Skip to main content
Top
Published in: NeuroMolecular Medicine 4/2019

01-12-2019 | Stroke | Original Paper

Preserving Mitochondrial Structure and Motility Promotes Recovery of White Matter After Ischemia

Authors: Chinthasagar Bastian, Jerica Day, Stephen Politano, John Quinn, Sylvain Brunet, Selva Baltan

Published in: NeuroMolecular Medicine | Issue 4/2019

Login to get access

Abstract

Stroke significantly affects white matter in the brain by impairing axon function, which results in clinical deficits. Axonal mitochondria are highly dynamic and are transported via microtubules in the anterograde or retrograde direction, depending upon axonal energy demands. Recently, we reported that mitochondrial division inhibitor 1 (Mdivi-1) promotes axon function recovery by preventing mitochondrial fission only when applied during ischemia. Application of Mdivi-1 after injury failed to protect axon function. Interestingly, L-NIO, which is a NOS3 inhibitor, confers post-ischemic protection to axon function by attenuating mitochondrial fission and preserving mitochondrial motility via conserving levels of the microtubular adaptor protein Miro-2. We propose that preventing mitochondrial fission protects axon function during injury, but that restoration of mitochondrial motility is more important to promote axon function recovery after injury. Thus, Miro-2 may be a therapeutic molecular target for recovery following a stroke.
Literature
go back to reference Agrawal, S. K., & Fehlings, M. G. (1996). Mechanisms of secondary injury to spinal cord axons in vitro: Role of Na + , Na(+)-K(+)-ATPase, the Na(+)-H + exchanger, and the Na(+)-Ca2 + exchanger. The Journal of neuroscience: the official journal of the Society for Neuroscience,16(2), 545–552.CrossRef Agrawal, S. K., & Fehlings, M. G. (1996). Mechanisms of secondary injury to spinal cord axons in vitro: Role of Na + , Na(+)-K(+)-ATPase, the Na(+)-H + exchanger, and the Na(+)-Ca2 + exchanger. The Journal of neuroscience: the official journal of the Society for Neuroscience,16(2), 545–552.CrossRef
go back to reference Baltan, S. (2014a). Age-dependent mechanisms of white matter injury after stroke. In S. Baltan, S. T. Carmichael, C. Matute, G. Xi, & J. H. Zhang (Eds.), White matter injury in stroke and CNS disease (pp. 373–403). New York: Springer.CrossRef Baltan, S. (2014a). Age-dependent mechanisms of white matter injury after stroke. In S. Baltan, S. T. Carmichael, C. Matute, G. Xi, & J. H. Zhang (Eds.), White matter injury in stroke and CNS disease (pp. 373–403). New York: Springer.CrossRef
go back to reference Baltan, S. (2014b). Excitotoxicity and mitochondrial dysfunction underlie age-dependent ischemic white matter injury. In A. Schousboe (Ed.), Advances in neurobiology (Vol. 11, pp. 151–170). New York: Springer. Baltan, S. (2014b). Excitotoxicity and mitochondrial dysfunction underlie age-dependent ischemic white matter injury. In A. Schousboe (Ed.), Advances in neurobiology (Vol. 11, pp. 151–170). New York: Springer.
go back to reference Baltan, S., Carmichael, S. T., Matute, C., Xi, G., & Zhang, J. H. (2014). White matter injury in stroke and CNS disease. White Matter Injury in Stroke and CNS Disease. New York: Springer.CrossRef Baltan, S., Carmichael, S. T., Matute, C., Xi, G., & Zhang, J. H. (2014). White matter injury in stroke and CNS disease. White Matter Injury in Stroke and CNS Disease. New York: Springer.CrossRef
go back to reference Bastian, C., Politano, S., Day, J., McCray, A., Brunet, S., & Baltan, S. (2018a). Mitochondrial dynamics and preconditioning in white matter. Conditioning Medicine,1(2), 64–72.PubMedPubMedCentral Bastian, C., Politano, S., Day, J., McCray, A., Brunet, S., & Baltan, S. (2018a). Mitochondrial dynamics and preconditioning in white matter. Conditioning Medicine,1(2), 64–72.PubMedPubMedCentral
go back to reference Brunet, S., Bastian, C., & Baltan, S. (2016). Ischemic injury to white matter: An age-dependent process (pp. 327–343). Cham: Springer. Brunet, S., Bastian, C., & Baltan, S. (2016). Ischemic injury to white matter: An age-dependent process (pp. 327–343). Cham: Springer.
go back to reference Fern, R., & Ransom, B. R. (1997). Ischemic injury of optic nerve axons: The nuts and bolts. Clinical Neuroscience (New York, N.Y.),4(5), 246–250. Fern, R., & Ransom, B. R. (1997). Ischemic injury of optic nerve axons: The nuts and bolts. Clinical Neuroscience (New York, N.Y.),4(5), 246–250.
go back to reference Follett, P. L., Rosenberg, P. A., Volpe, J. J., & Jensen, F. E. (2000). NBQX attenuates excitotoxic injury in developing white matter. The Journal of Neuroscience,20(24), 9235–9241.CrossRefPubMedPubMedCentral Follett, P. L., Rosenberg, P. A., Volpe, J. J., & Jensen, F. E. (2000). NBQX attenuates excitotoxic injury in developing white matter. The Journal of Neuroscience,20(24), 9235–9241.CrossRefPubMedPubMedCentral
go back to reference Li, S., Mealing, G. A., Morley, P., & Stys, P. K. (1999). Novel injury mechanism in anoxia and trauma of spinal cord white matter: Glutamate release via reverse Na + -dependent glutamate transport. The Journal of Neuroscience,19(14), RC16.CrossRefPubMedPubMedCentral Li, S., Mealing, G. A., Morley, P., & Stys, P. K. (1999). Novel injury mechanism in anoxia and trauma of spinal cord white matter: Glutamate release via reverse Na + -dependent glutamate transport. The Journal of Neuroscience,19(14), RC16.CrossRefPubMedPubMedCentral
go back to reference Malek, S. A., Coderre, E., & Stys, P. K. (2003). Aberrant chloride transport contributes to anoxic/ischemic white matter injury. The Journal of Neuroscience,23(9), 3826–3836.CrossRefPubMedPubMedCentral Malek, S. A., Coderre, E., & Stys, P. K. (2003). Aberrant chloride transport contributes to anoxic/ischemic white matter injury. The Journal of Neuroscience,23(9), 3826–3836.CrossRefPubMedPubMedCentral
go back to reference Matute, C., Domercq, M., Fogarty, D. J., Pascual de Zulueta, M., & Sánchez-Gómez, M. V. (1999). On how altered glutamate homeostasis may contribute to demyelinating diseases of the CNS. Advances in Experimental Medicine and Biology,468, 97–107.PubMed Matute, C., Domercq, M., Fogarty, D. J., Pascual de Zulueta, M., & Sánchez-Gómez, M. V. (1999). On how altered glutamate homeostasis may contribute to demyelinating diseases of the CNS. Advances in Experimental Medicine and Biology,468, 97–107.PubMed
go back to reference McDonald, J. W., Althomsons, S. P., Hyrc, K. L., Choi, D. W., & Goldberg, M. P. (1998). Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nature Medicine,4(3), 291–297.CrossRefPubMed McDonald, J. W., Althomsons, S. P., Hyrc, K. L., Choi, D. W., & Goldberg, M. P. (1998). Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nature Medicine,4(3), 291–297.CrossRefPubMed
go back to reference Oka, A., Belliveau, M. J., Rosenberg, P. A., & Volpe, J. J. (1993). Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. The Journal of Neuroscience,13(4), 1441–1453.CrossRefPubMedPubMedCentral Oka, A., Belliveau, M. J., Rosenberg, P. A., & Volpe, J. J. (1993). Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. The Journal of Neuroscience,13(4), 1441–1453.CrossRefPubMedPubMedCentral
go back to reference Ouardouz, M., Nikolaeva, M. A., Coderre, E., Zamponi, G. W., McRory, J. E., Trapp, B. D., et al. (2003). Depolarization-induced Ca2 + release in ischemic spinal cord white matter involves L-type Ca2 + channel activation of ryanodine receptors. Neuron,40(1), 53–63.CrossRefPubMed Ouardouz, M., Nikolaeva, M. A., Coderre, E., Zamponi, G. W., McRory, J. E., Trapp, B. D., et al. (2003). Depolarization-induced Ca2 + release in ischemic spinal cord white matter involves L-type Ca2 + channel activation of ryanodine receptors. Neuron,40(1), 53–63.CrossRefPubMed
go back to reference Park, S. W., Kim, K.-Y., Lindsey, J. D., Dai, Y., Heo, H., Nguyen, D. H., et al. (2011). A selective inhibitor of drp1, mdivi-1, increases retinal ganglion cell survival in acute ischemic mouse retina. Investigative Ophthalmology & Visual Science,52(5), 2837–2843. https://doi.org/10.1167/iovs.09-5010.CrossRef Park, S. W., Kim, K.-Y., Lindsey, J. D., Dai, Y., Heo, H., Nguyen, D. H., et al. (2011). A selective inhibitor of drp1, mdivi-1, increases retinal ganglion cell survival in acute ischemic mouse retina. Investigative Ophthalmology & Visual Science,52(5), 2837–2843. https://​doi.​org/​10.​1167/​iovs.​09-5010.CrossRef
go back to reference Stys, P. K., Ransom, B. R., Waxman, S. G., & Davis, P. K. (1990). Role of extracellular calcium in anoxic injury of mammalian central white matter. Proceedings of the National academy of Sciences of the United States of America,87(11), 4212–4216.CrossRefPubMedPubMedCentral Stys, P. K., Ransom, B. R., Waxman, S. G., & Davis, P. K. (1990). Role of extracellular calcium in anoxic injury of mammalian central white matter. Proceedings of the National academy of Sciences of the United States of America,87(11), 4212–4216.CrossRefPubMedPubMedCentral
go back to reference Tekkök, S. B., & Goldberg, M. P. (2001). Ampa/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. The Journal of Neuroscience,21(12), 4237–4248.CrossRefPubMedPubMedCentral Tekkök, S. B., & Goldberg, M. P. (2001). Ampa/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. The Journal of Neuroscience,21(12), 4237–4248.CrossRefPubMedPubMedCentral
go back to reference Valenti, D., Rossi, L., Marzulli, D., Bellomo, F., De Rasmo, D., Signorile, A., et al. (2017). Inhibition of Drp1-mediated mitochondrial fission improves mitochondrial dynamics and bioenergetics stimulating neurogenesis in hippocampal progenitor cells from a Down syndrome mouse model. Biochimica et Biophysica Acta,1863(12), 3117–3127. https://doi.org/10.1016/j.bbadis.2017.09.014.CrossRefPubMed Valenti, D., Rossi, L., Marzulli, D., Bellomo, F., De Rasmo, D., Signorile, A., et al. (2017). Inhibition of Drp1-mediated mitochondrial fission improves mitochondrial dynamics and bioenergetics stimulating neurogenesis in hippocampal progenitor cells from a Down syndrome mouse model. Biochimica et Biophysica Acta,1863(12), 3117–3127. https://​doi.​org/​10.​1016/​j.​bbadis.​2017.​09.​014.CrossRefPubMed
go back to reference Venker, C. J. E., Stracke, P., Berlit, P., Diehl, R. R., Sorgenfrei, U., & Chapot, R. (2010). New options in the therapeutical management of acute ischemic stroke. Good results with combined iv,-ia-lysis and mechanical thrombectomy with solitaire FR stent. Annals of Neurology,78(11), 652–657. Venker, C. J. E., Stracke, P., Berlit, P., Diehl, R. R., Sorgenfrei, U., & Chapot, R. (2010). New options in the therapeutical management of acute ischemic stroke. Good results with combined iv,-ia-lysis and mechanical thrombectomy with solitaire FR stent. Annals of Neurology,78(11), 652–657.
go back to reference Wolf, J. A., Stys, P. K., Lusardi, T., Meaney, D., & Smith, D. H. (2001). Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. The Journal of Neuroscience,21(6), 1923–1930.CrossRefPubMedPubMedCentral Wolf, J. A., Stys, P. K., Lusardi, T., Meaney, D., & Smith, D. H. (2001). Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. The Journal of Neuroscience,21(6), 1923–1930.CrossRefPubMedPubMedCentral
Metadata
Title
Preserving Mitochondrial Structure and Motility Promotes Recovery of White Matter After Ischemia
Authors
Chinthasagar Bastian
Jerica Day
Stephen Politano
John Quinn
Sylvain Brunet
Selva Baltan
Publication date
01-12-2019
Publisher
Springer US
Keyword
Stroke
Published in
NeuroMolecular Medicine / Issue 4/2019
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-019-08550-w

Other articles of this Issue 4/2019

NeuroMolecular Medicine 4/2019 Go to the issue