Skip to main content
Top
Published in: NeuroMolecular Medicine 4/2019

Open Access 01-12-2019 | Original Paper

High-Mobility Group Box-1-Induced Angiogenesis After Indirect Bypass Surgery in a Chronic Cerebral Hypoperfusion Model

Authors: Shingo Nishihiro, Tomohito Hishikawa, Masafumi Hiramatsu, Naoya Kidani, Yu Takahashi, Satoshi Murai, Kenji Sugiu, Yusuke Higaki, Takao Yasuhara, Cesario V. Borlongan, Isao Date

Published in: NeuroMolecular Medicine | Issue 4/2019

Login to get access

Abstract

High-mobility group box-1 (HMGB1) is a nuclear protein that promotes inflammation during the acute phase post-stroke, and enhances angiogenesis during the delayed phase. Here, we evaluated whether indirect revascularization surgery with HMGB1 accelerates brain angiogenesis in a chronic cerebral hypoperfusion model. Seven days after hypoperfusion induction, encephalo-myo-synangiosis (EMS) was performed with or without HMGB1 treatment into the temporal muscle. We detected significant increments in cortical vasculature (p < 0.01), vascular endothelial growth factor (VEGF) expression in the temporal muscle (p < 0.05), and ratio of radiation intensity on the operated side compared with the non-operated side after EMS in the HMGB1-treated group than in the control group (p < 0.01). Altogether, HMGB1 with EMS in a chronic hypoperfusion model promoted brain angiogenesis in a VEGF-dependent manner, resulting in cerebral blood flow improvement. This treatment may be an effective therapy for patients with moyamoya disease.
Literature
go back to reference Baumgartner, I., Rauh, G., Pieczek, A., Wuensch, D., Magner, M., Kearney, M., et al. (2000). Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor. Annals of Internal Medicine,132(11), 880–884.CrossRef Baumgartner, I., Rauh, G., Pieczek, A., Wuensch, D., Magner, M., Kearney, M., et al. (2000). Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor. Annals of Internal Medicine,132(11), 880–884.CrossRef
go back to reference Biscetti, F., Straface, G., De Cristofaro, R., Lancellotti, S., Rizzo, P., Arena, V., et al. (2010). High-mobility group box-1 protein promotes angiogenesis after peripheral ischemia in diabetic mice through a VEGF-dependent mechanism. Diabetes,59(6), 1496–1505.CrossRef Biscetti, F., Straface, G., De Cristofaro, R., Lancellotti, S., Rizzo, P., Arena, V., et al. (2010). High-mobility group box-1 protein promotes angiogenesis after peripheral ischemia in diabetic mice through a VEGF-dependent mechanism. Diabetes,59(6), 1496–1505.CrossRef
go back to reference Cho, W. S., Kim, J. E., Kim, C. H., Ban, S. P., Kang, H. S., Son, Y. J., et al. (2014). Long-term outcomes after combined revascularization surgery in adult moyamoya disease. Stroke,45(10), 3025–3031.CrossRef Cho, W. S., Kim, J. E., Kim, C. H., Ban, S. P., Kang, H. S., Son, Y. J., et al. (2014). Long-term outcomes after combined revascularization surgery in adult moyamoya disease. Stroke,45(10), 3025–3031.CrossRef
go back to reference Deng, X., Gao, F., Zhang, D., Zhang, Y., Wang, R., Wang, S., et al. (2018). Effects of different surgical modalities on the clinical outcome of patients with moyamoya disease: A prospective cohort study. Journal of Neurosurgery,128(5), 1327–1337.CrossRef Deng, X., Gao, F., Zhang, D., Zhang, Y., Wang, R., Wang, S., et al. (2018). Effects of different surgical modalities on the clinical outcome of patients with moyamoya disease: A prospective cohort study. Journal of Neurosurgery,128(5), 1327–1337.CrossRef
go back to reference Harrigan, M. R., Ennis, S. R., Masada, T., & Keep, R. F. (2002). Intraventricular infusion of vascular endothelial growth factor promotes cerebral angiogenesis with minimal brain edema. Neurosurgery,50(3), 589–598.PubMed Harrigan, M. R., Ennis, S. R., Masada, T., & Keep, R. F. (2002). Intraventricular infusion of vascular endothelial growth factor promotes cerebral angiogenesis with minimal brain edema. Neurosurgery,50(3), 589–598.PubMed
go back to reference Hayakawa, K., Qiu, J., & Lo, E. H. (2010). Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke. Annals of the New York Academy of Sciences,1207, 50–57.CrossRef Hayakawa, K., Qiu, J., & Lo, E. H. (2010). Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke. Annals of the New York Academy of Sciences,1207, 50–57.CrossRef
go back to reference Hayakawa, K., Pham, L. D., Katusic, Z. S., Arai, K., & Lo, E. H. (2012). Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery. Proceedings of the National Academy of Sciences of the United States of America,109(19), 7505–7510.CrossRef Hayakawa, K., Pham, L. D., Katusic, Z. S., Arai, K., & Lo, E. H. (2012). Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery. Proceedings of the National Academy of Sciences of the United States of America,109(19), 7505–7510.CrossRef
go back to reference Hecht, N., Marushima, A., Nieminen, M., Kremenetskaia, I., von Degenfeld, G., Woitzik, J., et al. (2015). Myoblast-mediated gene therapy improves functional collateralization in chronic cerebral hypoperfusion. Stroke,46(1), 203–211.CrossRef Hecht, N., Marushima, A., Nieminen, M., Kremenetskaia, I., von Degenfeld, G., Woitzik, J., et al. (2015). Myoblast-mediated gene therapy improves functional collateralization in chronic cerebral hypoperfusion. Stroke,46(1), 203–211.CrossRef
go back to reference Hiramatsu, M., Hishikawa, T., Tokunaga, K., Kidoya, H., Nishihiro, S., Haruma, J., et al. (2017). Combined gene therapy with vascular endothelial growth factor plus apelin in a chronic cerebral hypoperfusion model in rats. Journal of Neurosurgery,127(3), 679–686.CrossRef Hiramatsu, M., Hishikawa, T., Tokunaga, K., Kidoya, H., Nishihiro, S., Haruma, J., et al. (2017). Combined gene therapy with vascular endothelial growth factor plus apelin in a chronic cerebral hypoperfusion model in rats. Journal of Neurosurgery,127(3), 679–686.CrossRef
go back to reference Ishii, Y., Tanaka, Y., Momose, T., Yamashina, M., Sato, A., Wakabayashi, S., et al. (2017). Chronologic evaluation of cerebral hemodynamics by dynamic susceptibility contrast magnetic resonance imaging after indirect bypass surgery for moyamoya disease. World Neurosurgery,108, 427–435.CrossRef Ishii, Y., Tanaka, Y., Momose, T., Yamashina, M., Sato, A., Wakabayashi, S., et al. (2017). Chronologic evaluation of cerebral hemodynamics by dynamic susceptibility contrast magnetic resonance imaging after indirect bypass surgery for moyamoya disease. World Neurosurgery,108, 427–435.CrossRef
go back to reference Karasawa, J., Kikuchi, H., Furuse, S., Sakaki, T., & Yoshida, Y. (1977). A surgical treatment of “moyamoya” disease “encephalo-myo synangiosis”. Neurologia Medico-chirurgica,17(1 Pt 1), 29–37.CrossRef Karasawa, J., Kikuchi, H., Furuse, S., Sakaki, T., & Yoshida, Y. (1977). A surgical treatment of “moyamoya” disease “encephalo-myo synangiosis”. Neurologia Medico-chirurgica,17(1 Pt 1), 29–37.CrossRef
go back to reference Katsumata, A., Sugiu, K., Tokunaga, K., Kusaka, N., Watanabe, K., Nishida, A., et al. (2010). Optimal dose of plasmid vascular endothelial growth factor for enhancement of angiogenesis in the rat brain ischemia model. Neurol Med Chir (Tokyo),50(6), 449–455.CrossRef Katsumata, A., Sugiu, K., Tokunaga, K., Kusaka, N., Watanabe, K., Nishida, A., et al. (2010). Optimal dose of plasmid vascular endothelial growth factor for enhancement of angiogenesis in the rat brain ischemia model. Neurol Med Chir (Tokyo),50(6), 449–455.CrossRef
go back to reference Kim, S. K., Seol, H. J., Cho, B. K., Hwang, Y. S., Lee, D. S., & Wang, K. C. (2004). Moyamoya disease among young patients: Its aggressive clinical course and the role of active surgical treatment. Neurosurgery,54(4), 840–844.CrossRef Kim, S. K., Seol, H. J., Cho, B. K., Hwang, Y. S., Lee, D. S., & Wang, K. C. (2004). Moyamoya disease among young patients: Its aggressive clinical course and the role of active surgical treatment. Neurosurgery,54(4), 840–844.CrossRef
go back to reference Kim, S. K., Cho, B. K., Phi, J. H., Lee, J. Y., Chae, J. H., Kim, K. J., et al. (2010). Pediatric moyamoya disease: An analysis of 410 consecutive cases. Annals of Neurology,68(1), 92–101.CrossRef Kim, S. K., Cho, B. K., Phi, J. H., Lee, J. Y., Chae, J. H., Kim, K. J., et al. (2010). Pediatric moyamoya disease: An analysis of 410 consecutive cases. Annals of Neurology,68(1), 92–101.CrossRef
go back to reference Kitahara, T., Takeishi, Y., Harada, M., Niizeki, T., Suzuki, S., Sasaki, T., et al. (2008). High-mobility group box 1 restores cardiac function after myocardial infarction in transgenic mice. Cardiovascular Research,80(1), 40–46.CrossRef Kitahara, T., Takeishi, Y., Harada, M., Niizeki, T., Suzuki, S., Sasaki, T., et al. (2008). High-mobility group box 1 restores cardiac function after myocardial infarction in transgenic mice. Cardiovascular Research,80(1), 40–46.CrossRef
go back to reference Kuroda, S., & Houkin, K. (2008). Moyamoya disease: current concepts and future perspectives. Lancet Neurol,7(11), 1056–1066.CrossRef Kuroda, S., & Houkin, K. (2008). Moyamoya disease: current concepts and future perspectives. Lancet Neurol,7(11), 1056–1066.CrossRef
go back to reference Kusaka, N., Sugiu, K., Tokunaga, K., Katsumata, A., Nishida, A., Namba, K., et al. (2005). Enhanced brain angiogenesis in chronic cerebral hypoperfusion after administration of plasmid human vascular endothelial growth factor in combination with indirect vasoreconstructive surgery. Journal of Neurosurgery,103(5), 882–890.CrossRef Kusaka, N., Sugiu, K., Tokunaga, K., Katsumata, A., Nishida, A., Namba, K., et al. (2005). Enhanced brain angiogenesis in chronic cerebral hypoperfusion after administration of plasmid human vascular endothelial growth factor in combination with indirect vasoreconstructive surgery. Journal of Neurosurgery,103(5), 882–890.CrossRef
go back to reference Lei, C., Lin, S., Zhang, C., Tao, W., Dong, W., Hao, Z., et al. (2013). Effects of high-mobility group box1 on cerebral angiogenesis and neurogenesis after intracerebral hemorrhage. Neuroscience,229, 12–19.CrossRef Lei, C., Lin, S., Zhang, C., Tao, W., Dong, W., Hao, Z., et al. (2013). Effects of high-mobility group box1 on cerebral angiogenesis and neurogenesis after intracerebral hemorrhage. Neuroscience,229, 12–19.CrossRef
go back to reference Lei, C., Zhang, S., Cao, T., Tao, W., Liu, M., & Wu, B. (2015). HMGB1 may act via RAGE to promote angiogenesis in the later phase after intracerebral hemorrhage. Neuroscience,295, 39–47.CrossRef Lei, C., Zhang, S., Cao, T., Tao, W., Liu, M., & Wu, B. (2015). HMGB1 may act via RAGE to promote angiogenesis in the later phase after intracerebral hemorrhage. Neuroscience,295, 39–47.CrossRef
go back to reference Mizoi, K., Kayama, T., Yoshimoto, T., & Nagamine, Y. (1996). Indirect revascularization for moyamoya disease: Is there a beneficial effect for adult patients? Surgical Neurology,45(6), 541–548. discussion 548–549.CrossRef Mizoi, K., Kayama, T., Yoshimoto, T., & Nagamine, Y. (1996). Indirect revascularization for moyamoya disease: Is there a beneficial effect for adult patients? Surgical Neurology,45(6), 541–548. discussion 548–549.CrossRef
go back to reference Pandey, P., & Steinberg, G. K. (2011). Outcome of repeat revascularization surgery for moyamoya disease after an unsuccessful indirect revascularization. Clinical article. Journal of Neurosurgery,115(2), 328–336.CrossRef Pandey, P., & Steinberg, G. K. (2011). Outcome of repeat revascularization surgery for moyamoya disease after an unsuccessful indirect revascularization. Clinical article. Journal of Neurosurgery,115(2), 328–336.CrossRef
go back to reference Park, S. E., Kim, J. S., Park, E. K., Shim, K. W., & Kim, D. S. (2018). Direct versus indirect revascularization in the treatment of moyamoya disease. Journal of Neurosurgery,129(2), 480–489.CrossRef Park, S. E., Kim, J. S., Park, E. K., Shim, K. W., & Kim, D. S. (2018). Direct versus indirect revascularization in the treatment of moyamoya disease. Journal of Neurosurgery,129(2), 480–489.CrossRef
go back to reference Rong, L. L., Trojaborg, W., Qu, W., Kostov, K., Yan, S. D., Gooch, C., et al. (2004). Antagonism of RAGE suppresses peripheral nerve regeneration. FASEB J,18(15), 1812–1817.CrossRef Rong, L. L., Trojaborg, W., Qu, W., Kostov, K., Yan, S. D., Gooch, C., et al. (2004). Antagonism of RAGE suppresses peripheral nerve regeneration. FASEB J,18(15), 1812–1817.CrossRef
go back to reference Sama, A. E., D’Amore, J., Ward, M. F., Chen, G., & Wang, H. (2004). Bench to bedside: HMGB1-a novel proinflammatory cytokine and potential therapeutic target for septic patients in the emergency department. Academic Emergency Medicine,11(8), 867–873.PubMed Sama, A. E., D’Amore, J., Ward, M. F., Chen, G., & Wang, H. (2004). Bench to bedside: HMGB1-a novel proinflammatory cytokine and potential therapeutic target for septic patients in the emergency department. Academic Emergency Medicine,11(8), 867–873.PubMed
go back to reference Scaffidi, P., Misteli, T., & Bianchi, M. E. (2002). Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature,418(6894), 191–195.CrossRef Scaffidi, P., Misteli, T., & Bianchi, M. E. (2002). Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature,418(6894), 191–195.CrossRef
go back to reference Schwarz, E. R., Speakman, M. T., Patterson, M., Hale, S. S., Isner, J. M., Kedes, L. H., et al. (2000). Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat–angiogenesis and angioma formation. Journal of the American College of Cardiology,35(5), 1323–1330.CrossRef Schwarz, E. R., Speakman, M. T., Patterson, M., Hale, S. S., Isner, J. M., Kedes, L. H., et al. (2000). Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat–angiogenesis and angioma formation. Journal of the American College of Cardiology,35(5), 1323–1330.CrossRef
go back to reference So, Y., Lee, H. Y., Kim, S. K., Lee, J. S., Wang, K. C., Cho, B. K., et al. (2005). Prediction of the clinical outcome of pediatric moyamoya disease with postoperative basal/acetazolamide stress brain perfusion SPECT after revascularization surgery. Stroke,36(7), 1485–1489.CrossRef So, Y., Lee, H. Y., Kim, S. K., Lee, J. S., Wang, K. C., Cho, B. K., et al. (2005). Prediction of the clinical outcome of pediatric moyamoya disease with postoperative basal/acetazolamide stress brain perfusion SPECT after revascularization surgery. Stroke,36(7), 1485–1489.CrossRef
go back to reference van Beijnum, J. R., Buurman, W. A., & Griffioen, A. W. (2008). Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis,11(1), 91–99.CrossRef van Beijnum, J. R., Buurman, W. A., & Griffioen, A. W. (2008). Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis,11(1), 91–99.CrossRef
go back to reference Yang, S., Xu, L., Yang, T., & Wang, F. (2014). High-mobility group box-1 and its role in angiogenesis. Journal of Leukocyte Biology,95(4), 563–574.CrossRef Yang, S., Xu, L., Yang, T., & Wang, F. (2014). High-mobility group box-1 and its role in angiogenesis. Journal of Leukocyte Biology,95(4), 563–574.CrossRef
Metadata
Title
High-Mobility Group Box-1-Induced Angiogenesis After Indirect Bypass Surgery in a Chronic Cerebral Hypoperfusion Model
Authors
Shingo Nishihiro
Tomohito Hishikawa
Masafumi Hiramatsu
Naoya Kidani
Yu Takahashi
Satoshi Murai
Kenji Sugiu
Yusuke Higaki
Takao Yasuhara
Cesario V. Borlongan
Isao Date
Publication date
01-12-2019
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 4/2019
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-019-08541-x

Other articles of this Issue 4/2019

NeuroMolecular Medicine 4/2019 Go to the issue