydroxyvitamin D in man. J Clin Invest. 1984;74:1540–4.PubMedCrossRef Bell NH, Shaw S, Turner RT. Evidence that 1,25-dihydroxyvitamin D3 inhibits the hepatic production of 25-hydroxyvitamin D in man. J Clin Invest. 1984;74:1540–4.PubMedCrossRef
216.
go back to reference Halloran BP, Bikle DD, Levens MJ, et al. Chronic 1,25-dihydroxyvitamin D3 administration in the rat reduces the serum concentration of 25-hydroxyvitamin D by increasing metabolic clearance rate. J Clin Invest. 1986;78:622–8.PubMedCrossRef Halloran BP, Bikle DD, Levens MJ, et al. Chronic 1,25-dihydroxyvitamin D3 administration in the rat reduces the serum concentration of 25-hydroxyvitamin D by increasing metabolic clearance rate. J Clin Invest. 1986;78:622–8.PubMedCrossRef
217.
go back to reference Berlin T, Björkhem I. On the regulatory importance of 1,25-dihydroxyvitamin D3 and dietary calcium on serum levels of 25-hydroxyvitamin D3 in rats. Biochem Biophys Res Commun. 1987;144(2):1055–8.PubMedCrossRef Berlin T, Björkhem I. On the regulatory importance of 1,25-dihydroxyvitamin D3 and dietary calcium on serum levels of 25-hydroxyvitamin D3 in rats. Biochem Biophys Res Commun. 1987;144(2):1055–8.PubMedCrossRef
218.
go back to reference Halloran BP, Castro ME. Vitamin D kinetics in vivo: effect of 1,25-dihydroxyvitamin D administration. Am J Physiol. 1989;256:E686–91.PubMed Halloran BP, Castro ME. Vitamin D kinetics in vivo: effect of 1,25-dihydroxyvitamin D administration. Am J Physiol. 1989;256:E686–91.PubMed
219.
go back to reference Hahn TJ, Birge SJ, Scharp CR, et al. Phenobarbital-induced alterations in vitamin D metabolism. J Clin Invest. 1972;51(4):742–8. Hahn TJ, Birge SJ, Scharp CR, et al. Phenobarbital-induced alterations in vitamin D metabolism. J Clin Invest. 1972;51(4):742–8.
220.
go back to reference Hahn TJ, Hendin BA, Scharp CR, et al. Effect of chronic anticonvulsant therapy on serum 25-hydroxycalciferol levels in adults. N Engl J Med. 1972;287(18):900–4.PubMedCrossRef Hahn TJ, Hendin BA, Scharp CR, et al. Effect of chronic anticonvulsant therapy on serum 25-hydroxycalciferol levels in adults. N Engl J Med. 1972;287(18):900–4.PubMedCrossRef
221.
go back to reference Hahn TJ, Hendin BA, Scharp CR. Serum 25-hydroxycalciferol levels and bone mass in children on chronic anticonvulsant therapy. N Engl J Med. 1975;292:550–4.CrossRef Hahn TJ, Hendin BA, Scharp CR. Serum 25-hydroxycalciferol levels and bone mass in children on chronic anticonvulsant therapy. N Engl J Med. 1975;292:550–4.CrossRef
222.
go back to reference Stamp TCB, Round JM, Rowe DJF, et al. Plasma levels and therapeutic effect of 25-hydroxycholecalciferol in epileptic patients taking anticonvulsant drugs. Br Med J. 1972;4:9–12.PubMedCrossRef Stamp TCB, Round JM, Rowe DJF, et al. Plasma levels and therapeutic effect of 25-hydroxycholecalciferol in epileptic patients taking anticonvulsant drugs. Br Med J. 1972;4:9–12.PubMedCrossRef
223.
go back to reference Bouillon R, Reynaert J, Claes JH. The effect of anticonvulsant therapy on serum levels of 25-hydroxy-vitamin D3 calcium, and parathyroid hormone. J Clin Endocrinol Metab. 1975;41:1130–5.PubMed Bouillon R, Reynaert J, Claes JH. The effect of anticonvulsant therapy on serum levels of 25-hydroxy-vitamin D3 calcium, and parathyroid hormone. J Clin Endocrinol Metab. 1975;41:1130–5.PubMed
224.
go back to reference Jubitz W, Haussler MR, McCain TA. Plasma 1,25-dihydroxyvitamin D levels in patients receiving anticonvulsant drugs. J Clin Endocrinol Metab. 1977;44(4):617–21. Jubitz W, Haussler MR, McCain TA. Plasma 1,25-dihydroxyvitamin D levels in patients receiving anticonvulsant drugs. J Clin Endocrinol Metab. 1977;44(4):617–21.
225.
go back to reference Gascon-Barré M, Delvin EE, Glorieux FH, et al. Influence of vitamin D3 status, phenobarbital, and diphenylhydantoin treatment on the plasma 25-hydroxyvitamin D3 concentrations in the rat. Can J Physiol Pharmacol. 1981;59(10):1073–81.PubMed Gascon-Barré M, Delvin EE, Glorieux FH, et al. Influence of vitamin D3 status, phenobarbital, and diphenylhydantoin treatment on the plasma 25-hydroxyvitamin D3 concentrations in the rat. Can J Physiol Pharmacol. 1981;59(10):1073–81.PubMed
226.
go back to reference Sambrook P. Glucocorticoids and vitamin D. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 73. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1239–51. Sambrook P. Glucocorticoids and vitamin D. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 73. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1239–51.
227.
go back to reference Preece MA, Tomlinson S, Ribot CA, et al. Studies of vitamin D deficiency in man. Q J Med. 1975;XLIV(176):575–89. New series. Preece MA, Tomlinson S, Ribot CA, et al. Studies of vitamin D deficiency in man. Q J Med. 1975;XLIV(176):575–89. New series.
228.
go back to reference Baker MR, Peacock M, Nordin BEC. The decline in vitamin D status with age. Age Ageing. 1980;9:249–52.PubMedCrossRef Baker MR, Peacock M, Nordin BEC. The decline in vitamin D status with age. Age Ageing. 1980;9:249–52.PubMedCrossRef
229.
go back to reference Omdahl JL, Garry PJ, Hunsaker LA. Nutritional status in a healthy elderly population: vitamin D. Am J Clin Nutr. 1982;36:1225–33.PubMed Omdahl JL, Garry PJ, Hunsaker LA. Nutritional status in a healthy elderly population: vitamin D. Am J Clin Nutr. 1982;36:1225–33.PubMed
230.
go back to reference Need AG, Morris HA, Horowitz M, et al. Effects of skin thickness, age, body fat, and sunlight on serum 25-hydroxyvitamin D. Am J Clin Nutr. 1993;58:882–5.PubMed Need AG, Morris HA, Horowitz M, et al. Effects of skin thickness, age, body fat, and sunlight on serum 25-hydroxyvitamin D. Am J Clin Nutr. 1993;58:882–5.PubMed
231.
go back to reference Preece MA, Ford JA, McIntosh WB. Vitamin D deficiency among Asian immigrants to Britain. Lancet. 1973;1(7809):907–10.PubMedCrossRef Preece MA, Ford JA, McIntosh WB. Vitamin D deficiency among Asian immigrants to Britain. Lancet. 1973;1(7809):907–10.PubMedCrossRef
232.
go back to reference Bell NH, Greene A, Epstein S, et al. Evidence of alteration of the vitamin D-endocrine system in blacks. J Clin Invest. 1985;76:470–3.PubMedCrossRef Bell NH, Greene A, Epstein S, et al. Evidence of alteration of the vitamin D-endocrine system in blacks. J Clin Invest. 1985;76:470–3.PubMedCrossRef
233.
go back to reference Pietrek J, Kokot F, Kuska J. Kinetics of serum 25-hydroxyvitamin D in patients with acute renal failure. Am J Clin Nutr. 1978;31:1919–26.PubMed Pietrek J, Kokot F, Kuska J. Kinetics of serum 25-hydroxyvitamin D in patients with acute renal failure. Am J Clin Nutr. 1978;31:1919–26.PubMed
234.
go back to reference Hidiroglou M, Williams CJ, Ivan M. Pharmacokinetics and amounts of 25-hydroxycholecalciferol in sheep affected by osteodystrophy. J Dairy Sci. 1979;62:567–71.PubMedCrossRef Hidiroglou M, Williams CJ, Ivan M. Pharmacokinetics and amounts of 25-hydroxycholecalciferol in sheep affected by osteodystrophy. J Dairy Sci. 1979;62:567–71.PubMedCrossRef
235.
go back to reference Khamiseh G, Vaziri ND, Oveisi F. Vitamin D absorption, plasma concentration and urinary excretion of 25-hydroxyvitamin D in nephritic syndrome. Proc Soc Exp Biol Med. 1991;196:210–3.PubMed Khamiseh G, Vaziri ND, Oveisi F. Vitamin D absorption, plasma concentration and urinary excretion of 25-hydroxyvitamin D in nephritic syndrome. Proc Soc Exp Biol Med. 1991;196:210–3.PubMed
236.
go back to reference Fox J, Della-Santina CP. Oral verapamil and calcium and vitamin D metabolism in rats: effect of dietary calcium. Am J Physiol. 1989;257:E632–8.PubMed Fox J, Della-Santina CP. Oral verapamil and calcium and vitamin D metabolism in rats: effect of dietary calcium. Am J Physiol. 1989;257:E632–8.PubMed
237.
go back to reference Clements MR, Johnson L, Fraser DR. A new mechanism for induced vitamin D deficiency in calcium deprivation. Nature. 1987;325:62–5.PubMedCrossRef Clements MR, Johnson L, Fraser DR. A new mechanism for induced vitamin D deficiency in calcium deprivation. Nature. 1987;325:62–5.PubMedCrossRef
238.
go back to reference Vieth R, Fraser D, Kooh SW. Low dietary calcium reduces 25-hydroxycholecalciferol in plasma of rats. J Nutr. 1987;117:914–8.PubMed Vieth R, Fraser D, Kooh SW. Low dietary calcium reduces 25-hydroxycholecalciferol in plasma of rats. J Nutr. 1987;117:914–8.PubMed
239.
go back to reference Dominguez JH, Gray RW, Lemann J Jr. Dietary phosphate deprivation in women and men: effects on mineral and acid balances, parathyroid hormone and the metabolism of 25-OH-vitamin D. J Clin Endocrinol Metab. 1976;45(5):1056–68. Dominguez JH, Gray RW, Lemann J Jr. Dietary phosphate deprivation in women and men: effects on mineral and acid balances, parathyroid hormone and the metabolism of 25-OH-vitamin D. J Clin Endocrinol Metab. 1976;45(5):1056–68.
240.
go back to reference Bell NH, Epstein S, Greene A. Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest. 1985;76:370–3.PubMedCrossRef Bell NH, Epstein S, Greene A. Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest. 1985;76:370–3.PubMedCrossRef
241.
go back to reference Compston JE, Vedi S, Ledger JE. Vitamin D status and bone histomorphometry in gross obesity. Am J Clin Nutr. 1981;34:2359–32363.PubMed Compston JE, Vedi S, Ledger JE. Vitamin D status and bone histomorphometry in gross obesity. Am J Clin Nutr. 1981;34:2359–32363.PubMed
242.
go back to reference Hey H, Stokholm KH, Lund BJ. Vitamin D deficiency in obese patients and changes in circulating vitamin D metabolites following jejunoileal bypass. Int J Obes. 1982;6:469–73. Hey H, Stokholm KH, Lund BJ. Vitamin D deficiency in obese patients and changes in circulating vitamin D metabolites following jejunoileal bypass. Int J Obes. 1982;6:469–73.
243.
go back to reference Kubota M, Ohno J, Shiina Y, et al. Vitamin D metabolism in pregnant rabbits: differences between the maternal and fetal response to administration of large amounts of vitamin D3. Endocrinology. 1982;110(6):1950–6.PubMed Kubota M, Ohno J, Shiina Y, et al. Vitamin D metabolism in pregnant rabbits: differences between the maternal and fetal response to administration of large amounts of vitamin D3. Endocrinology. 1982;110(6):1950–6.PubMed
244.
go back to reference Delvin EE, Gilbert M, Pere MC, et al. In vivo metabolism of calcitriol in the pregnant rabbit doe. J Dev Physiol. 1988;10:451–9.PubMed Delvin EE, Gilbert M, Pere MC, et al. In vivo metabolism of calcitriol in the pregnant rabbit doe. J Dev Physiol. 1988;10:451–9.PubMed
245.
go back to reference Paulson SK, DeLuca HF, Battaglia F. Plasma levels of vitamin D metabolites in fetal and pregnant ewes. Proc Soc Exp Biol Med. 1987;185(3):267–71.PubMed Paulson SK, DeLuca HF, Battaglia F. Plasma levels of vitamin D metabolites in fetal and pregnant ewes. Proc Soc Exp Biol Med. 1987;185(3):267–71.PubMed
246.
go back to reference Paulson SK, Ford KK, Langman CB. Pregnancy does not alter the metabolic clearance of 1,25-dihydroxyvitamin D in rats. Am J Physiol. 1990;258:E158–62.PubMed Paulson SK, Ford KK, Langman CB. Pregnancy does not alter the metabolic clearance of 1,25-dihydroxyvitamin D in rats. Am J Physiol. 1990;258:E158–62.PubMed
247.
go back to reference Omdahl JL, Jelinek G, Eaton RP. Kinetic analysis of 25-hydroxyvitamin D3 metabolism in strontium-induced rickets in the chick. J Clin Invest. 1977;60:1202–10.PubMedCrossRef Omdahl JL, Jelinek G, Eaton RP. Kinetic analysis of 25-hydroxyvitamin D3 metabolism in strontium-induced rickets in the chick. J Clin Invest. 1977;60:1202–10.PubMedCrossRef
248.
go back to reference Gupta MM, Round JM, Stamp TCB. Spontaneous cure of vitamin-D deficiency in Asians during summer in Britain. Lancet. 1974;1(7858):586–8.PubMedCrossRef Gupta MM, Round JM, Stamp TCB. Spontaneous cure of vitamin-D deficiency in Asians during summer in Britain. Lancet. 1974;1(7858):586–8.PubMedCrossRef
249.
250.
go back to reference Stamp TCB, Round JM. Seasonal changes in human plasma levels of 25-hydroxyvitamin D. Nature. 1974;247:563–5.PubMedCrossRef Stamp TCB, Round JM. Seasonal changes in human plasma levels of 25-hydroxyvitamin D. Nature. 1974;247:563–5.PubMedCrossRef
251.
go back to reference McLaughlin M, Raggatt PR, Brown DJ, et al. Seasonal variations in serum 25-hydroxycholecalciferol in healthy people. Lancet. 1974;1(7857):536–8.PubMedCrossRef McLaughlin M, Raggatt PR, Brown DJ, et al. Seasonal variations in serum 25-hydroxycholecalciferol in healthy people. Lancet. 1974;1(7857):536–8.PubMedCrossRef
252.
go back to reference Pettifor JM, Ross FP, Solomon L. Seasonal variation in serum 25-hydroxycholecalciferol concentrations in elderly South African patients with fractures of femoral neck. Br Med J. 1978;1(6116):826–7.PubMedCrossRef Pettifor JM, Ross FP, Solomon L. Seasonal variation in serum 25-hydroxycholecalciferol concentrations in elderly South African patients with fractures of femoral neck. Br Med J. 1978;1(6116):826–7.PubMedCrossRef
253.
go back to reference Hidiroglou M, Proulx JG, Roubos D. 25-Hydroxyvitamin D in plasma of cattle. J Dairy Sci. 1979;62:1076–80.PubMedCrossRef Hidiroglou M, Proulx JG, Roubos D. 25-Hydroxyvitamin D in plasma of cattle. J Dairy Sci. 1979;62:1076–80.PubMedCrossRef
254.
go back to reference Juttmann JR, Visser TJ, Buurman C, et al. Seasonal fluctuations in serum concentrations of vitamin D metabolites in normal subjects. Br Med J. 1981;282:1349–52.CrossRef Juttmann JR, Visser TJ, Buurman C, et al. Seasonal fluctuations in serum concentrations of vitamin D metabolites in normal subjects. Br Med J. 1981;282:1349–52.CrossRef
255.
go back to reference Chesney RW, Rosen JF, Hamstra AJ. Absence of seasonal variation in serum concentrations of 1,25-dihydroxyvitamin D despite a rise in 25-hydroxyvitamin-D in summer. J Clin Endocrinol Metab. 1981;53(1):139–42.PubMed Chesney RW, Rosen JF, Hamstra AJ. Absence of seasonal variation in serum concentrations of 1,25-dihydroxyvitamin D despite a rise in 25-hydroxyvitamin-D in summer. J Clin Endocrinol Metab. 1981;53(1):139–42.PubMed
256.
go back to reference Smith BS, Wright H. Relative contributions of diet and sunshine to the overall vitamin D status of the grazing ewe. Vet Rec. 1984;115:537–8.PubMed Smith BS, Wright H. Relative contributions of diet and sunshine to the overall vitamin D status of the grazing ewe. Vet Rec. 1984;115:537–8.PubMed
257.
go back to reference Van der Klis FRM, Jonxis JHP, van Doormaal JJ, et al. Changes in vitamin-D metabolites and parathyroid hormone in plasma following cholecalciferol administration to pre- and postmenopausal women in the Netherlands in early spring and to postmenopausal women in Curaçao. Br J Nutr. 1996;75:637–46.CrossRef Van der Klis FRM, Jonxis JHP, van Doormaal JJ, et al. Changes in vitamin-D metabolites and parathyroid hormone in plasma following cholecalciferol administration to pre- and postmenopausal women in the Netherlands in early spring and to postmenopausal women in Curaçao. Br J Nutr. 1996;75:637–46.CrossRef
258.
go back to reference O’Leary TJ, Jones G, Yip A, et al. The effects of chloroquine on serum 1,25-dihydroxyvitamin D and calcium metabolism in sarcoidosis. N Engl J Med. 1986;315(12):727–30.PubMedCrossRef O’Leary TJ, Jones G, Yip A, et al. The effects of chloroquine on serum 1,25-dihydroxyvitamin D and calcium metabolism in sarcoidosis. N Engl J Med. 1986;315(12):727–30.PubMedCrossRef
259.
go back to reference Barré PE, Gascon-Barré M, Meakins JL, et al. Hydroxychloroquine treatment of hypercalcemia in a patient with sarcoidosis undergoing hemodialysis. Am J Med. 1987;82(6):1259–62.PubMedCrossRef Barré PE, Gascon-Barré M, Meakins JL, et al. Hydroxychloroquine treatment of hypercalcemia in a patient with sarcoidosis undergoing hemodialysis. Am J Med. 1987;82(6):1259–62.PubMedCrossRef
260.
go back to reference Adams JS, Diz MM, Sharma OP. Effective reduction in the serum 1,25-dihydroxyvitamin D and calcium concentration in sarcoidosis-associated hypercalcemia with short-course chloroquine therapy. Ann Intern Med. 1989;111(5):437–8.PubMed Adams JS, Diz MM, Sharma OP. Effective reduction in the serum 1,25-dihydroxyvitamin D and calcium concentration in sarcoidosis-associated hypercalcemia with short-course chloroquine therapy. Ann Intern Med. 1989;111(5):437–8.PubMed
261.
go back to reference Henry HL. The 25-hydroxyvitamin D 1α-hydroxylase. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 5. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 69–83. Henry HL. The 25-hydroxyvitamin D 1α-hydroxylase. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 5. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 69–83.
262.
go back to reference Baksi SN, Kenny AD. Vitamin D metabolism in Japanese quail: gonadal hormones and dietary calcium effects. Am J Physiol. 1981;241(4):E275–80.PubMed Baksi SN, Kenny AD. Vitamin D metabolism in Japanese quail: gonadal hormones and dietary calcium effects. Am J Physiol. 1981;241(4):E275–80.PubMed
263.
go back to reference Tanaka Y, Castillo L, DeLuca HF. Control of renal vitamin D hydroxylases in birds by sex hormones. Proc Natl Acad Sci USA. 1976;73(8):2701–5.PubMedCrossRef Tanaka Y, Castillo L, DeLuca HF. Control of renal vitamin D hydroxylases in birds by sex hormones. Proc Natl Acad Sci USA. 1976;73(8):2701–5.PubMedCrossRef
264.
go back to reference Haussler MR, Hughes MR, McCain TA, et al. 1,25-Dihydroxyvitamin D3: mode of action in intestine and parathyroid glands, assay in humans and isolation of its glycoside from Solanum malacoxylon. Calcif Tissue Res. 1977;22((Suppl)):1–18.PubMed Haussler MR, Hughes MR, McCain TA, et al. 1,25-Dihydroxyvitamin D3: mode of action in intestine and parathyroid glands, assay in humans and isolation of its glycoside from Solanum malacoxylon. Calcif Tissue Res. 1977;22((Suppl)):1–18.PubMed
265.
go back to reference Pike JW, Toverud S, Boass A, et al. Circulating 1α,25-(OH)2D during physiological states of calcium stress. In: Norman A, Schaefer K, Coburn J, DeLuca H, Fraser D, Grigoleit HG, Herrath DV, editors. Vitamin D: biochemical, chemical, and clinical aspects related to calcium metabolism (Proceedings of the Third workshop on vitamin D). New York: De Gruyter; 1977. p. 187–9. Pike JW, Toverud S, Boass A, et al. Circulating 1α,25-(OH)2D during physiological states of calcium stress. In: Norman A, Schaefer K, Coburn J, DeLuca H, Fraser D, Grigoleit HG, Herrath DV, editors. Vitamin D: biochemical, chemical, and clinical aspects related to calcium metabolism (Proceedings of the Third workshop on vitamin D). New York: De Gruyter; 1977. p. 187–9.
266.
go back to reference Gallagher JC, Riggs BL, Eisman J, et al. Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients—effect of age and dietary calcium. J Clin Invest. 1979;64(3):729–36.PubMedCrossRef Gallagher JC, Riggs BL, Eisman J, et al. Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients—effect of age and dietary calcium. J Clin Invest. 1979;64(3):729–36.PubMedCrossRef
267.
go back to reference Chesney RW, Rosen JF, Hamstra AJ, et al. Serum 1,25-dihydroxyvitamin D levels in normal children and in vitamin D disorders. Am J Dis Child. 1980;134(2):135–9.PubMed Chesney RW, Rosen JF, Hamstra AJ, et al. Serum 1,25-dihydroxyvitamin D levels in normal children and in vitamin D disorders. Am J Dis Child. 1980;134(2):135–9.PubMed
268.
go back to reference Lund B, Clausen N, Lund B, et al. Age-dependent variations in serum 1,25-dihydroxyvitamin D in childhood. Acta Endocrinol. 1980;94:426–9.PubMed Lund B, Clausen N, Lund B, et al. Age-dependent variations in serum 1,25-dihydroxyvitamin D in childhood. Acta Endocrinol. 1980;94:426–9.PubMed
269.
go back to reference Seino Y, Shimotsuji T, Yamaoka K, et al. Plasma 1,25-dihydroxyvitamin D concentrations in cords, newborns, infants, and children. Calcif Tissue Int. 1980;30:1–3.PubMedCrossRef Seino Y, Shimotsuji T, Yamaoka K, et al. Plasma 1,25-dihydroxyvitamin D concentrations in cords, newborns, infants, and children. Calcif Tissue Int. 1980;30:1–3.PubMedCrossRef
270.
go back to reference Gray RW. Effects of age and sex on the regulation of plasma 1,25-(OH)2D by phosphorus in the rat. Calcif Tissue Int. 1981;33(5):477–84.PubMedCrossRef Gray RW. Effects of age and sex on the regulation of plasma 1,25-(OH)2D by phosphorus in the rat. Calcif Tissue Int. 1981;33(5):477–84.PubMedCrossRef
271.
go back to reference Gray RW, Gambert SR. Effect of age on plasma 1,25-(OH)2 vitamin D in the rat. Age. 1982;5(2):54–6.CrossRef Gray RW, Gambert SR. Effect of age on plasma 1,25-(OH)2 vitamin D in the rat. Age. 1982;5(2):54–6.CrossRef
272.
go back to reference Manolagas SC, Culler FL, Howard JE, et al. The cytoreceptor assay for 1,25-dihydroxyvitamin D and its application to clinical studies. J Clin Endocrinol Metab. 1983;56:751–60.PubMed Manolagas SC, Culler FL, Howard JE, et al. The cytoreceptor assay for 1,25-dihydroxyvitamin D and its application to clinical studies. J Clin Endocrinol Metab. 1983;56:751–60.PubMed
273.
go back to reference Armbrecht HJ, Forte LR, Halloran BP. Effect of age and dietary calcium on renal 25(OH)D metabolism, serum 1,25(OH)2D, and PTH. Am J Physiol. 1984;246:E266–70.PubMed Armbrecht HJ, Forte LR, Halloran BP. Effect of age and dietary calcium on renal 25(OH)D metabolism, serum 1,25(OH)2D, and PTH. Am J Physiol. 1984;246:E266–70.PubMed
274.
go back to reference Epstein S, Bryce G, Hinman JW, et al. The influence of age on bone mineral regulating hormones. Bone. 1986;7:421–5.PubMedCrossRef Epstein S, Bryce G, Hinman JW, et al. The influence of age on bone mineral regulating hormones. Bone. 1986;7:421–5.PubMedCrossRef
275.
go back to reference Buchanan JR, Myers CA, Greer RBIII. Effect of declining renal function on bone density in aging women. Calcif Tissue Int. 1988;43:1–6.PubMedCrossRef Buchanan JR, Myers CA, Greer RBIII. Effect of declining renal function on bone density in aging women. Calcif Tissue Int. 1988;43:1–6.PubMedCrossRef
276.
go back to reference Fox J. Production and metabolic clearance rates of 1,25-dihydroxyvitamin D3 during maturation in rats: studies using a rapid, primed-infusion technique. Horm Metab Res. 1990;22:278–82.PubMedCrossRef Fox J. Production and metabolic clearance rates of 1,25-dihydroxyvitamin D3 during maturation in rats: studies using a rapid, primed-infusion technique. Horm Metab Res. 1990;22:278–82.PubMedCrossRef
277.
go back to reference Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab. 1986;63(3):766–9.PubMed Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab. 1986;63(3):766–9.PubMed
278.
go back to reference Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D and total serum calcium in hypercalcemic patients. J Clin Endocrinol Metab. 1988;66(5):934–8.PubMed Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D and total serum calcium in hypercalcemic patients. J Clin Endocrinol Metab. 1988;66(5):934–8.PubMed
279.
go back to reference Saggese G, Bertelloni S, Baroncelli GI, et al. Ketoconazole decreases the serum ionized calcium and 1,25-dihydroxyvitamin D3 levels in tuberculosis-associated hypercalcemia. Am J Dis Child. 1993;147(3):270–3.PubMed Saggese G, Bertelloni S, Baroncelli GI, et al. Ketoconazole decreases the serum ionized calcium and 1,25-dihydroxyvitamin D3 levels in tuberculosis-associated hypercalcemia. Am J Dis Child. 1993;147(3):270–3.PubMed
280.
go back to reference Boyle IT, Gray RW, DeLuca HF. Regulation by calcium of in vivo synthesis of 1,25-dihydroxycholecalciferol and 21,25-dihydroxycholecalciferol. Proc Natl Acad Sci USA. 1971;68(9):2131–4.PubMedCrossRef Boyle IT, Gray RW, DeLuca HF. Regulation by calcium of in vivo synthesis of 1,25-dihydroxycholecalciferol and 21,25-dihydroxycholecalciferol. Proc Natl Acad Sci USA. 1971;68(9):2131–4.PubMedCrossRef
281.
go back to reference Morrissey RL, Wasserman RH. Calcium absorption and calcium-binding protein in chicks on differing calcium and phosphorus intakes. Am J Physiol. 1971;220(5):1509–15.PubMed Morrissey RL, Wasserman RH. Calcium absorption and calcium-binding protein in chicks on differing calcium and phosphorus intakes. Am J Physiol. 1971;220(5):1509–15.PubMed
282.
go back to reference Haussler MR, Baylink DJ, Hughes MR. The assay of 1α,25-dihydroxyvitamin D3: physiologic and pathologic modulation of circulating hormone levels. Clin Endocrinol. 1976;5:151s–65s.CrossRef Haussler MR, Baylink DJ, Hughes MR. The assay of 1α,25-dihydroxyvitamin D3: physiologic and pathologic modulation of circulating hormone levels. Clin Endocrinol. 1976;5:151s–65s.CrossRef
283.
go back to reference Hughes MR, Baylink DJ, Jones PG, et al. Radioligand receptor assay for 25-hydroxyvitamin D2/D3 and 1α, 25-dihydroxyvitamin D2/D3. J Clin Invest. 1976;58:61–70.PubMedCrossRef Hughes MR, Baylink DJ, Jones PG, et al. Radioligand receptor assay for 25-hydroxyvitamin D2/D3 and 1α, 25-dihydroxyvitamin D2/D3. J Clin Invest. 1976;58:61–70.PubMedCrossRef
284.
go back to reference Taylor CM, Caverzasio J, Jung A. Unilateral nephrectomy and 1,25-dihydroxyvitamin D3. Kidney Int. 1983;24:37–42.PubMedCrossRef Taylor CM, Caverzasio J, Jung A. Unilateral nephrectomy and 1,25-dihydroxyvitamin D3. Kidney Int. 1983;24:37–42.PubMedCrossRef
285.
go back to reference Fox J, Ross R. Effects of low phosphorus and low calcium diets on the production and metabolic clearance rates of 1,25-dihydroxycholecalciferol in pigs. J Endocrinol. 1985;105:169–73.PubMedCrossRef Fox J, Ross R. Effects of low phosphorus and low calcium diets on the production and metabolic clearance rates of 1,25-dihydroxycholecalciferol in pigs. J Endocrinol. 1985;105:169–73.PubMedCrossRef
286.
go back to reference Paulson SK, Kenny AD. Effect of dietary mineral and vitamin D content and parathyroidectomy on the plasma disappearance rate of 1,25-dihydroxyvitamin D3 in rats. Biopharm Drug Dispos. 1985;6:359–72.PubMedCrossRef Paulson SK, Kenny AD. Effect of dietary mineral and vitamin D content and parathyroidectomy on the plasma disappearance rate of 1,25-dihydroxyvitamin D3 in rats. Biopharm Drug Dispos. 1985;6:359–72.PubMedCrossRef
287.
go back to reference Jongen MJ, Bishop JE, Cade C, et al. Effect of dietary calcium, phosphate and vitamin D deprivation on the pharmacokinetics of 1,25-dihydroxyvitamin D3 in the rat. Horm Metab Res. 1987;19:481–5.PubMedCrossRef Jongen MJ, Bishop JE, Cade C, et al. Effect of dietary calcium, phosphate and vitamin D deprivation on the pharmacokinetics of 1,25-dihydroxyvitamin D3 in the rat. Horm Metab Res. 1987;19:481–5.PubMedCrossRef
288.
go back to reference Baxter LA, DeLuca HF. Stimulation of 25-hydroxyvitamin D3-1α-hydroxylase by phosphate depletion. J Biol Chem. 1976;251(10):3158–61.PubMed Baxter LA, DeLuca HF. Stimulation of 25-hydroxyvitamin D3-1α-hydroxylase by phosphate depletion. J Biol Chem. 1976;251(10):3158–61.PubMed
289.
go back to reference Gray RW, Wilz DR, Caldas AE, et al. The importance of phosphate in regulating plasma 1,25-(OH)2-vitamin D levels in humans: studies in healthy subjects, in calcium-stone formers and in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 1977;45:299–306.PubMed Gray RW, Wilz DR, Caldas AE, et al. The importance of phosphate in regulating plasma 1,25-(OH)2-vitamin D levels in humans: studies in healthy subjects, in calcium-stone formers and in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 1977;45:299–306.PubMed
290.
go back to reference Gray RW, Garthwaite TL, Phillips LS. Growth hormone and triiodothyronine permit an increase in plasma 1,25(OH)2D concentrations in response to dietary phosphate deprivation in hypophysectomized rats. Calcif Tissue Int. 1983;35:100–6.PubMedCrossRef Gray RW, Garthwaite TL, Phillips LS. Growth hormone and triiodothyronine permit an increase in plasma 1,25(OH)2D concentrations in response to dietary phosphate deprivation in hypophysectomized rats. Calcif Tissue Int. 1983;35:100–6.PubMedCrossRef
291.
go back to reference Llach F, Massry SG. On the mechanism of secondary hyperparathyroidism in moderate renal insufficiency. J Clin Endocrinol Metab. 1985;61:601–6.PubMed Llach F, Massry SG. On the mechanism of secondary hyperparathyroidism in moderate renal insufficiency. J Clin Endocrinol Metab. 1985;61:601–6.PubMed
292.
go back to reference Rader JI, Baylink DJ, Hughes MR, et al. Calcium and phosphorus deficiency in rats: effects on PTH and 1,25-dihydroxyvitamin D3. Am J Physiol. 1979;236(2):E118–22.PubMed Rader JI, Baylink DJ, Hughes MR, et al. Calcium and phosphorus deficiency in rats: effects on PTH and 1,25-dihydroxyvitamin D3. Am J Physiol. 1979;236(2):E118–22.PubMed
293.
go back to reference Insogna KL, Broadus AE, Gertner JM. Impaired phosphorus conservation and 1,25 dihydroxyvitamin D generation during phosphorus deprivation in familial hypophosphatemic rickets. J Clin Invest. 1983;71:1561–9.CrossRef Insogna KL, Broadus AE, Gertner JM. Impaired phosphorus conservation and 1,25 dihydroxyvitamin D generation during phosphorus deprivation in familial hypophosphatemic rickets. J Clin Invest. 1983;71:1561–9.CrossRef
294.
go back to reference Lufkin EG, Kumar R, Heath HIII. Hyperphosphatemic tumoral calcinosis: effects of phosphate depletion on vitamin D metabolism, and of acute hypocalcemia on parathyroid hormone secretion and action. J Clin Endocrinol Metab. 1983;56(6):1319–22.PubMed Lufkin EG, Kumar R, Heath HIII. Hyperphosphatemic tumoral calcinosis: effects of phosphate depletion on vitamin D metabolism, and of acute hypocalcemia on parathyroid hormone secretion and action. J Clin Endocrinol Metab. 1983;56(6):1319–22.PubMed
295.
go back to reference Maierhofer WJ, Gray RW, Lemann J Jr. Phosphate deprivation increases serum 1,25-(OH)2-vitamin D concentrations in healthy men. Kidney Int. 1984;25:571–5.PubMedCrossRef Maierhofer WJ, Gray RW, Lemann J Jr. Phosphate deprivation increases serum 1,25-(OH)2-vitamin D concentrations in healthy men. Kidney Int. 1984;25:571–5.PubMedCrossRef
296.
go back to reference Portale AA, Booth BE, Halloran BP, et al. Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest. 1984;73:1580–9.PubMedCrossRef Portale AA, Booth BE, Halloran BP, et al. Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest. 1984;73:1580–9.PubMedCrossRef
297.
go back to reference Portale AA, Halloran BP, Murphy MM, et al. Oral intake of phosphorus can determine the serum concentration of 1,25-dihydroxyvitamin D by determining its production rate in humans. J Clin Invest. 1986;77:7–12.PubMedCrossRef Portale AA, Halloran BP, Murphy MM, et al. Oral intake of phosphorus can determine the serum concentration of 1,25-dihydroxyvitamin D by determining its production rate in humans. J Clin Invest. 1986;77:7–12.PubMedCrossRef
298.
go back to reference Halloran BP, Barthell EN, DeLuca HF. Vitamin D metabolism during pregnancy and lactation in the rat. Proc Natl Acad Sci USA. 1979;76(11):5549–53.PubMedCrossRef Halloran BP, Barthell EN, DeLuca HF. Vitamin D metabolism during pregnancy and lactation in the rat. Proc Natl Acad Sci USA. 1979;76(11):5549–53.PubMedCrossRef
299.
go back to reference Kumar R, Cohen WR, Silva P, et al. Elevated 1,25-dihydroxyvitamin D plasma levels in normal human pregnancy and lactation. J Clin Invest. 1979;63:342–4.PubMedCrossRef Kumar R, Cohen WR, Silva P, et al. Elevated 1,25-dihydroxyvitamin D plasma levels in normal human pregnancy and lactation. J Clin Invest. 1979;63:342–4.PubMedCrossRef
300.
go back to reference Steichen JJ, Tsang RC, Gratton TL, et al. Vitamin D homeostasis in the perinatal period: 1,25-dihydroxyvitamin D in maternal, cord, and neonatal blood. N Engl J Med. 1980;302(6):315–9.PubMedCrossRef Steichen JJ, Tsang RC, Gratton TL, et al. Vitamin D homeostasis in the perinatal period: 1,25-dihydroxyvitamin D in maternal, cord, and neonatal blood. N Engl J Med. 1980;302(6):315–9.PubMedCrossRef
301.
go back to reference Wieland P, Fischer JA, Trechsel U, et al. Perinatal parathyroid hormone, vitamin D metabolites, and calcitonin in man. Am J Physiol. 1980;239(5):E385–90.PubMed Wieland P, Fischer JA, Trechsel U, et al. Perinatal parathyroid hormone, vitamin D metabolites, and calcitonin in man. Am J Physiol. 1980;239(5):E385–90.PubMed
302.
go back to reference Mawer EB, Backhouse J, Hill LF, et al. Vitamin D metabolism and parathyroid function in man. Clin Sci Mol Med. 1975;48:349–65.PubMed Mawer EB, Backhouse J, Hill LF, et al. Vitamin D metabolism and parathyroid function in man. Clin Sci Mol Med. 1975;48:349–65.PubMed
303.
go back to reference Kaplan RA, Haussler MR, Deftos LJ, et al. The role of 1α, 25-dihydroxyvitamin D in the mediation of intestinal hyperabsorption of calcium in primary hyperparathyroidism and absorptive hypercalciuria. J Clin Invest. 1977;59:756–60.PubMedCrossRef Kaplan RA, Haussler MR, Deftos LJ, et al. The role of 1α, 25-dihydroxyvitamin D in the mediation of intestinal hyperabsorption of calcium in primary hyperparathyroidism and absorptive hypercalciuria. J Clin Invest. 1977;59:756–60.PubMedCrossRef
304.
go back to reference Lambert PW, Hollis BW, Bell NH, et al. Demonstration of a lack of change in serum 1α, 25-dihydroxyvitamin D in response to parathyroid extract in pseudohypoparathyroidism. J Clin Invest. 1980;66:782–91.PubMedCrossRef Lambert PW, Hollis BW, Bell NH, et al. Demonstration of a lack of change in serum 1α, 25-dihydroxyvitamin D in response to parathyroid extract in pseudohypoparathyroidism. J Clin Invest. 1980;66:782–91.PubMedCrossRef
305.
go back to reference Piel CF, Doorf BS, Avioli LV. Metabolism of tritiated 25-hydroxycholecalciferol in chronically uremic children before and after successful renal homotransplantation. J Clin Endocrinol Metab. 1973;37:944–8.PubMed Piel CF, Doorf BS, Avioli LV. Metabolism of tritiated 25-hydroxycholecalciferol in chronically uremic children before and after successful renal homotransplantation. J Clin Endocrinol Metab. 1973;37:944–8.PubMed
306.
go back to reference Eisman JA, Hamstra AJ, Kream BE, et al. A sensitive, precise, and convenient method for determination of 1,25-dihydroxyvitamin D in human plasma. Arch Biochem Biophys. 1976;176(1):235–43.PubMedCrossRef Eisman JA, Hamstra AJ, Kream BE, et al. A sensitive, precise, and convenient method for determination of 1,25-dihydroxyvitamin D in human plasma. Arch Biochem Biophys. 1976;176(1):235–43.PubMedCrossRef
307.
go back to reference Christiansen C, Christensen MS, Melsen F, et al. Mineral metabolism in chronic renal failure with specific reference to serum concentration of 1,25(OH)2D and 24,25(OH)2D. Clin Nephrol. 1981;15(1):18–22.PubMed Christiansen C, Christensen MS, Melsen F, et al. Mineral metabolism in chronic renal failure with specific reference to serum concentration of 1,25(OH)2D and 24,25(OH)2D. Clin Nephrol. 1981;15(1):18–22.PubMed
308.
go back to reference Juttmann JR, Buurman CJ, De Kam E, et al. Serum concentrations of metabolites of vitamin D in patients with chronic renal failure (CRF). Consequences for the treatment with 1α-hydroxy derivatives. Clin Endocrinol (Oxf). 1981;14(3):225–36.CrossRef Juttmann JR, Buurman CJ, De Kam E, et al. Serum concentrations of metabolites of vitamin D in patients with chronic renal failure (CRF). Consequences for the treatment with 1α-hydroxy derivatives. Clin Endocrinol (Oxf). 1981;14(3):225–36.CrossRef
309.
go back to reference Papapoulos SE, Clemens TL, Sandler LM, et al. The effect of renal function on changes in circulating concentrations of 1,25-dihydroxycholcalciferol after an oral dose. Clin Sci. 1982;62:427–9.PubMed Papapoulos SE, Clemens TL, Sandler LM, et al. The effect of renal function on changes in circulating concentrations of 1,25-dihydroxycholcalciferol after an oral dose. Clin Sci. 1982;62:427–9.PubMed
310.
go back to reference Pitts TO, Piraino BH, Mitro R. Hyperparathyroidism and 1,25-dihydroxyvitamin D deficiency in mild, moderate, and severe renal failure. J Clin Endocrinol Metab. 1988;67:876–81.PubMed Pitts TO, Piraino BH, Mitro R. Hyperparathyroidism and 1,25-dihydroxyvitamin D deficiency in mild, moderate, and severe renal failure. J Clin Endocrinol Metab. 1988;67:876–81.PubMed
311.
go back to reference Dusso A, Lopez-Hilker S, Lewis-Finch J, et al. Metabolic clearance rate and production rate of calcitriol in uremia. Kidney Int. 1989;35:860–4.PubMedCrossRef Dusso A, Lopez-Hilker S, Lewis-Finch J, et al. Metabolic clearance rate and production rate of calcitriol in uremia. Kidney Int. 1989;35:860–4.PubMedCrossRef
312.
go back to reference Patel S, Simpson RU, Hsu CH. Effect of vitamin D metabolites on calcitriol metabolism in experimental renal failure. Kidney Int. 1989;36:234–9.PubMedCrossRef Patel S, Simpson RU, Hsu CH. Effect of vitamin D metabolites on calcitriol metabolism in experimental renal failure. Kidney Int. 1989;36:234–9.PubMedCrossRef
313.
go back to reference Portale AA, Booth BE, Tsai HC, et al. Reduced plasma concentration of 1,25-dihydroxyvitamin D in children with moderate renal insufficiency. Kidney Int. 1982;21:627–43.PubMedCrossRef Portale AA, Booth BE, Tsai HC, et al. Reduced plasma concentration of 1,25-dihydroxyvitamin D in children with moderate renal insufficiency. Kidney Int. 1982;21:627–43.PubMedCrossRef
314.
go back to reference Wilson L, Felsenfeld A, Drezner MK, et al. Altered divalent ion metabolism n early renal failure: role of 1,25(OH)2D. Kidney Int. 1985;27:565–73.PubMedCrossRef Wilson L, Felsenfeld A, Drezner MK, et al. Altered divalent ion metabolism n early renal failure: role of 1,25(OH)2D. Kidney Int. 1985;27:565–73.PubMedCrossRef
315.
go back to reference St. John A, Thomas MB, Davies CP, et al. Determinants of intact parathyroid hormone and free 1,25-dihydroxyvitamin D levels in mild and moderate renal failure. Nephron. 1992;61:422–7.PubMedCrossRef St. John A, Thomas MB, Davies CP, et al. Determinants of intact parathyroid hormone and free 1,25-dihydroxyvitamin D levels in mild and moderate renal failure. Nephron. 1992;61:422–7.PubMedCrossRef
316.
go back to reference Salusky IB, Goodman WG, Horst R, et al. Pharmacokinetics of calcitriol in continuous ambulatory and cycling peritoneal dialysis patients. Am J Kidney Dis. 1990;XVI(2):126–32. Salusky IB, Goodman WG, Horst R, et al. Pharmacokinetics of calcitriol in continuous ambulatory and cycling peritoneal dialysis patients. Am J Kidney Dis. 1990;XVI(2):126–32.
317.
go back to reference Fox J. Verapamil induces PTH resistance but increases duodenal calcium absorption in rats. Am J Physiol. 1988;255:E702–7.PubMed Fox J. Verapamil induces PTH resistance but increases duodenal calcium absorption in rats. Am J Physiol. 1988;255:E702–7.PubMed
318.
go back to reference Avioli LV, Lee SW, McDonald JE, et al. Metabolism of vitamin D3 3H in human subjects—distribution in blood, bile, feces, and urine. J Clin Invest. 1967;46(6):983–92.PubMed Avioli LV, Lee SW, McDonald JE, et al. Metabolism of vitamin D3 3H in human subjects—distribution in blood, bile, feces, and urine. J Clin Invest. 1967;46(6):983–92.PubMed
319.
go back to reference Gray RW, Weber HP, Dominguez JH, et al. The metabolism of vitamin D3 and 25-hydroxyvitamin D3 in normal and anephric humans. J Clin Endocrinol Metab. 1974;39:1045–56.PubMed Gray RW, Weber HP, Dominguez JH, et al. The metabolism of vitamin D3 and 25-hydroxyvitamin D3 in normal and anephric humans. J Clin Endocrinol Metab. 1974;39:1045–56.PubMed
320.
go back to reference Arnaud SB, Goldsmith RS, Lambert PW, et al. 25-Hydroxyvitamin D3: evidence of an enterohepatic circulation in man. Proc Soc Exp Biol Med. 1975;149:570–2.PubMed Arnaud SB, Goldsmith RS, Lambert PW, et al. 25-Hydroxyvitamin D3: evidence of an enterohepatic circulation in man. Proc Soc Exp Biol Med. 1975;149:570–2.PubMed
321.
go back to reference Norman AW, DeLuca HF. The preparation of 3H-vitamin D2 and D3—their localization in the rat. Biochemistry. 1963;2:1160–8.PubMedCrossRef Norman AW, DeLuca HF. The preparation of 3H-vitamin D2 and D3—their localization in the rat. Biochemistry. 1963;2:1160–8.PubMedCrossRef
322.
go back to reference Haddad JG Jr, Boisseau V, Avioli LV. Placental transfer of vitamin D3 and 25-hydroxycholecalciferol in the rat. J Lab Clin Med. 1971;77(6):908–15.PubMed Haddad JG Jr, Boisseau V, Avioli LV. Placental transfer of vitamin D3 and 25-hydroxycholecalciferol in the rat. J Lab Clin Med. 1971;77(6):908–15.PubMed
323.
go back to reference Rojanasathit S, Haddad JG. Hepatic accumulation of vitamin D3 and 25-hydroxyvitamin D3. Biochim Biophys Acta. 1976;421:12–21.PubMed Rojanasathit S, Haddad JG. Hepatic accumulation of vitamin D3 and 25-hydroxyvitamin D3. Biochim Biophys Acta. 1976;421:12–21.PubMed
324.
go back to reference Weisman Y, Vargas A, Duckett G, et al. Synthesis of 1,25-dihydroxyvitamin D in the nephrectomized pregnant rat. Endocrinology. 1978;103(6):1992–6.PubMed Weisman Y, Vargas A, Duckett G, et al. Synthesis of 1,25-dihydroxyvitamin D in the nephrectomized pregnant rat. Endocrinology. 1978;103(6):1992–6.PubMed
325.
go back to reference Weisman Y, Sapir R, Harell A, et al. Maternal-perinatal interrelationships of vitamin D metabolism in rats. Biochim Biophys Acta. 1976;428:388–95.PubMed Weisman Y, Sapir R, Harell A, et al. Maternal-perinatal interrelationships of vitamin D metabolism in rats. Biochim Biophys Acta. 1976;428:388–95.PubMed
326.
go back to reference Dueland S, Pedersen JI, Helgerud P, et al. Absorption, distribution, and transport of vitamin D3 and 25-hydroxyvitamin D3 in the rat. Am J Physiol. 1983;245:E463–7.PubMed Dueland S, Pedersen JI, Helgerud P, et al. Absorption, distribution, and transport of vitamin D3 and 25-hydroxyvitamin D3 in the rat. Am J Physiol. 1983;245:E463–7.PubMed
327.
go back to reference Noff D, Edelstein S. Vitamin D and its hydroxylated metabolites in the rat. Placental and lacteal transport, subsequent metabolic pathways and tissue distribution. Horm Res. 1978;9:292–300.PubMedCrossRef Noff D, Edelstein S. Vitamin D and its hydroxylated metabolites in the rat. Placental and lacteal transport, subsequent metabolic pathways and tissue distribution. Horm Res. 1978;9:292–300.PubMedCrossRef
328.
go back to reference Larsson S-E, Lorentzon R. Excretion of active metabolites of vitamin D in urine and bile of the adult rat. Clin Sci Mol Med. 1977;53:373–7.PubMed Larsson S-E, Lorentzon R. Excretion of active metabolites of vitamin D in urine and bile of the adult rat. Clin Sci Mol Med. 1977;53:373–7.PubMed
329.
go back to reference Stumpf WE, O’Brien LP. Autoradiographic studies with 3H 1,25 dihydroxyvitamin D3 in thyroid and associated tissues of the neck region. Histochemistry. 1987;87(1):53–8.PubMedCrossRef Stumpf WE, O’Brien LP. Autoradiographic studies with 3H 1,25 dihydroxyvitamin D3 in thyroid and associated tissues of the neck region. Histochemistry. 1987;87(1):53–8.PubMedCrossRef
330.
go back to reference Stumpf WE, Hayakawa N. Salivary glands epithelial and myoepithelial cells are major vitamin D targets. Eur J Drug Metab Pharmacokinet. 2007;32(3):123–9.PubMed Stumpf WE, Hayakawa N. Salivary glands epithelial and myoepithelial cells are major vitamin D targets. Eur J Drug Metab Pharmacokinet. 2007;32(3):123–9.PubMed
331.
go back to reference Stumpf WE, Sar M, O’Brien LP. Vitamin D sites of action in the pituitary studied by combined autoradiography-immunohistochemistry. Histochemistry. 1987;88(1):11–6.PubMedCrossRef Stumpf WE, Sar M, O’Brien LP. Vitamin D sites of action in the pituitary studied by combined autoradiography-immunohistochemistry. Histochemistry. 1987;88(1):11–6.PubMedCrossRef
332.
go back to reference Frolik CA, DeLuca HF. Stimulation of 1,25-dihydroxycholecalciferol metabolism in vitamin D-deficient rats by 1,25-dihydroxycholecalciferol treatment. J Cin Invest. 1973;52(3):543–8.CrossRef Frolik CA, DeLuca HF. Stimulation of 1,25-dihydroxycholecalciferol metabolism in vitamin D-deficient rats by 1,25-dihydroxycholecalciferol treatment. J Cin Invest. 1973;52(3):543–8.CrossRef
333.
go back to reference Stumpf WE, Sar M, Reid FA, et al. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach kidney, skin, pituitary, and parathyroid. Science. 1979;206:1188–90.PubMedCrossRef Stumpf WE, Sar M, Reid FA, et al. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach kidney, skin, pituitary, and parathyroid. Science. 1979;206:1188–90.PubMedCrossRef
334.
go back to reference Stumpf WE, Sar M, Narbaitz R, et al. Cellular and subcellular localization of 1,25-(OH)2 vitamin D3 in rat kidney—comparison with localization of parathyroid-hormone and estradiol. Proc Natl Acad Sci USA. 1980;77(2):1149–53.PubMedCrossRef Stumpf WE, Sar M, Narbaitz R, et al. Cellular and subcellular localization of 1,25-(OH)2 vitamin D3 in rat kidney—comparison with localization of parathyroid-hormone and estradiol. Proc Natl Acad Sci USA. 1980;77(2):1149–53.PubMedCrossRef
335.
go back to reference Stumpf WE, Sar M, Reid FA, et al. Autoradiographic studies with 3H 1,25-(OH)2 vitamin D3 and 3H 25-OH-vitamin D3 in rat parathyroid glands. Cell Tissue Res. 1981;221(2):333–8.PubMedCrossRef Stumpf WE, Sar M, Reid FA, et al. Autoradiographic studies with 3H 1,25-(OH)2 vitamin D3 and 3H 25-OH-vitamin D3 in rat parathyroid glands. Cell Tissue Res. 1981;221(2):333–8.PubMedCrossRef
336.
go back to reference Stumpf WE, Sar M, Clark SA, et al. Brain target sites for 1,25-dihydroxyvitamin D3. Science. 1982;215(4538):1403–5.PubMedCrossRef Stumpf WE, Sar M, Clark SA, et al. Brain target sites for 1,25-dihydroxyvitamin D3. Science. 1982;215(4538):1403–5.PubMedCrossRef
337.
go back to reference Stumpf WE, Narbaitz R, Huang S, et al. Autoradiographic localization of 1,25-dihydroxyvitamin D3 in rat placenta and yolk sac. Horm Res. 1983;18:215–20.PubMedCrossRef Stumpf WE, Narbaitz R, Huang S, et al. Autoradiographic localization of 1,25-dihydroxyvitamin D3 in rat placenta and yolk sac. Horm Res. 1983;18:215–20.PubMedCrossRef
338.
go back to reference Sar M, Stumpf WE, DeLuca HF. Thyrotropes in the pituitary are target cells for 1,25 dihydroxy vitamin D3. Cell Tissue Res. 1980;209:161–6.PubMedCrossRef Sar M, Stumpf WE, DeLuca HF. Thyrotropes in the pituitary are target cells for 1,25 dihydroxy vitamin D3. Cell Tissue Res. 1980;209:161–6.PubMedCrossRef
339.
go back to reference Simpson RU, DeLuca HF. Characterization of a receptor-like protein for 1,25-dihydroxyvitamin D3 in rat skin. Proc Natl Acad Sci USA. 1980;77(10):5822–6.PubMedCrossRef Simpson RU, DeLuca HF. Characterization of a receptor-like protein for 1,25-dihydroxyvitamin D3 in rat skin. Proc Natl Acad Sci USA. 1980;77(10):5822–6.PubMedCrossRef
340.
go back to reference Clark SA, Stumpf WE, Sar M. Target cells for 1,25-dihydroxyvitamin D3 in the pancreas. Cell Tissue Res. 1980;209(3):515–20.PubMedCrossRef Clark SA, Stumpf WE, Sar M. Target cells for 1,25-dihydroxyvitamin D3 in the pancreas. Cell Tissue Res. 1980;209(3):515–20.PubMedCrossRef
341.
go back to reference Clark SA, Dame MC, Kim YS, et al. 1,25-Dihydroxyvitamin D3 in teeth of rats and humans: receptors and nuclear localization. Anat Rec. 1985;212(3):250–4.PubMedCrossRef Clark SA, Dame MC, Kim YS, et al. 1,25-Dihydroxyvitamin D3 in teeth of rats and humans: receptors and nuclear localization. Anat Rec. 1985;212(3):250–4.PubMedCrossRef
342.
go back to reference Narbaitz R, Stumpf W, Sar M. The role of autoradiographic and immunocytochemical techniques in the clarification of sites of metabolism and action of vitamin D. J Histochem Cytochem. 1981;29(1):91–100.PubMed Narbaitz R, Stumpf W, Sar M. The role of autoradiographic and immunocytochemical techniques in the clarification of sites of metabolism and action of vitamin D. J Histochem Cytochem. 1981;29(1):91–100.PubMed
343.
go back to reference Rhoten WB, Christakos S. Immunocytochemical localization of vitamin D-dependent calcium binding protein in mammalian nephron. Endocrinology. 1981;109(3):981–3.PubMed Rhoten WB, Christakos S. Immunocytochemical localization of vitamin D-dependent calcium binding protein in mammalian nephron. Endocrinology. 1981;109(3):981–3.PubMed
344.
go back to reference Gascon-Barré M, Huet PM. Role of the liver in the homeostasis of calciferol metabolism in the dog. Endocrinology. 1982;110(2):563–70.PubMed Gascon-Barré M, Huet PM. Role of the liver in the homeostasis of calciferol metabolism in the dog. Endocrinology. 1982;110(2):563–70.PubMed
345.
go back to reference Merke J, Kreusser W, Bier B. Demonstration and characterization of a testicular receptor for 1,25-dihydroxycholecalciferol in the rat. Eur J Biochem. 1983;130(2):303–8.PubMedCrossRef Merke J, Kreusser W, Bier B. Demonstration and characterization of a testicular receptor for 1,25-dihydroxycholecalciferol in the rat. Eur J Biochem. 1983;130(2):303–8.PubMedCrossRef
346.
go back to reference Levy FO, Eikvar L, Jutte NHPM. Appearance of the rat testicular receptor for calcitriol (1,25-dihydroxyvitamin D3) during development. J Steroid Biochem. 1985;23(1):51–6.PubMedCrossRef Levy FO, Eikvar L, Jutte NHPM. Appearance of the rat testicular receptor for calcitriol (1,25-dihydroxyvitamin D3) during development. J Steroid Biochem. 1985;23(1):51–6.PubMedCrossRef
347.
go back to reference Stumpf WE, O’Brien LP. 1,25 (OH)2 vitamin D3 sites of action in the brain. An autoradiographic study. Histochemistry. 1987;87(5):393–406.PubMedCrossRef Stumpf WE, O’Brien LP. 1,25 (OH)2 vitamin D3 sites of action in the brain. An autoradiographic study. Histochemistry. 1987;87(5):393–406.PubMedCrossRef
348.
go back to reference Narbaitz R, Stumpf WE, Sar M, et al. Autoradiographic localization of target cells for 1,25-dihydroxyvitamin D3 in bones from fetal rats. Calcif Tissue Int. 1983;35(2):177–82.PubMedCrossRef Narbaitz R, Stumpf WE, Sar M, et al. Autoradiographic localization of target cells for 1,25-dihydroxyvitamin D3 in bones from fetal rats. Calcif Tissue Int. 1983;35(2):177–82.PubMedCrossRef
349.
go back to reference Mawer EB, Lumb GA, Stanbury SW. Long biological half-life of vitamin D3 and its polar metabolites in human serum. Nature. 1969;222:482483.CrossRef Mawer EB, Lumb GA, Stanbury SW. Long biological half-life of vitamin D3 and its polar metabolites in human serum. Nature. 1969;222:482483.CrossRef
350.
go back to reference Smith JE, Goodman D. The turnover and transport of vitamin D and of a polar metabolite with the properties of 25-hydroxycholecalciferol in human plasma. J Clin Invest. 1971;50:2159–67.PubMedCrossRef Smith JE, Goodman D. The turnover and transport of vitamin D and of a polar metabolite with the properties of 25-hydroxycholecalciferol in human plasma. J Clin Invest. 1971;50:2159–67.PubMedCrossRef
351.
go back to reference Ponchon G, DeLuca HF. Ethanol-induced artifacts in the metabolism of 3H-vitamin D3. Proc Soc Exp Biol Med. 1969;131:727–31.PubMed Ponchon G, DeLuca HF. Ethanol-induced artifacts in the metabolism of 3H-vitamin D3. Proc Soc Exp Biol Med. 1969;131:727–31.PubMed
352.
go back to reference Brouwer DA, van Beek J, Ferwerda H, et al. Rat adipose tissue rapidly accumulates and slowly releases an orally-administered high vitamin D dose. Br J Nutr. 1998;79(6):527–32.PubMedCrossRef Brouwer DA, van Beek J, Ferwerda H, et al. Rat adipose tissue rapidly accumulates and slowly releases an orally-administered high vitamin D dose. Br J Nutr. 1998;79(6):527–32.PubMedCrossRef
353.
go back to reference Bec P, Bayard F, Louvet JP. 25-Hydroxycholecalciferol dynamics in human plasma. Rev Eur Etud Clin Biol. 1972;XVII:793–6. Bec P, Bayard F, Louvet JP. 25-Hydroxycholecalciferol dynamics in human plasma. Rev Eur Etud Clin Biol. 1972;XVII:793–6.
354.
go back to reference Batchelor AJ, Compston JE. Reduced plasma half-life of radio-labeled 25-hydroxyvitamin D3 in subjects receiving a high-fibre diet. Br J Nutr. 1983;49:213–6.PubMedCrossRef Batchelor AJ, Compston JE. Reduced plasma half-life of radio-labeled 25-hydroxyvitamin D3 in subjects receiving a high-fibre diet. Br J Nutr. 1983;49:213–6.PubMedCrossRef
355.
go back to reference Davie MW, Lawson DEM, Emberson C. Vitamin D from skin: contribution to vitamin D status compared with oral vitamin D in normal and anticonvulsant-treated subjects. Clin Sci. 1982;63:461–72.PubMed Davie MW, Lawson DEM, Emberson C. Vitamin D from skin: contribution to vitamin D status compared with oral vitamin D in normal and anticonvulsant-treated subjects. Clin Sci. 1982;63:461–72.PubMed
356.
go back to reference Clements MR, Davies M, Hayes ME. The role of 1,25-dihydroxyvitamin D in the mechanism of acquired vitamin D deficiency. Clin Endocrinol. 1991;37(1):17–27.CrossRef Clements MR, Davies M, Hayes ME. The role of 1,25-dihydroxyvitamin D in the mechanism of acquired vitamin D deficiency. Clin Endocrinol. 1991;37(1):17–27.CrossRef
357.
go back to reference Vicchio D, Yergey A, O’Brien K. Quantification and kinetics of 25-hydroxyvitamin D3 by isotope dilution liquid chromatography/thermospray mass spectrometry. Biol Mass Spectrom. 1993;22:53–8.PubMedCrossRef Vicchio D, Yergey A, O’Brien K. Quantification and kinetics of 25-hydroxyvitamin D3 by isotope dilution liquid chromatography/thermospray mass spectrometry. Biol Mass Spectrom. 1993;22:53–8.PubMedCrossRef
358.
go back to reference Haddad JG Jr, Rojanasathit S. Acute administration of 25-hydroxycholecalciferol in man. J Clin Endocrinol Metab. 1976;42:284–90.PubMedCrossRef Haddad JG Jr, Rojanasathit S. Acute administration of 25-hydroxycholecalciferol in man. J Clin Endocrinol Metab. 1976;42:284–90.PubMedCrossRef
359.
go back to reference Salusky IB, Goodman WG, Horst R. Pharmacokinetics of calcitriol in continuous ambulatory and cycling peritoneal dialysis patients. Am J Kidney Dis. 1990;XVI(2):126–32. Salusky IB, Goodman WG, Horst R. Pharmacokinetics of calcitriol in continuous ambulatory and cycling peritoneal dialysis patients. Am J Kidney Dis. 1990;XVI(2):126–32.
360.
go back to reference Vieth R, Kooh SW, Balfe JW. Tracer kinetics and actions of oral and intraperitoneal 1,25-dihydroxyvitamin D3 administration in rats. Kidney Int. 1990;38:857–61.PubMedCrossRef Vieth R, Kooh SW, Balfe JW. Tracer kinetics and actions of oral and intraperitoneal 1,25-dihydroxyvitamin D3 administration in rats. Kidney Int. 1990;38:857–61.PubMedCrossRef
361.
go back to reference Mawer EB, Backhouse J, Davies M, et al. Metabolic fate of administered 1,25-dihydroxycholecalciferol in controls and in patients with hypoparathyroidism. Lancet. 1971;1(7971):1203–6. Mawer EB, Backhouse J, Davies M, et al. Metabolic fate of administered 1,25-dihydroxycholecalciferol in controls and in patients with hypoparathyroidism. Lancet. 1971;1(7971):1203–6.
362.
go back to reference Salusky I, Goodman WG, Horst R, et al. Plasma kinetics of intravenous calcitriol in normal and dialysed subjects and acute effect on serum PTH levels. In: Norman A, Schaefer K, Grigoleti HG, Herrath DV, et al., editors. Vitamin D: molecular, cellular, and clinical endocrinology (proceedings of the seventh workshop on vitamin D). New York: De Gruyter; 1988. p. 781–2. Salusky I, Goodman WG, Horst R, et al. Plasma kinetics of intravenous calcitriol in normal and dialysed subjects and acute effect on serum PTH levels. In: Norman A, Schaefer K, Grigoleti HG, Herrath DV, et al., editors. Vitamin D: molecular, cellular, and clinical endocrinology (proceedings of the seventh workshop on vitamin D). New York: De Gruyter; 1988. p. 781–2.
363.
go back to reference Levine BS, Song M. Pharmacokinetics and efficacy of pulse oral versus intravenous calcitriol in hemodialysis patients. J Am Soc Nephrol. 1996;7:488–96.PubMed Levine BS, Song M. Pharmacokinetics and efficacy of pulse oral versus intravenous calcitriol in hemodialysis patients. J Am Soc Nephrol. 1996;7:488–96.PubMed
364.
go back to reference Torregrosa JV, Campistol JM, Más M, et al. Usefulness and pharmacokinetics of subcutaneous calcitriol in the treatment of secondary hyperparathyroidism. Nephrol Dial Transplant. 1996;11(3):54–7.PubMed Torregrosa JV, Campistol JM, Más M, et al. Usefulness and pharmacokinetics of subcutaneous calcitriol in the treatment of secondary hyperparathyroidism. Nephrol Dial Transplant. 1996;11(3):54–7.PubMed
365.
go back to reference Bianchi ML, Ardissino GL, Schmitt CP, et al. No difference in intestinal strontium absorption after an oral or an intravenous 1,25(OH)2D3 bolus in normal subjects. J Bone Miner Res. 1999;14:1789–95.PubMedCrossRef Bianchi ML, Ardissino GL, Schmitt CP, et al. No difference in intestinal strontium absorption after an oral or an intravenous 1,25(OH)2D3 bolus in normal subjects. J Bone Miner Res. 1999;14:1789–95.PubMedCrossRef
366.
go back to reference Brandi L, Egfjord M, Olgaard K. Pharmacokinetics of 1,25(OH)2D3 and 1α(OH)D3 in normal and uraemic men. Nephrol Dial Transplant. 2002;17(5):829–42.PubMedCrossRef Brandi L, Egfjord M, Olgaard K. Pharmacokinetics of 1,25(OH)2D3 and 1α(OH)D3 in normal and uraemic men. Nephrol Dial Transplant. 2002;17(5):829–42.PubMedCrossRef
367.
go back to reference Fakih MG, Trump D, Muindi JR. A phase I pharmacokinetic and pharmacodynamic study of intravenous calcitriol in combination with oral Gefitinib in patients with advanced solid tumors. Clin Cancer Res. 2007;13(4):1216–23.PubMedCrossRef Fakih MG, Trump D, Muindi JR. A phase I pharmacokinetic and pharmacodynamic study of intravenous calcitriol in combination with oral Gefitinib in patients with advanced solid tumors. Clin Cancer Res. 2007;13(4):1216–23.PubMedCrossRef
368.
go back to reference Frolik CA, DeLuca HF. Metabolism of 1,25-dihydroxycholecalciferol in the rat. J Clin Invest. 1972;51(11):2900–6.PubMedCrossRef Frolik CA, DeLuca HF. Metabolism of 1,25-dihydroxycholecalciferol in the rat. J Clin Invest. 1972;51(11):2900–6.PubMedCrossRef
369.
go back to reference Mason RS, Lissner D, Posen S. Blood concentrations of dihydroxylated vitamin D metabolites after an oral dose. Br Med J. 1980;280:449–50.PubMedCrossRef Mason RS, Lissner D, Posen S. Blood concentrations of dihydroxylated vitamin D metabolites after an oral dose. Br Med J. 1980;280:449–50.PubMedCrossRef
370.
go back to reference Ohno J, Kubota M, Hirasawa Y, et al. Clinical evaluation of 1α-hydroxycholecalciferol and 1α,25-dihydroxycholecalciferol in the treatment of renal osteodystrophy. In: Norman A, Schaefer K, Herrath DV, Grigoleit HG, editors. Vitamin D, chemical, biochemical and clinical endocrinology of calcium metabolism. New York: W. DeGruyter; 1982. p. 847–52. Ohno J, Kubota M, Hirasawa Y, et al. Clinical evaluation of 1α-hydroxycholecalciferol and 1α,25-dihydroxycholecalciferol in the treatment of renal osteodystrophy. In: Norman A, Schaefer K, Herrath DV, Grigoleit HG, editors. Vitamin D, chemical, biochemical and clinical endocrinology of calcium metabolism. New York: W. DeGruyter; 1982. p. 847–52.
371.
go back to reference Levine BS, Singer FR, Bryce GF, et al. Pharmacokinetics and biologic effects of calcitriol in normal humans. J Lab Clin Med. 1985;105:239–46.PubMed Levine BS, Singer FR, Bryce GF, et al. Pharmacokinetics and biologic effects of calcitriol in normal humans. J Lab Clin Med. 1985;105:239–46.PubMed
372.
go back to reference Seino Y, Tanaka H, Yamaoka K, et al. Circulating 1α, 25-dihydroxyvitamin D levels after a single dose of 1α, 25-dihydroxyvitamin D3 or 1α-hydroxyvitamin D3 in normal men. Bone Miner. 1987;2:469–85. Seino Y, Tanaka H, Yamaoka K, et al. Circulating 1α, 25-dihydroxyvitamin D levels after a single dose of 1α, 25-dihydroxyvitamin D3 or 1α-hydroxyvitamin D3 in normal men. Bone Miner. 1987;2:469–85.
373.
go back to reference Kimura Y, Nakayama M, Kuriyama S, et al. Pharmacokinetics of active vitamin D3, 1α-hydroxyvitamin D3 and 1α, 25-dihydroxyvitamin D3 in patients on chronic hemodialysis. Clin Nephrol. 1991;35(2):72–7.PubMed Kimura Y, Nakayama M, Kuriyama S, et al. Pharmacokinetics of active vitamin D3, 1α-hydroxyvitamin D3 and 1α, 25-dihydroxyvitamin D3 in patients on chronic hemodialysis. Clin Nephrol. 1991;35(2):72–7.PubMed
374.
go back to reference Dechant KL, Goa KL. Calcitriol. A review of its use in the treatment of postmenopausal osteoporosis and its potential in corticosteroid-induced osteoporosis. Drugs Aging. 1994;5(4):300–12.PubMedCrossRef Dechant KL, Goa KL. Calcitriol. A review of its use in the treatment of postmenopausal osteoporosis and its potential in corticosteroid-induced osteoporosis. Drugs Aging. 1994;5(4):300–12.PubMedCrossRef
375.
go back to reference Beer TM, Munar M, Henner WD. A phase I trial of pulse calcitriol in patients with refractory malignancies. Pulse dosing permits substantial dose escalation. Cancer. 2001;91(12):2431–9.PubMedCrossRef Beer TM, Munar M, Henner WD. A phase I trial of pulse calcitriol in patients with refractory malignancies. Pulse dosing permits substantial dose escalation. Cancer. 2001;91(12):2431–9.PubMedCrossRef
376.
go back to reference Muindi JR, Peng Y, Potter DM, et al. Pharmacokinetics of high-dose oral calcitriol: results from a phase 1 trial of calcitriol and paclitaxel. Clin Pharmacol Ther. 2002;72:648–59.PubMedCrossRef Muindi JR, Peng Y, Potter DM, et al. Pharmacokinetics of high-dose oral calcitriol: results from a phase 1 trial of calcitriol and paclitaxel. Clin Pharmacol Ther. 2002;72:648–59.PubMedCrossRef
377.
go back to reference Selgas R, Martinez M-E, Miranda B, et al. The pharmacokinetics of a single dose of calcitriol administered subcutaneously in continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1993;13:122–5.PubMed Selgas R, Martinez M-E, Miranda B, et al. The pharmacokinetics of a single dose of calcitriol administered subcutaneously in continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1993;13:122–5.PubMed
378.
go back to reference Smith DC, Johnson CS, Freeman CC, et al. A phase I trial of calcitriol (1,25-dihydroxycholecalciferol) in patients with advanced malignancy. Clin Cancer Res. 1999;5:1339–45.PubMed Smith DC, Johnson CS, Freeman CC, et al. A phase I trial of calcitriol (1,25-dihydroxycholecalciferol) in patients with advanced malignancy. Clin Cancer Res. 1999;5:1339–45.PubMed
Metadata
Title
The Functional Metabolism and Molecular Biology of Vitamin D Action
Authors
Lori A. Plum
Hector F. DeLuca
Publication date
01-03-2009
Publisher
Humana Press Inc
Published in
Clinical & Translational Metabolism / Issue 1/2009
Print ISSN: 1534-8644
Electronic ISSN: 2948-2445
DOI
https://doi.org/10.1007/s12018-009-9040-z

Other articles of this Issue 1/2009

Clinical Reviews in Bone and Mineral Metabolism 1/2009 Go to the issue

Introduction

Introduction