Skip to main content
Top
Published in: NeuroMolecular Medicine 3/2018

01-09-2018 | Review Paper

Emerging Concepts in Brain Glucose Metabolic Functions: From Glucose Sensing to How the Sweet Taste of Glucose Regulates Its Own Metabolism in Astrocytes and Neurons

Authors: Menizibeya O. Welcome, Nikos E. Mastorakis

Published in: NeuroMolecular Medicine | Issue 3/2018

Login to get access

Abstract

The astrocyte-neuron lactate shunt (ANLS) hypothesis is the most widely accepted model of brain glucose metabolism. However, over the past decades, research has shown that neuronal and astrocyte plasma membrane receptors, in particular, GLUT2, Kir6.2 subunit of the potassium ATP-channel, SGLT-3 acting as glucosensors, play a pivotal role in brain glucose metabolism. Although both ANLS hypothesis and glucosensor model substantially improved our understanding of brain glucose metabolism, the latter appears to be gaining more attention in the scientific community as the former could not account for new research data indicating that hypothalamic and brainstem neurons may not require astrocyte-derived lactate for energy. More recently, emerging evidences suggest a crucial role of sweet taste receptors in brain glucose metabolism. Furthermore, a couple of intracellular molecules acting as glucosensors have been identified in central astrocytes and neurons. This review integrates new data on the mechanisms of brain glucose sensing and metabolism. The role of the glucosensors including the sweet taste T1R2 + T1R3-mediated brain glucose-sensing and metabolism in brain glucose metabolic disorders is discussed. Possible role of glucose sensors (GLUT2, K-ATPKir6.2, SGLT3, T1R2 + T1R3) in brain diseases involving metabolic dysfunctions and the therapeutic significance in targeting central glucosensors for the treatment of these brain diseases are also discussed.
Literature
go back to reference Agarwal, A., Wu, P.-H., Hughes, E. G., Fukaya, M., Tischfield, M. A., Langseth, A. J., et al. (2017). Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron, 93(3), 587–605.PubMedPubMedCentralCrossRef Agarwal, A., Wu, P.-H., Hughes, E. G., Fukaya, M., Tischfield, M. A., Langseth, A. J., et al. (2017). Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron, 93(3), 587–605.PubMedPubMedCentralCrossRef
go back to reference Akieda-Asai, S., Zaima, N., Ikegami, K., Kahyo, T., Yao, I., Hatanaka, T., et al. (2010). SIRT1 regulates thyroid-stimulating hormone release by enhancing PIP5Kγ activity through deacetylation of specific lysine residues in mammals. PLoS ONE, 5(7), e11755.PubMedPubMedCentralCrossRef Akieda-Asai, S., Zaima, N., Ikegami, K., Kahyo, T., Yao, I., Hatanaka, T., et al. (2010). SIRT1 regulates thyroid-stimulating hormone release by enhancing PIP5Kγ activity through deacetylation of specific lysine residues in mammals. PLoS ONE, 5(7), e11755.PubMedPubMedCentralCrossRef
go back to reference Al Massadi, O., Quiñones, M., Lear, P., Dieguez, C., & Nogueiras, R. (2013). The brain: A new organ for the metabolic actions of SIRT1. Hormone and Metabolic Research, 45(13), 960–966.PubMedCrossRef Al Massadi, O., Quiñones, M., Lear, P., Dieguez, C., & Nogueiras, R. (2013). The brain: A new organ for the metabolic actions of SIRT1. Hormone and Metabolic Research, 45(13), 960–966.PubMedCrossRef
go back to reference Amat, R., Planavila, A., Chen, S. L., Iglesias, R., Giralt, M., & Villarroya, F. (2009). SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PGC-1alpha) gene in skeletal muscle through the PGC-1alpha autoregulatory loop and interaction with MyoD. Journal of Biological Chemistry, 284(33), 21872–21880.PubMedCrossRef Amat, R., Planavila, A., Chen, S. L., Iglesias, R., Giralt, M., & Villarroya, F. (2009). SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PGC-1alpha) gene in skeletal muscle through the PGC-1alpha autoregulatory loop and interaction with MyoD. Journal of Biological Chemistry, 284(33), 21872–21880.PubMedCrossRef
go back to reference Ashford, M. L. J., Boden, P. R., & Treherne, J. M. (1990). Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K + channels. Pflugers Arch, 415, 479–483.PubMedCrossRef Ashford, M. L. J., Boden, P. R., & Treherne, J. M. (1990). Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K + channels. Pflugers Arch, 415, 479–483.PubMedCrossRef
go back to reference Ashford, M. L. J., Sturgess, N. J., Trout, N. J., Gardner, N. J., & Hales, C. N. (1988). Adenosine-5′-triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch, 412, 297–304.PubMedCrossRef Ashford, M. L. J., Sturgess, N. J., Trout, N. J., Gardner, N. J., & Hales, C. N. (1988). Adenosine-5′-triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch, 412, 297–304.PubMedCrossRef
go back to reference Bady, I., Marty, N., Dallaporta, M., Emery, M., Gyger, J., Tarussio, D., et al. (2006). Evidence from glut2-null mice that glucose is a critical physiological regulator of feeding. Diabetes, 55, 988–995.PubMedCrossRef Bady, I., Marty, N., Dallaporta, M., Emery, M., Gyger, J., Tarussio, D., et al. (2006). Evidence from glut2-null mice that glucose is a critical physiological regulator of feeding. Diabetes, 55, 988–995.PubMedCrossRef
go back to reference Baranowska-Bosiacka, I., Falkowska, A., Gutowska, I., Gassowska, M., Kolasa-Wolosiuk, A., Tarnowski, M., et al. (2017). Glycogen metabolism in brain and neurons–astrocytes metabolic cooperation can be altered by pre- and neonatal lead (Pb) exposure. Toxicology, 390, 146–158.PubMedCrossRef Baranowska-Bosiacka, I., Falkowska, A., Gutowska, I., Gassowska, M., Kolasa-Wolosiuk, A., Tarnowski, M., et al. (2017). Glycogen metabolism in brain and neurons–astrocytes metabolic cooperation can be altered by pre- and neonatal lead (Pb) exposure. Toxicology, 390, 146–158.PubMedCrossRef
go back to reference Belgardt, B. F., Okamura, T., & Brüning, J. C. (2009). Hormone and glucose signalling in POMC and AgRP neurons. The Journal of Physiology, 587(Pt 22), 5305–5314.PubMedPubMedCentralCrossRef Belgardt, B. F., Okamura, T., & Brüning, J. C. (2009). Hormone and glucose signalling in POMC and AgRP neurons. The Journal of Physiology, 587(Pt 22), 5305–5314.PubMedPubMedCentralCrossRef
go back to reference Benford, H., Bolborea, M., Pollatzek, E., Lossow, K., Hermans-Borgmeyer, I., Liu, B., et al. (2017). A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia, 65(5), 773–789.PubMedPubMedCentralCrossRef Benford, H., Bolborea, M., Pollatzek, E., Lossow, K., Hermans-Borgmeyer, I., Liu, B., et al. (2017). A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia, 65(5), 773–789.PubMedPubMedCentralCrossRef
go back to reference Bennett, K., James, C., Mutair, A., Al-Shaikh, H., Sinani, A., & Hussain, K. (2011). Four novel cases of permanent neonatal diabetes mellitus caused by homozygous mutations in the glucokinase gene. Pediatric Diabetes, 12(3 Pt 1), 192–196.PubMedCrossRef Bennett, K., James, C., Mutair, A., Al-Shaikh, H., Sinani, A., & Hussain, K. (2011). Four novel cases of permanent neonatal diabetes mellitus caused by homozygous mutations in the glucokinase gene. Pediatric Diabetes, 12(3 Pt 1), 192–196.PubMedCrossRef
go back to reference Bhutia, Y. D., & Ganapathy, V. (2016). Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1863(10), 2531–2539.CrossRef Bhutia, Y. D., & Ganapathy, V. (2016). Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1863(10), 2531–2539.CrossRef
go back to reference Blad, C. C., Tang, C., & Offermanns, S. (2012). G protein-coupled receptors for energy metabolites as new therapeutic targets. Nature Reviews Drug Discovery, 11, 603–619.PubMedCrossRef Blad, C. C., Tang, C., & Offermanns, S. (2012). G protein-coupled receptors for energy metabolites as new therapeutic targets. Nature Reviews Drug Discovery, 11, 603–619.PubMedCrossRef
go back to reference Blouet, C., Ono, H., & Schwartz, G. J. (2008). Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metabolism, 8(6), 459–467.PubMedPubMedCentralCrossRef Blouet, C., Ono, H., & Schwartz, G. J. (2008). Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metabolism, 8(6), 459–467.PubMedPubMedCentralCrossRef
go back to reference Blum-Degen, D., Frölich, L., Hoyer, S., & Riederer, P. (1995). Altered regulation of brain glucose metabolism as a cause of neurodegenerative disorders? Journal of Neural Transmission Supplementa, 46, 139–147. Blum-Degen, D., Frölich, L., Hoyer, S., & Riederer, P. (1995). Altered regulation of brain glucose metabolism as a cause of neurodegenerative disorders? Journal of Neural Transmission Supplementa, 46, 139–147.
go back to reference Bromley, S. M. (2000). Smell and taste disorders: a primary care approach. American Family Physician, 61(2), 427–436.PubMed Bromley, S. M. (2000). Smell and taste disorders: a primary care approach. American Family Physician, 61(2), 427–436.PubMed
go back to reference Bruckbauer, A., & Zemel, M. B. (2014). Synergistic effects of polyphenols and methylxanthines with leucine on AMPK/sirtuin-mediated metabolism in muscle cells and adipocytes. PLoS ONE, 9(2), e89166.PubMedPubMedCentralCrossRef Bruckbauer, A., & Zemel, M. B. (2014). Synergistic effects of polyphenols and methylxanthines with leucine on AMPK/sirtuin-mediated metabolism in muscle cells and adipocytes. PLoS ONE, 9(2), e89166.PubMedPubMedCentralCrossRef
go back to reference Burdakov, D., Luckman, S. M., & Verkhratsky, A. (2005). Glucose-sensing neurons of the hypothalamus. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1464), 2227–2235.PubMedCrossRef Burdakov, D., Luckman, S. M., & Verkhratsky, A. (2005). Glucose-sensing neurons of the hypothalamus. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1464), 2227–2235.PubMedCrossRef
go back to reference Cai, F., Gyulkhandanyan, A. V., Wheeler, M. B., & Belsham, D. D. (2007). Glucose regulates AMP-activated protein kinase activity and gene expression in clonal, hypothalamic neurons expressing proopiomelanocortin: additive effects of leptin or insulin. Journal of Endocrinology, 192(3), 605–614.PubMedCrossRef Cai, F., Gyulkhandanyan, A. V., Wheeler, M. B., & Belsham, D. D. (2007). Glucose regulates AMP-activated protein kinase activity and gene expression in clonal, hypothalamic neurons expressing proopiomelanocortin: additive effects of leptin or insulin. Journal of Endocrinology, 192(3), 605–614.PubMedCrossRef
go back to reference Cai, H., Cong, W., Ji, S., Rothman, S., Maudsley, S., & Martin, B. (2012). Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Current Alzheimer Research, 9(1), 5–17.PubMedPubMedCentralCrossRef Cai, H., Cong, W., Ji, S., Rothman, S., Maudsley, S., & Martin, B. (2012). Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Current Alzheimer Research, 9(1), 5–17.PubMedPubMedCentralCrossRef
go back to reference Cani, P. D., Holst, J. J., Drucker, D. J., Delzenne, N. M., Thorens, B., Burcelin, R., et al. (2007). GLUT2 and the incretin receptors are involved in glucose-induced incretin secretion. Molecular and Cellular Endocrinology, 276(1–2), 18–23.PubMedCrossRef Cani, P. D., Holst, J. J., Drucker, D. J., Delzenne, N. M., Thorens, B., Burcelin, R., et al. (2007). GLUT2 and the incretin receptors are involved in glucose-induced incretin secretion. Molecular and Cellular Endocrinology, 276(1–2), 18–23.PubMedCrossRef
go back to reference Cecchini, M. P., Fasano, A., Boschi, F., Osculati, F., & Tinazzi, M. (2015). Taste in Parkinson’s disease. Journal of Neurology, 262(4), 806–813.PubMedCrossRef Cecchini, M. P., Fasano, A., Boschi, F., Osculati, F., & Tinazzi, M. (2015). Taste in Parkinson’s disease. Journal of Neurology, 262(4), 806–813.PubMedCrossRef
go back to reference Chakera, A. J., Carleton, V. L., Ellard, S., Wong, J., Yue, D. K., Pinner, J., et al. (2012). Antenatal diagnosis of fetal genotype determines if maternal hyperglycemia due to a glucokinase mutation requires treatment. Diabetes Care, 35(9), 1832–1834.PubMedPubMedCentralCrossRef Chakera, A. J., Carleton, V. L., Ellard, S., Wong, J., Yue, D. K., Pinner, J., et al. (2012). Antenatal diagnosis of fetal genotype determines if maternal hyperglycemia due to a glucokinase mutation requires treatment. Diabetes Care, 35(9), 1832–1834.PubMedPubMedCentralCrossRef
go back to reference Chan, C. B., Hashemi, Z., & Subhan, F. B. (2017). The impact of low and no-caloric sweeteners on glucose absorption, incretin secretion, and glucose tolerance. Applied Physiology Nutrition and Metabolism, 42(8), 793–801.CrossRef Chan, C. B., Hashemi, Z., & Subhan, F. B. (2017). The impact of low and no-caloric sweeteners on glucose absorption, incretin secretion, and glucose tolerance. Applied Physiology Nutrition and Metabolism, 42(8), 793–801.CrossRef
go back to reference Chao, D. H. M., Argmann, C., Van Eijk, M., Boot, R. G., Ottenhoff, R., Van Roomen, C., et al. (2016). Impact of obesity on taste receptor expression in extra-oral tissues: emphasis on hypothalamus and brainstem. Scientific Reports, 6, 29094.CrossRef Chao, D. H. M., Argmann, C., Van Eijk, M., Boot, R. G., Ottenhoff, R., Van Roomen, C., et al. (2016). Impact of obesity on taste receptor expression in extra-oral tissues: emphasis on hypothalamus and brainstem. Scientific Reports, 6, 29094.CrossRef
go back to reference Chen, L. Q., Hou, B. H., Lalonde, S., Takanaga, H., Hartung, M. L., Qu, X. Q., et al. (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468(7323), 527–532.PubMedPubMedCentralCrossRef Chen, L. Q., Hou, B. H., Lalonde, S., Takanaga, H., Hartung, M. L., Qu, X. Q., et al. (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468(7323), 527–532.PubMedPubMedCentralCrossRef
go back to reference Chen, L. Q., Qu, X. Q., Hou, B. H., Sosso, D., Osorio, S., Fernie, A. R., et al. (2012). Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 335(6065), 207–211.PubMedCrossRef Chen, L. Q., Qu, X. Q., Hou, B. H., Sosso, D., Osorio, S., Fernie, A. R., et al. (2012). Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 335(6065), 207–211.PubMedCrossRef
go back to reference Chen, L.-Q., Cheung, L. S., Feng, L., Tanner, W., & Frommer, W. B. (2015). Transport of sugars. Annual Review of Biochemistry, 84, 865–894.PubMedCrossRef Chen, L.-Q., Cheung, L. S., Feng, L., Tanner, W., & Frommer, W. B. (2015). Transport of sugars. Annual Review of Biochemistry, 84, 865–894.PubMedCrossRef
go back to reference Claret, M., Smith, M. A., Batterham, R. L., Selman, C., Choudhury, A. I., Fryer, L. G., et al. (2007). AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. Journal of Clinical Investigation, 117(8), 2325–2336.PubMedPubMedCentralCrossRef Claret, M., Smith, M. A., Batterham, R. L., Selman, C., Choudhury, A. I., Fryer, L. G., et al. (2007). AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. Journal of Clinical Investigation, 117(8), 2325–2336.PubMedPubMedCentralCrossRef
go back to reference Claret, M., Smith, M. A., Knauf, C., Al-Qassab, H., Woods, A., Heslegrave, A., et al. (2011). Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice. Diabetes, 60(3), 735–745.PubMedPubMedCentralCrossRef Claret, M., Smith, M. A., Knauf, C., Al-Qassab, H., Woods, A., Heslegrave, A., et al. (2011). Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice. Diabetes, 60(3), 735–745.PubMedPubMedCentralCrossRef
go back to reference Cohen, D. E., Supinski, A. M., Bonkowski, M. S., Donmez, G., & Guarente, L. P. (2009). Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes & Development, 23(24), 2812–2817.CrossRef Cohen, D. E., Supinski, A. M., Bonkowski, M. S., Donmez, G., & Guarente, L. P. (2009). Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes & Development, 23(24), 2812–2817.CrossRef
go back to reference Cyr, N. E., Steger, J. S., Toorie, A. M., Yang, J. Z., Stuart, R., & Nillni, E. A. (2015). Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide α-MSH and the processing enzyme CPE production in diet-induced obese male rats. Endocrinology, 156(3), 961–974.PubMedCrossRef Cyr, N. E., Steger, J. S., Toorie, A. M., Yang, J. Z., Stuart, R., & Nillni, E. A. (2015). Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide α-MSH and the processing enzyme CPE production in diet-induced obese male rats. Endocrinology, 156(3), 961–974.PubMedCrossRef
go back to reference Dali-Youcef, N., Lagouge, M., Froelich, S., Koehl, C., Schoonjans, K., & Auwerx, J. (2007). Sirtuins: the ‘magnificent seven’, function, metabolism and longevity. Annals of Medicine, 39(5), 335–345.PubMedCrossRef Dali-Youcef, N., Lagouge, M., Froelich, S., Koehl, C., Schoonjans, K., & Auwerx, J. (2007). Sirtuins: the ‘magnificent seven’, function, metabolism and longevity. Annals of Medicine, 39(5), 335–345.PubMedCrossRef
go back to reference Davis, C. H., Kim, K. Y., Bushong, E. A., Mills, E. A., Boassa, D., Shih, T., et al. (2014). Transcellular degradation of axonal mitochondria. Proceedings of the National Academy of Sciences USA, 111(26), 9633–9638.CrossRef Davis, C. H., Kim, K. Y., Bushong, E. A., Mills, E. A., Boassa, D., Shih, T., et al. (2014). Transcellular degradation of axonal mitochondria. Proceedings of the National Academy of Sciences USA, 111(26), 9633–9638.CrossRef
go back to reference de la Monte, S. M., & Tong, M. (2014). Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochemical Pharmacology, 88(4), 548–559.PubMedCrossRef de la Monte, S. M., & Tong, M. (2014). Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochemical Pharmacology, 88(4), 548–559.PubMedCrossRef
go back to reference de la Monte, S. M., Tong, M., Schiano, I., & Didsbury, J. (2017). Improved brain insulin/IGF signaling and reduced neuroinflammation with T3D-959 in an experimental model of sporadic alzheimer’s disease. Journal of Alzheimer’s Disease, 55(2), 849–864.PubMedCrossRef de la Monte, S. M., Tong, M., Schiano, I., & Didsbury, J. (2017). Improved brain insulin/IGF signaling and reduced neuroinflammation with T3D-959 in an experimental model of sporadic alzheimer’s disease. Journal of Alzheimer’s Disease, 55(2), 849–864.PubMedCrossRef
go back to reference de la Monte, S. M., Tong, M., & Wands, J. R. (2018). The 20-year voyage aboard the Journal of Alzheimer’s disease: docking at ‘type 3 diabetes’, environmental/exposure factors, pathogenic mechanisms, and potential treatments. Journal of Alzheimer’s Disease, 62(3), 1381–1390.PubMedPubMedCentralCrossRef de la Monte, S. M., Tong, M., & Wands, J. R. (2018). The 20-year voyage aboard the Journal of Alzheimer’s disease: docking at ‘type 3 diabetes’, environmental/exposure factors, pathogenic mechanisms, and potential treatments. Journal of Alzheimer’s Disease, 62(3), 1381–1390.PubMedPubMedCentralCrossRef
go back to reference De Mille, D., & Grose, J. H. (2013). PAS kinase: a nutrient sensing regulator of glucose homeostasis. IUBMB Life, 65(11), 921–929.CrossRef De Mille, D., & Grose, J. H. (2013). PAS kinase: a nutrient sensing regulator of glucose homeostasis. IUBMB Life, 65(11), 921–929.CrossRef
go back to reference Delaere, F., Duchampt, A., Mounien, L., Seyer, P., Duraffourd, C., Zitoun, C., et al. (2013). The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Molecular Metabolism, 2(1), 47–53.CrossRef Delaere, F., Duchampt, A., Mounien, L., Seyer, P., Duraffourd, C., Zitoun, C., et al. (2013). The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Molecular Metabolism, 2(1), 47–53.CrossRef
go back to reference Deng, D., & Yan, N. (2016). GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters. Protein Science, 25(3), 546–558.PubMedPubMedCentralCrossRef Deng, D., & Yan, N. (2016). GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters. Protein Science, 25(3), 546–558.PubMedPubMedCentralCrossRef
go back to reference Depoortere, I. (2014). Taste receptors of the gut: emerging roles in health and disease. Gut, 63(1), 179–190.PubMedCrossRef Depoortere, I. (2014). Taste receptors of the gut: emerging roles in health and disease. Gut, 63(1), 179–190.PubMedCrossRef
go back to reference Díaz-García, C. M., Mongeon, R., Lahmann, C., Koveal, D., Zucker, H., & Yellen, G. (2017). Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metabolism, 26(2), 361–374.PubMedPubMedCentralCrossRef Díaz-García, C. M., Mongeon, R., Lahmann, C., Koveal, D., Zucker, H., & Yellen, G. (2017). Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metabolism, 26(2), 361–374.PubMedPubMedCentralCrossRef
go back to reference Dienel, G. A. (2017a). Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. Journal of Neuroscience Research, 95(11), 2103–2125.PubMedCrossRef Dienel, G. A. (2017a). Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. Journal of Neuroscience Research, 95(11), 2103–2125.PubMedCrossRef
go back to reference Dienel, G. A. (2017b). The metabolic trinity, glucose-glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression. Neuroscience Letters, 637, 18–25.PubMedCrossRef Dienel, G. A. (2017b). The metabolic trinity, glucose-glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression. Neuroscience Letters, 637, 18–25.PubMedCrossRef
go back to reference Dienel, G. A., & Cruz, N. F. (2004). Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochemistry International, 45(2–3), 321–351.PubMedCrossRef Dienel, G. A., & Cruz, N. F. (2004). Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochemistry International, 45(2–3), 321–351.PubMedCrossRef
go back to reference Dienel, G. A., & Cruz, N. F. (2016). Aerobic glycolysis during brain activation: Adrenergic regulation and influence of norepinephrine on astrocytic metabolism. Journal of Neurochemistry, 138(1), 14–52.PubMedCrossRef Dienel, G. A., & Cruz, N. F. (2016). Aerobic glycolysis during brain activation: Adrenergic regulation and influence of norepinephrine on astrocytic metabolism. Journal of Neurochemistry, 138(1), 14–52.PubMedCrossRef
go back to reference DiNuzzo, M., Maraviglia, B., & Giove, F. (2011). Why does the brain (not) have glycogen? Bioessays, 33(5), 319–326.PubMedCrossRef DiNuzzo, M., Maraviglia, B., & Giove, F. (2011). Why does the brain (not) have glycogen? Bioessays, 33(5), 319–326.PubMedCrossRef
go back to reference Doty, R. L., Tourbier, I. A., Pham, D. L., Cuzzocreo, J. L., Udupa, J. K., Karacali, B., et al. (2016). Taste dysfunction in multiple sclerosis. Journal of Neurology, 263(4), 677–688.PubMedPubMedCentralCrossRef Doty, R. L., Tourbier, I. A., Pham, D. L., Cuzzocreo, J. L., Udupa, J. K., Karacali, B., et al. (2016). Taste dysfunction in multiple sclerosis. Journal of Neurology, 263(4), 677–688.PubMedPubMedCentralCrossRef
go back to reference Dunham, I., Shimizu, N., Roe, B. A., et al. (1999). The DNA sequence of human chromosome 22. Nature, 402(6761), 489–495.PubMedCrossRef Dunham, I., Shimizu, N., Roe, B. A., et al. (1999). The DNA sequence of human chromosome 22. Nature, 402(6761), 489–495.PubMedCrossRef
go back to reference Dunn, L., Allen, G. F. G., Mamais, A., Ling, H., Li, A., Duberley, K. E., et al. (2014). Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiology of Aging, 35(5), 1111–1115.PubMedPubMedCentralCrossRef Dunn, L., Allen, G. F. G., Mamais, A., Ling, H., Li, A., Duberley, K. E., et al. (2014). Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiology of Aging, 35(5), 1111–1115.PubMedPubMedCentralCrossRef
go back to reference Ebrahim, M. S. E., Lawson, M. L., & Geraghty, M. T. (2014). A novel heterozygous mutation in the glucokinase gene conferring exercise-induced symptomatic hyperglycaemia responsive to sulfonylurea. Diabetes & Metabolism, 40(4), 310–313.CrossRef Ebrahim, M. S. E., Lawson, M. L., & Geraghty, M. T. (2014). A novel heterozygous mutation in the glucokinase gene conferring exercise-induced symptomatic hyperglycaemia responsive to sulfonylurea. Diabetes & Metabolism, 40(4), 310–313.CrossRef
go back to reference Ehninger, D., de Vries, P. J., & Silva, A. J. (2009). From mTOR to cognition: molecular and cellular mechanisms of cognitive impairments in tuberous sclerosis. Journal of Intellectual Disability Research, 53(10), 838–851.PubMedCrossRef Ehninger, D., de Vries, P. J., & Silva, A. J. (2009). From mTOR to cognition: molecular and cellular mechanisms of cognitive impairments in tuberous sclerosis. Journal of Intellectual Disability Research, 53(10), 838–851.PubMedCrossRef
go back to reference Essner, R. A., Smith, A. G., Jamnik, A. A., Ryba, A. R., Trutner, Z. D., & Carter, M. E. (2017). AgRP neurons can increase food intake during conditions of appetite suppression and inhibit anorexigenic parabrachial neurons. The Journal of Neuroscience, 37(36), 8678–8687.PubMedPubMedCentralCrossRef Essner, R. A., Smith, A. G., Jamnik, A. A., Ryba, A. R., Trutner, Z. D., & Carter, M. E. (2017). AgRP neurons can increase food intake during conditions of appetite suppression and inhibit anorexigenic parabrachial neurons. The Journal of Neuroscience, 37(36), 8678–8687.PubMedPubMedCentralCrossRef
go back to reference Ferrannini, E. (2017). Sodium-glucose co-transporters and their inhibition: clinical physiology. Cell Metabolism, 26(1), 27–38.PubMedCrossRef Ferrannini, E. (2017). Sodium-glucose co-transporters and their inhibition: clinical physiology. Cell Metabolism, 26(1), 27–38.PubMedCrossRef
go back to reference Ferrer, J., Benito, C., & Gomis, R. (1995). Pancreatic islet GLUT2 glucose transporter mRNA and protein expression in humans with and without NIDDM. Diabetes, 44(12), 1369–1374.PubMedCrossRef Ferrer, J., Benito, C., & Gomis, R. (1995). Pancreatic islet GLUT2 glucose transporter mRNA and protein expression in humans with and without NIDDM. Diabetes, 44(12), 1369–1374.PubMedCrossRef
go back to reference Fioramonti, X., Contié, S., Song, Z., Routh, V. H., Lorsignol, A., & Pénicaud, L. (2007). Characterization of glucosensing neuron subpopulations in the arcuate nucleus. Integration in neuropeptide Y and pro-opio melanocortin networks? Diabetes, 56(5), 1219–1227.PubMedCrossRef Fioramonti, X., Contié, S., Song, Z., Routh, V. H., Lorsignol, A., & Pénicaud, L. (2007). Characterization of glucosensing neuron subpopulations in the arcuate nucleus. Integration in neuropeptide Y and pro-opio melanocortin networks? Diabetes, 56(5), 1219–1227.PubMedCrossRef
go back to reference García, M., Millán, C., Balmaceda-Aguilera, C., Castro, T., Pastor, P., Montecinos, H., et al. (2003). Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. Journal of Neurochemistry, 86(3), 709–724.PubMedCrossRef García, M., Millán, C., Balmaceda-Aguilera, C., Castro, T., Pastor, P., Montecinos, H., et al. (2003). Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. Journal of Neurochemistry, 86(3), 709–724.PubMedCrossRef
go back to reference Genc, S., Kurnaz, I. A., & Ozilgen, M. (2011). Astrocyte-neuron lactate shuttle may boost more ATP supply to the neuron under hypoxic conditions—In silico study supported by in vitro expression data. BMC Systems Biology, 5, 162.PubMedPubMedCentralCrossRef Genc, S., Kurnaz, I. A., & Ozilgen, M. (2011). Astrocyte-neuron lactate shuttle may boost more ATP supply to the neuron under hypoxic conditions—In silico study supported by in vitro expression data. BMC Systems Biology, 5, 162.PubMedPubMedCentralCrossRef
go back to reference Glendinning, J. I., Stano, S., Holter, M., Azenkot, T., Goldman, O., Margolskee, R. F., et al. (2015). Sugar-induced cephalic-phase insulin release is mediated by a T1r2 + T1r3-independent taste transduction pathway in mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 309(5), R552–R560.PubMedPubMedCentralCrossRef Glendinning, J. I., Stano, S., Holter, M., Azenkot, T., Goldman, O., Margolskee, R. F., et al. (2015). Sugar-induced cephalic-phase insulin release is mediated by a T1r2 + T1r3-independent taste transduction pathway in mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 309(5), R552–R560.PubMedPubMedCentralCrossRef
go back to reference Gribble, F. M., Williams, L., Simpson, A. K., & Reimann, F. (2003). A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes, 52(5), 1147–1154.PubMedCrossRef Gribble, F. M., Williams, L., Simpson, A. K., & Reimann, F. (2003). A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes, 52(5), 1147–1154.PubMedCrossRef
go back to reference Hall, C. N., Klein-Flügge, M. C., Howarth, C., & Attwell, D. (2012). Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. The Journal of Neuroscience, 32(26), 8940–8951.PubMedPubMedCentralCrossRef Hall, C. N., Klein-Flügge, M. C., Howarth, C., & Attwell, D. (2012). Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. The Journal of Neuroscience, 32(26), 8940–8951.PubMedPubMedCentralCrossRef
go back to reference Hardie, D. G. (2011). AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes & Development, 25(18), 1895–1908.CrossRef Hardie, D. G. (2011). AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes & Development, 25(18), 1895–1908.CrossRef
go back to reference Hayakawa, K., Esposito, E., Wang, X., Terasaki, Y., Liu, Y., Xing, C., et al. (2016). Transfer of mitochondria from astrocytes to neurons after stroke. Nature, 535(7613), 551–555.PubMedPubMedCentralCrossRef Hayakawa, K., Esposito, E., Wang, X., Terasaki, Y., Liu, Y., Xing, C., et al. (2016). Transfer of mitochondria from astrocytes to neurons after stroke. Nature, 535(7613), 551–555.PubMedPubMedCentralCrossRef
go back to reference Hertz, L., Gibbs, M. E., & Dienel, G. A. (2014). Fluxes of lactate into, from, and among gap junction-coupled astrocytes and their interaction with noradrenaline. Frontiers in Neuroscience, 8, 261.PubMedPubMedCentralCrossRef Hertz, L., Gibbs, M. E., & Dienel, G. A. (2014). Fluxes of lactate into, from, and among gap junction-coupled astrocytes and their interaction with noradrenaline. Frontiers in Neuroscience, 8, 261.PubMedPubMedCentralCrossRef
go back to reference Hertz, L., Peng, L., & Dienel, G. A. (2007). Energy metabolism in astrocytes: High rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. Journal of Cerebral Blood Flow & Metabolism, 27(2), 219–249.CrossRef Hertz, L., Peng, L., & Dienel, G. A. (2007). Energy metabolism in astrocytes: High rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. Journal of Cerebral Blood Flow & Metabolism, 27(2), 219–249.CrossRef
go back to reference Hevor, T. K. (1994). Some aspects of carbohydrate metabolism in the brain. Biochimie, 76(2), 111–120.PubMedCrossRef Hevor, T. K. (1994). Some aspects of carbohydrate metabolism in the brain. Biochimie, 76(2), 111–120.PubMedCrossRef
go back to reference Hill, J., Zhao, J., & Dash, P. K. (2010). High blood glucose does not adversely affect outcome in moderately brain-injured rodents. Journal of Neurotrauma, 27(8), 1439–1448.PubMedPubMedCentralCrossRef Hill, J., Zhao, J., & Dash, P. K. (2010). High blood glucose does not adversely affect outcome in moderately brain-injured rodents. Journal of Neurotrauma, 27(8), 1439–1448.PubMedPubMedCentralCrossRef
go back to reference Höfer, D., Püschel, B., & Drenckhahn, D. (1996). Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proceedings of the National Academy of Sciences USA, 93, 6631–6634.CrossRef Höfer, D., Püschel, B., & Drenckhahn, D. (1996). Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proceedings of the National Academy of Sciences USA, 93, 6631–6634.CrossRef
go back to reference Hong, S., Zhao, B., Lombard, D. B., Fingar, D. C., & Inoki, K. (2014). Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. Journal of Biological Chemistry, 289(19), 13132–13141.PubMedCrossRef Hong, S., Zhao, B., Lombard, D. B., Fingar, D. C., & Inoki, K. (2014). Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. Journal of Biological Chemistry, 289(19), 13132–13141.PubMedCrossRef
go back to reference Hoon, M. A., Northup, J. K., Margolskee, R. F., & Ryba, N. J. (1995). Functional expression of the taste specific G-protein, alpha-gustducin. Biochemical Journal, 309(Pt 2), 629–636.PubMedPubMedCentralCrossRef Hoon, M. A., Northup, J. K., Margolskee, R. F., & Ryba, N. J. (1995). Functional expression of the taste specific G-protein, alpha-gustducin. Biochemical Journal, 309(Pt 2), 629–636.PubMedPubMedCentralCrossRef
go back to reference Hubbard, J. A., & Binder, D. K. (2016). Glutamate metabolism. In J. Hubbard & D. K. Binder (Eds.), Astrocytes and epilepsy (pp. 197–224). San Diego: Academic Press.CrossRef Hubbard, J. A., & Binder, D. K. (2016). Glutamate metabolism. In J. Hubbard & D. K. Binder (Eds.), Astrocytes and epilepsy (pp. 197–224). San Diego: Academic Press.CrossRef
go back to reference Jęśko, H., Wencel, P., Strosznajder, R. P., & Strosznajder, J. B. (2017). Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res, 42(3), 876–890.PubMedCrossRef Jęśko, H., Wencel, P., Strosznajder, R. P., & Strosznajder, J. B. (2017). Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res, 42(3), 876–890.PubMedCrossRef
go back to reference Jetton, T. L., Liang, Y., Pettepher, C. C., Zimmerman, E. C., Cox, F. G., Horvath, K., Matschinsky, F. M., & Magnuson, M. A. (1994). Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut. Journal of Biological Chemistry, 269, 3641–3654.PubMed Jetton, T. L., Liang, Y., Pettepher, C. C., Zimmerman, E. C., Cox, F. G., Horvath, K., Matschinsky, F. M., & Magnuson, M. A. (1994). Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut. Journal of Biological Chemistry, 269, 3641–3654.PubMed
go back to reference Jia, B., Zhu, X. F., Pu, Z. J., Duan, Y. X., Hao, L. J., Zhang, J., Chen, L. Q., Jeon, C. O., & Xuan, Y. H. (2017). Integrative view of the diversity and evolution of SWEET and semiSWEET sugar transporters. Front Plant Sci, 8, 2178.PubMedPubMedCentralCrossRef Jia, B., Zhu, X. F., Pu, Z. J., Duan, Y. X., Hao, L. J., Zhang, J., Chen, L. Q., Jeon, C. O., & Xuan, Y. H. (2017). Integrative view of the diversity and evolution of SWEET and semiSWEET sugar transporters. Front Plant Sci, 8, 2178.PubMedPubMedCentralCrossRef
go back to reference Jiang, G., & Zhang, B. B. (2003). Glucagon and regulation of glucose metabolism. American Journal of Physiology Endocrinology and Metabolism, 284(4), E671–E678.PubMedCrossRef Jiang, G., & Zhang, B. B. (2003). Glucagon and regulation of glucose metabolism. American Journal of Physiology Endocrinology and Metabolism, 284(4), E671–E678.PubMedCrossRef
go back to reference Jouroukhin, Y., Kageyama, Y., Misheneva, V., Shevelkin, A., Andrabi, S., Prandovszky, E., Yolken, R. H., Dawson, V. L., Dawson, T. M., Aja, S., Sesaki, H., & Pletnikov, M. V. (2018). DISC1 regulates lactate metabolism in astrocytes: implications for psychiatric disorders. Transl Psychiatry, 8(1), 76.PubMedPubMedCentralCrossRef Jouroukhin, Y., Kageyama, Y., Misheneva, V., Shevelkin, A., Andrabi, S., Prandovszky, E., Yolken, R. H., Dawson, V. L., Dawson, T. M., Aja, S., Sesaki, H., & Pletnikov, M. V. (2018). DISC1 regulates lactate metabolism in astrocytes: implications for psychiatric disorders. Transl Psychiatry, 8(1), 76.PubMedPubMedCentralCrossRef
go back to reference Kamat, P. K., Kalani, A., Rai, S., Tota, S. K., Kumar, A., & Ahmad, A. S. (2016). Streptozotocin intracerebroventricular-induced neurotoxicity and brain insulin resistance: a therapeutic intervention for treatment of sporadic Alzheimer’s disease (sAD)-like pathology. Molecular Neurobiology, 53(7), 4548–4562.PubMedCrossRef Kamat, P. K., Kalani, A., Rai, S., Tota, S. K., Kumar, A., & Ahmad, A. S. (2016). Streptozotocin intracerebroventricular-induced neurotoxicity and brain insulin resistance: a therapeutic intervention for treatment of sporadic Alzheimer’s disease (sAD)-like pathology. Molecular Neurobiology, 53(7), 4548–4562.PubMedCrossRef
go back to reference Kang, L., Routh, V. H., Kuzhikandathil, E. V., Gaspers, L. D., & Levin, B. E. (2004). Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes, 53(3), 549–559.PubMedCrossRef Kang, L., Routh, V. H., Kuzhikandathil, E. V., Gaspers, L. D., & Levin, B. E. (2004). Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes, 53(3), 549–559.PubMedCrossRef
go back to reference Kasischke, K. A. (2009). Activity-dependent metabolism in glia and neurons. In L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 53–60). San Diego: Academic Press.CrossRef Kasischke, K. A. (2009). Activity-dependent metabolism in glia and neurons. In L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 53–60). San Diego: Academic Press.CrossRef
go back to reference Kety, S. S. (1957). The general metabolism of the brain in vivo. In D. Richter (Ed.), Metabolism of the nervous system (pp. 221–237). London: Pergamon.CrossRef Kety, S. S. (1957). The general metabolism of the brain in vivo. In D. Richter (Ed.), Metabolism of the nervous system (pp. 221–237). London: Pergamon.CrossRef
go back to reference Khatri, N., & Man, H. Y. (2013). Synaptic activity and bioenergy homeostasis: Implications in brain trauma and neurodegenerative diseases. Frontiers in Neurology, 4, 199.PubMedPubMedCentralCrossRef Khatri, N., & Man, H. Y. (2013). Synaptic activity and bioenergy homeostasis: Implications in brain trauma and neurodegenerative diseases. Frontiers in Neurology, 4, 199.PubMedPubMedCentralCrossRef
go back to reference Kim, U., Wooding, S., Ricci, D., Jorde, L. B., & Drayna, D. (2005). Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Human Mutation, 26(3), 199–204.PubMedCrossRef Kim, U., Wooding, S., Ricci, D., Jorde, L. B., & Drayna, D. (2005). Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Human Mutation, 26(3), 199–204.PubMedCrossRef
go back to reference Kitamura, T., & Sasaki, T. (2012). Hypothalamic Sirt1 and regulation of food intake. Diabetology International, 3(3), 109–112.CrossRef Kitamura, T., & Sasaki, T. (2012). Hypothalamic Sirt1 and regulation of food intake. Diabetology International, 3(3), 109–112.CrossRef
go back to reference Klip, A., & Hawkins, M. (2005). Desperately seeking sugar: Glial cells as hypoglycemia sensors. Journal of Clinical Investigation, 115(12), 3403–3405.PubMedPubMedCentralCrossRef Klip, A., & Hawkins, M. (2005). Desperately seeking sugar: Glial cells as hypoglycemia sensors. Journal of Clinical Investigation, 115(12), 3403–3405.PubMedPubMedCentralCrossRef
go back to reference Klok, M. D., Jakobsdottir, S., & Drent, M. L. (2007). The role of leptin and ghrelin in the regulation of food intake and body weight in humans: A review. Obesity Reviews, 8(1), 21–34.PubMedCrossRef Klok, M. D., Jakobsdottir, S., & Drent, M. L. (2007). The role of leptin and ghrelin in the regulation of food intake and body weight in humans: A review. Obesity Reviews, 8(1), 21–34.PubMedCrossRef
go back to reference Kochem, M. (2017). Type 1 taste receptors in taste and metabolism. Annals of Nutrition and Metabolism, 70(3), 27–36.PubMedCrossRef Kochem, M. (2017). Type 1 taste receptors in taste and metabolism. Annals of Nutrition and Metabolism, 70(3), 27–36.PubMedCrossRef
go back to reference Kohno, D. (2017). Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus. J Physiol Sci, 67(4), 459–465.PubMedCrossRef Kohno, D. (2017). Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus. J Physiol Sci, 67(4), 459–465.PubMedCrossRef
go back to reference Kohno, D., Koike, M., Ninomiya, Y., Kojima, I., Kitamura, T., & Yada, T. (2016). Sweet taste receptor serves to activate glucose- and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness. Frontiers in Neuroscience, 10, 502.PubMedPubMedCentral Kohno, D., Koike, M., Ninomiya, Y., Kojima, I., Kitamura, T., & Yada, T. (2016). Sweet taste receptor serves to activate glucose- and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness. Frontiers in Neuroscience, 10, 502.PubMedPubMedCentral
go back to reference Kojima, I., & Nakagawa, Y. (2011). The role of the sweet taste receptor in enteroendocrine cells and pancreatic β-cells. Diabetes & Metabolism Journal, 35, 451–457.CrossRef Kojima, I., & Nakagawa, Y. (2011). The role of the sweet taste receptor in enteroendocrine cells and pancreatic β-cells. Diabetes & Metabolism Journal, 35, 451–457.CrossRef
go back to reference Kojima, I., Nakagawa, Y., Ohtsu, Y., Medina, A., & Nagasawa, M. (2014). Sweet taste-sensing receptors expressed in pancreatic β-cells: Sweet molecules act as biased agonists. Endocrinology and Metabolism (Seoul), 29(1), 12–19.CrossRef Kojima, I., Nakagawa, Y., Ohtsu, Y., Medina, A., & Nagasawa, M. (2014). Sweet taste-sensing receptors expressed in pancreatic β-cells: Sweet molecules act as biased agonists. Endocrinology and Metabolism (Seoul), 29(1), 12–19.CrossRef
go back to reference Konagaya, Y., Terai, K., Hirao, Y., Takakura, K., Imajo, M., Kamioka, Y., et al. (2017). A Highly sensitive FRET biosensor for AMPK exhibits heterogeneous AMPK responses among cells and organs. Cell Reports, 21(9), 2628–2638.PubMedCrossRef Konagaya, Y., Terai, K., Hirao, Y., Takakura, K., Imajo, M., Kamioka, Y., et al. (2017). A Highly sensitive FRET biosensor for AMPK exhibits heterogeneous AMPK responses among cells and organs. Cell Reports, 21(9), 2628–2638.PubMedCrossRef
go back to reference Kong D, Vong L, Parton LE, Ye C, Tong Q, Hu X, et al. (2010) Glucose stimulation of hypothalamic MCH neurons involves KATP channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metabolism 12(5), 545–552.PubMedCrossRef Kong D, Vong L, Parton LE, Ye C, Tong Q, Hu X, et al. (2010) Glucose stimulation of hypothalamic MCH neurons involves KATP channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metabolism 12(5), 545–552.PubMedCrossRef
go back to reference Kyriazis, G. A., Smith, K. R., Tyrberg, B., Hussain, T., & Pratley, R. E. (2014). Sweet taste receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice. Endocrinology, 155(6), 2112–2121.PubMedPubMedCentralCrossRef Kyriazis, G. A., Smith, K. R., Tyrberg, B., Hussain, T., & Pratley, R. E. (2014). Sweet taste receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice. Endocrinology, 155(6), 2112–2121.PubMedPubMedCentralCrossRef
go back to reference Kyriazis, G. A., Soundarapandian, M. M., & Tyrberg, B. (2012). Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. PNAS, 109(8), E524–E532.PubMedCrossRef Kyriazis, G. A., Soundarapandian, M. M., & Tyrberg, B. (2012). Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. PNAS, 109(8), E524–E532.PubMedCrossRef
go back to reference Lamy, C. M., Sanno, H., Labouèbe, G., Picard, A., Magnan, C., Chatton, J. Y., et al. (2014). Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion. Cell Metabolism, 19(3), 527–538.PubMedCrossRef Lamy, C. M., Sanno, H., Labouèbe, G., Picard, A., Magnan, C., Chatton, J. Y., et al. (2014). Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion. Cell Metabolism, 19(3), 527–538.PubMedCrossRef
go back to reference Lazutkaite, G., Soldà, A., Lossow, K., Meyerhof, W., & Dale, N. (2017). Amino acid sensing in hypothalamic tanycytes via umami taste receptors. Molecular Metabolism, 6(11), 1480–1492.PubMedPubMedCentralCrossRef Lazutkaite, G., Soldà, A., Lossow, K., Meyerhof, W., & Dale, N. (2017). Amino acid sensing in hypothalamic tanycytes via umami taste receptors. Molecular Metabolism, 6(11), 1480–1492.PubMedPubMedCentralCrossRef
go back to reference Lee, R. J., Kofonow, J. M., Rosen, P. L., Siebert, A. P., Chen, B., Doghramji, L., et al. (2014). Bitter and sweet taste receptors regulate human upper respiratory innate immunity. Journal of Clinical Investigation, 124(3), 1393–405.PubMedCrossRef Lee, R. J., Kofonow, J. M., Rosen, P. L., Siebert, A. P., Chen, B., Doghramji, L., et al. (2014). Bitter and sweet taste receptors regulate human upper respiratory innate immunity. Journal of Clinical Investigation, 124(3), 1393–405.PubMedCrossRef
go back to reference Lee, R. J., Xiong, G., Kofonow, J. M., Chen, B., Lysenko, A., Jiang, P., et al. (2012). T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. Journal of Clinical Investigation, 122(11), 4145–4159.PubMedCrossRef Lee, R. J., Xiong, G., Kofonow, J. M., Chen, B., Lysenko, A., Jiang, P., et al. (2012). T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. Journal of Clinical Investigation, 122(11), 4145–4159.PubMedCrossRef
go back to reference Leloup, C., Arluison, M., Lepetit, N., Cartier, N., Marfaing-Jallat, P., Ferré, P., et al. (1994). Glucose transporter 2 (GLUT 2): Expression in specific brain nuclei. Brain Research, 638(1–2), 221–226.PubMedCrossRef Leloup, C., Arluison, M., Lepetit, N., Cartier, N., Marfaing-Jallat, P., Ferré, P., et al. (1994). Glucose transporter 2 (GLUT 2): Expression in specific brain nuclei. Brain Research, 638(1–2), 221–226.PubMedCrossRef
go back to reference Leturque, A., Brot-Laroche, E., & Le Gall, M. (2009). GLUT2 mutations, translocation, andreceptor function in diet sugar managing. American Journal of Physiology Endocrinology and Metabolism, 296, E985–E992.PubMedCrossRef Leturque, A., Brot-Laroche, E., & Le Gall, M. (2009). GLUT2 mutations, translocation, andreceptor function in diet sugar managing. American Journal of Physiology Endocrinology and Metabolism, 296, E985–E992.PubMedCrossRef
go back to reference Litvin, M., Clark, A. L., & Fisher, S. J. (2013). Recurrent hypoglycemia: Boosting the brain’s metabolic flexibility. Journal of Clinical Investigation, 123(5), 1922–1924.PubMedCrossRef Litvin, M., Clark, A. L., & Fisher, S. J. (2013). Recurrent hypoglycemia: Boosting the brain’s metabolic flexibility. Journal of Clinical Investigation, 123(5), 1922–1924.PubMedCrossRef
go back to reference Lu, P., Zhang, C. H., Lifshitz, L. M., & ZhuGe, R. (2017). Extraoral bitter taste receptors in health and disease. The Journal of General Physiology, 149(2), 181–197.PubMedPubMedCentralCrossRef Lu, P., Zhang, C. H., Lifshitz, L. M., & ZhuGe, R. (2017). Extraoral bitter taste receptors in health and disease. The Journal of General Physiology, 149(2), 181–197.PubMedPubMedCentralCrossRef
go back to reference Lundgaard, I., Li, B., Xie, L., Kang, H., Sanggaard, S., Haswell, J. D. R., et al. (2015). Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications, 6, 6807.PubMedPubMedCentralCrossRef Lundgaard, I., Li, B., Xie, L., Kang, H., Sanggaard, S., Haswell, J. D. R., et al. (2015). Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications, 6, 6807.PubMedPubMedCentralCrossRef
go back to reference Magistretti, P. J., & Allaman, I. (2018). Lactate in the brain: From metabolic end-product to signalling molecule. Nature Reviews Neuroscience, 19, 235–249.PubMedCrossRef Magistretti, P. J., & Allaman, I. (2018). Lactate in the brain: From metabolic end-product to signalling molecule. Nature Reviews Neuroscience, 19, 235–249.PubMedCrossRef
go back to reference Mantych, G. J., James, D. E., & Devaskar, S. U. (1993). Jejunal/kidney glucose transporter isoform (Glut-5) is expressed in the human blood-brain barrier. Endocrinology, 132(1), 35–40.PubMedCrossRef Mantych, G. J., James, D. E., & Devaskar, S. U. (1993). Jejunal/kidney glucose transporter isoform (Glut-5) is expressed in the human blood-brain barrier. Endocrinology, 132(1), 35–40.PubMedCrossRef
go back to reference Margolskee, R. F. (2002). Molecular mechanisms of bitter and sweet taste transduction. Journal of Biological Chemistry, 277, 1–4.PubMedCrossRef Margolskee, R. F. (2002). Molecular mechanisms of bitter and sweet taste transduction. Journal of Biological Chemistry, 277, 1–4.PubMedCrossRef
go back to reference Margolskee, R. F., Dyer, J., Kokrashvili, Z., Salmon, K. S., Ilegems, E., Daly, K., et al. (2007). T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proceedings of the National Academy of Sciences of the United States of America, 104, 15075–15080.PubMedPubMedCentralCrossRef Margolskee, R. F., Dyer, J., Kokrashvili, Z., Salmon, K. S., Ilegems, E., Daly, K., et al. (2007). T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proceedings of the National Academy of Sciences of the United States of America, 104, 15075–15080.PubMedPubMedCentralCrossRef
go back to reference Martin, B., Wang, R., Cong, W. N., Daimon, C. M., Wu, W. W., Ni, B., et al. (2017). Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction. Journal of Biological Chemistry, 292(27), 11508–11530.PubMedCrossRef Martin, B., Wang, R., Cong, W. N., Daimon, C. M., Wu, W. W., Ni, B., et al. (2017). Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction. Journal of Biological Chemistry, 292(27), 11508–11530.PubMedCrossRef
go back to reference Marty, N., Bady, I., & Thorens, B. (2006). Distinct classes of central GLUT2-dependent sensors control counterregulation and feeding. Diabetes, 55(Supplement 2), S108–S113.CrossRef Marty, N., Bady, I., & Thorens, B. (2006). Distinct classes of central GLUT2-dependent sensors control counterregulation and feeding. Diabetes, 55(Supplement 2), S108–S113.CrossRef
go back to reference Marty, N., Dallaporta, M., Foretz, M., Emery, M., Tarussio, D., Bady, I., et al. (2005). Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. Journal of Clinical Investigation, 115, 3545–3553.PubMedPubMedCentralCrossRef Marty, N., Dallaporta, M., Foretz, M., Emery, M., Tarussio, D., Bady, I., et al. (2005). Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. Journal of Clinical Investigation, 115, 3545–3553.PubMedPubMedCentralCrossRef
go back to reference Marty, N., Dallaporta, M., & Thorens, B. (2007). Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda), 22, 241–251. Marty, N., Dallaporta, M., & Thorens, B. (2007). Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda), 22, 241–251.
go back to reference Mathur, D., López-Rodas, G., Casanova, B., & Marti, M. B. (2014). Perturbed glucose metabolism: Insights into multiple sclerosis pathogenesis. Frontiers in Neurology, 5, 250.PubMedPubMedCentralCrossRef Mathur, D., López-Rodas, G., Casanova, B., & Marti, M. B. (2014). Perturbed glucose metabolism: Insights into multiple sclerosis pathogenesis. Frontiers in Neurology, 5, 250.PubMedPubMedCentralCrossRef
go back to reference McLaughlin, S. K., McKinnon, P. J., & Margolskee, R. F. (1992). Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature, 357, 563–569.PubMedCrossRef McLaughlin, S. K., McKinnon, P. J., & Margolskee, R. F. (1992). Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature, 357, 563–569.PubMedCrossRef
go back to reference McLaughlin, S. K., McKinnon, P. J., Robichon, A., Spickofsky, N., & Margolskee, R. F. (1993). Gustducin and transducin: A tale of two G proteins. Ciba Foundation Symposium, 179, 186–200.PubMed McLaughlin, S. K., McKinnon, P. J., Robichon, A., Spickofsky, N., & Margolskee, R. F. (1993). Gustducin and transducin: A tale of two G proteins. Ciba Foundation Symposium, 179, 186–200.PubMed
go back to reference McNay, E. C., & Cotero, V. E. (2010). Mini-review: Impact of recurrent hypoglycemia on cognitive and brain function. Physiology & Behavior, 100(3), 234–238.CrossRef McNay, E. C., & Cotero, V. E. (2010). Mini-review: Impact of recurrent hypoglycemia on cognitive and brain function. Physiology & Behavior, 100(3), 234–238.CrossRef
go back to reference McNay, E. C., & Sherwin, R. S. (2004). Effect of recurrent hypoglycemia on spatial cognition and cognitive metabolism in normal and diabetic rats. Diabetes, 53(2), 418–425.PubMedCrossRef McNay, E. C., & Sherwin, R. S. (2004). Effect of recurrent hypoglycemia on spatial cognition and cognitive metabolism in normal and diabetic rats. Diabetes, 53(2), 418–425.PubMedCrossRef
go back to reference Meyerhof, W., Batram, C., Kuhn, C., Brockhoff, A., Chudoba, E., Bufe, B., et al. (2010). The molecular receptive ranges of human tas2r bitter taste receptors. Chemical Senses, 35(2), 157–170.PubMedCrossRef Meyerhof, W., Batram, C., Kuhn, C., Brockhoff, A., Chudoba, E., Bufe, B., et al. (2010). The molecular receptive ranges of human tas2r bitter taste receptors. Chemical Senses, 35(2), 157–170.PubMedCrossRef
go back to reference Minervini, M., Atlante, A., Gagliardi, S., Ciotti, M. T., Marra, E., & Calissano, P. (1997). Glutamate stimulates 2-deoxyglucose uptake in rat cerebellar granule cells. Brain Research, 768(1–2), 57–62.PubMedCrossRef Minervini, M., Atlante, A., Gagliardi, S., Ciotti, M. T., Marra, E., & Calissano, P. (1997). Glutamate stimulates 2-deoxyglucose uptake in rat cerebellar granule cells. Brain Research, 768(1–2), 57–62.PubMedCrossRef
go back to reference Morelli, A., Comeglio, P., Sarchielli, E., Cellai, I., Vignozzi, L., Vannelli, G. B., et al. (2013) Negative effects of high glucose exposure in human gonadotropin-releasing hormone neurons. International Journal of Endocrinology 2013, 684659.PubMedPubMedCentralCrossRef Morelli, A., Comeglio, P., Sarchielli, E., Cellai, I., Vignozzi, L., Vannelli, G. B., et al. (2013) Negative effects of high glucose exposure in human gonadotropin-releasing hormone neurons. International Journal of Endocrinology 2013, 684659.PubMedPubMedCentralCrossRef
go back to reference Murovets, V. O., Bachmanov, A. A., Travnikov, S. V., Tchurikova, A. A., & Zolotarev, V. A. (2014). Involvement of Tas1r3 receptor protein in control of the metabolism of glucose at different levels of glycemia in mice. Zhurnal evoliutsionnoi biokhimii i fiziologii, 50(4), 296–304.PubMed Murovets, V. O., Bachmanov, A. A., Travnikov, S. V., Tchurikova, A. A., & Zolotarev, V. A. (2014). Involvement of Tas1r3 receptor protein in control of the metabolism of glucose at different levels of glycemia in mice. Zhurnal evoliutsionnoi biokhimii i fiziologii, 50(4), 296–304.PubMed
go back to reference Murovets, V. O., Bachmanov, A. A., & Zolotarev, V. A. (2015). Impaired glucose metabolism in mice lacking the Tas1r3 taste receptor gene. PLoS ONE, 10(6), e0130997.PubMedPubMedCentralCrossRef Murovets, V. O., Bachmanov, A. A., & Zolotarev, V. A. (2015). Impaired glucose metabolism in mice lacking the Tas1r3 taste receptor gene. PLoS ONE, 10(6), e0130997.PubMedPubMedCentralCrossRef
go back to reference Newson, B., Ahlman, H., Dahlstrom, A., & Nyhus, L. M. (1982). Ultrastructural observations in the rat ileal mucosa of possible epithelial ‘taste cells’ and submucosal sensory neurons. Acta Physiologica Scandinavica, 114(2), 161–164.PubMedCrossRef Newson, B., Ahlman, H., Dahlstrom, A., & Nyhus, L. M. (1982). Ultrastructural observations in the rat ileal mucosa of possible epithelial ‘taste cells’ and submucosal sensory neurons. Acta Physiologica Scandinavica, 114(2), 161–164.PubMedCrossRef
go back to reference Nour, H. A., El Sawaf, A. L., Elewa, S. M., & El Sayed, Y. (2014). Strength and independence of associations between ghrelin, leptin, adiponectin and insulin in stimulating basic functions to energy metabolism. Alexandria Journal of Medicine, 50(1), 49–59.CrossRef Nour, H. A., El Sawaf, A. L., Elewa, S. M., & El Sayed, Y. (2014). Strength and independence of associations between ghrelin, leptin, adiponectin and insulin in stimulating basic functions to energy metabolism. Alexandria Journal of Medicine, 50(1), 49–59.CrossRef
go back to reference O’Malley, D., Reimann, F., Simpson, A. K., & Gribble, F. M. (2006). Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing. Diabetes, 55, 3381–3386.PubMedPubMedCentralCrossRef O’Malley, D., Reimann, F., Simpson, A. K., & Gribble, F. M. (2006). Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing. Diabetes, 55, 3381–3386.PubMedPubMedCentralCrossRef
go back to reference Ohkuri, T., Yasumatsu, K., Horio, N., Jyotaki, M., Margolskee, R. F., & Ninomiya, Y. (2009). Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 296(4), R960–R971.PubMedPubMedCentralCrossRef Ohkuri, T., Yasumatsu, K., Horio, N., Jyotaki, M., Margolskee, R. F., & Ninomiya, Y. (2009). Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 296(4), R960–R971.PubMedPubMedCentralCrossRef
go back to reference Ono, H., Pocai, A., Wang, Y., Sakoda, H., Asano, T., Backer, J. M., et al. (2008). Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats. Journal of Clinical Investigation, 118(8), 2959–2968.PubMed Ono, H., Pocai, A., Wang, Y., Sakoda, H., Asano, T., Backer, J. M., et al. (2008). Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats. Journal of Clinical Investigation, 118(8), 2959–2968.PubMed
go back to reference Oomura, Y., Kimura, K., Ooyama, H., Maeo, T., Iki, M., & Kuniyoshi, N. (1964). Reciprocal activities of the ventromedial and lateral hypothalamic area of cats. Science, 143, 484–485.PubMedCrossRef Oomura, Y., Kimura, K., Ooyama, H., Maeo, T., Iki, M., & Kuniyoshi, N. (1964). Reciprocal activities of the ventromedial and lateral hypothalamic area of cats. Science, 143, 484–485.PubMedCrossRef
go back to reference Ozcan, S., Dover, J., Rosenwald, A. G., Wölfl, S., & Johnston, M. (1996). Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proceedings of the National Academy of Sciences USA, 93(22), 12428–12432.CrossRef Ozcan, S., Dover, J., Rosenwald, A. G., Wölfl, S., & Johnston, M. (1996). Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proceedings of the National Academy of Sciences USA, 93(22), 12428–12432.CrossRef
go back to reference Patel, A. B., Lai, J. C. K., Chowdhury, G. M. I., Hyder, F., Rothman, D. L., Shulman, R. G., et al. (2014). Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proceedings of the National Academy of Sciences USA, 111(14), 5385–5390.CrossRef Patel, A. B., Lai, J. C. K., Chowdhury, G. M. I., Hyder, F., Rothman, D. L., Shulman, R. G., et al. (2014). Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proceedings of the National Academy of Sciences USA, 111(14), 5385–5390.CrossRef
go back to reference Payne, J., Maher, F., Simpson, I., Mattice, L., & Davies, P. (1997). Glucose transporter Glut 5 expression in microglial cells. Glia, 21(3), 327–331.PubMedCrossRef Payne, J., Maher, F., Simpson, I., Mattice, L., & Davies, P. (1997). Glucose transporter Glut 5 expression in microglial cells. Glia, 21(3), 327–331.PubMedCrossRef
go back to reference Pellerin, L., Bouzier-Sore, A. K., Aubert, A., Serres, S., Merle, M., Costalat, R., et al. (2007). Activity-dependent regulation of energy metabolism by astrocytes: An update. Glia, 55, 1251–1262.PubMedCrossRef Pellerin, L., Bouzier-Sore, A. K., Aubert, A., Serres, S., Merle, M., Costalat, R., et al. (2007). Activity-dependent regulation of energy metabolism by astrocytes: An update. Glia, 55, 1251–1262.PubMedCrossRef
go back to reference Pellerin, L., & Magistretti, P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences USA, 91, 10625–10629.CrossRef Pellerin, L., & Magistretti, P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences USA, 91, 10625–10629.CrossRef
go back to reference Pellerin, L., & Magistretti, P. J. (1996). Excitatory amino acids stimulate aerobic glycolysis in astrocytes via an activation of the Na+/K+ ATPase. Developmental Neuroscience, 18(5–6), 336–342.PubMedCrossRef Pellerin, L., & Magistretti, P. J. (1996). Excitatory amino acids stimulate aerobic glycolysis in astrocytes via an activation of the Na+/K+ ATPase. Developmental Neuroscience, 18(5–6), 336–342.PubMedCrossRef
go back to reference Peng, L., Zhang, X., & Hertz, L. (1994). High extracellular potassium concentrations stimulate oxidative metabolism in a glutamatergic neuronal culture and glycolysis in cultured astrocytes but have no stimulatory effect in a GABAergic neuronal culture. Brain Research, 663(1), 168–172.PubMedCrossRef Peng, L., Zhang, X., & Hertz, L. (1994). High extracellular potassium concentrations stimulate oxidative metabolism in a glutamatergic neuronal culture and glycolysis in cultured astrocytes but have no stimulatory effect in a GABAergic neuronal culture. Brain Research, 663(1), 168–172.PubMedCrossRef
go back to reference Pepino, M. Y., & Bourne, C. (2011). Nonnutritive sweeteners, energy balance and glucose homeostasis. Current Opinion in Clinical Nutrition & Metabolic Care, 14(4), 391–395.CrossRef Pepino, M. Y., & Bourne, C. (2011). Nonnutritive sweeteners, energy balance and glucose homeostasis. Current Opinion in Clinical Nutrition & Metabolic Care, 14(4), 391–395.CrossRef
go back to reference Petroff, O. A. C. (2007). Metabolic biopsy of the brain. In S. G. Waxman (Ed.), Molecular neurology (pp. 77–100). San Diego: Academic Press.CrossRef Petroff, O. A. C. (2007). Metabolic biopsy of the brain. In S. G. Waxman (Ed.), Molecular neurology (pp. 77–100). San Diego: Academic Press.CrossRef
go back to reference Pfeiffer-Guglielmi, B., Dombert, B., Jablonka, S., Hausherr, V., van Thriel, C., Schöbel, N., et al. (2014). Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons. BMC Neuroscience, 15, 70.PubMedPubMedCentralCrossRef Pfeiffer-Guglielmi, B., Dombert, B., Jablonka, S., Hausherr, V., van Thriel, C., Schöbel, N., et al. (2014). Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons. BMC Neuroscience, 15, 70.PubMedPubMedCentralCrossRef
go back to reference Pierre, K., & Pellerin, L. (2005). Monocarboxylate transporters in the central nervous system: Distribution, regulation and function. Journal of Neurochemistry, 94, 1–14.PubMedCrossRef Pierre, K., & Pellerin, L. (2005). Monocarboxylate transporters in the central nervous system: Distribution, regulation and function. Journal of Neurochemistry, 94, 1–14.PubMedCrossRef
go back to reference Porras, O. H., Loaiza, A., & Barros, L. F. (2004). Glutamate mediates acute glucose transport inhibition in hippocampal neurons. The Journal of Neuroscience, 24(43), 9669–9673.PubMedCrossRef Porras, O. H., Loaiza, A., & Barros, L. F. (2004). Glutamate mediates acute glucose transport inhibition in hippocampal neurons. The Journal of Neuroscience, 24(43), 9669–9673.PubMedCrossRef
go back to reference Pradhan, G., Samson, S. L., & Sun, Y. (2013). Ghrelin: Much more than a hunger hormone. Current Opinion in Clinical Nutrition & Metabolic Care, 16(6), 619–624.CrossRef Pradhan, G., Samson, S. L., & Sun, Y. (2013). Ghrelin: Much more than a hunger hormone. Current Opinion in Clinical Nutrition & Metabolic Care, 16(6), 619–624.CrossRef
go back to reference Prins, M. L. (2012). Cerebral ketone metabolism during development and injury. Epilepsy Research, 100(3), 218–223.PubMedCrossRef Prins, M. L. (2012). Cerebral ketone metabolism during development and injury. Epilepsy Research, 100(3), 218–223.PubMedCrossRef
go back to reference Procaccini, C., Santopaolo, M., Faicchia, D., Colamatteo, A., Formisano, L., de Candia, P., et al. (2016). Role of metabolism in neurodegenerative disorders. Metabolism, 65(9), 1376–1390.PubMedCrossRef Procaccini, C., Santopaolo, M., Faicchia, D., Colamatteo, A., Formisano, L., de Candia, P., et al. (2016). Role of metabolism in neurodegenerative disorders. Metabolism, 65(9), 1376–1390.PubMedCrossRef
go back to reference Rahman, S., & Islam, R. (2011). Mammalian Sirt1: Insights on its biological functions. Cell Communication and Signaling, 9, 11.PubMedCrossRef Rahman, S., & Islam, R. (2011). Mammalian Sirt1: Insights on its biological functions. Cell Communication and Signaling, 9, 11.PubMedCrossRef
go back to reference Rinholm, J. E., Hamilton, N. B., Kessarism, N., Richardson, W. D., Bergersen, L. H., & Attwell, D. (2011). Regulation of oligodendrocyte development and myelination by glucose and lactate. The Journal of Neuroscience, 31, 538–548.PubMedPubMedCentralCrossRef Rinholm, J. E., Hamilton, N. B., Kessarism, N., Richardson, W. D., Bergersen, L. H., & Attwell, D. (2011). Regulation of oligodendrocyte development and myelination by glucose and lactate. The Journal of Neuroscience, 31, 538–548.PubMedPubMedCentralCrossRef
go back to reference Rizki, G., Iwata, T. N., Li, J., Riedel, C. G., Picard, C. L., Jan, M., et al. (2011). The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genetics, 7(9), e1002235.PubMedPubMedCentralCrossRef Rizki, G., Iwata, T. N., Li, J., Riedel, C. G., Picard, C. L., Jan, M., et al. (2011). The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genetics, 7(9), e1002235.PubMedPubMedCentralCrossRef
go back to reference Roh, E., Song, D. K., & Kim, M.-S. (2016). Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Experimental & Molecular Medicine, 48, e216.CrossRef Roh, E., Song, D. K., & Kim, M.-S. (2016). Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Experimental & Molecular Medicine, 48, e216.CrossRef
go back to reference Roland, A. V., & Moenter, S. M. (2011). Regulation of gonadotropin-releasing hormone neurons by glucose. Trends in Endocrinology and Metabolism, 22(11), 443–449.PubMedCrossRef Roland, A. V., & Moenter, S. M. (2011). Regulation of gonadotropin-releasing hormone neurons by glucose. Trends in Endocrinology and Metabolism, 22(11), 443–449.PubMedCrossRef
go back to reference Ruderman, N. B., Xu, X. J., Nelson, L., Cacicedo, J. M., Saha, A. K., Lan, F., et al. (2010). AMPK and SIRT1: A long-standing partnership? American Journal of Physiology Endocrinology and Metabolism, 298(4), E751–E760.PubMedPubMedCentralCrossRef Ruderman, N. B., Xu, X. J., Nelson, L., Cacicedo, J. M., Saha, A. K., Lan, F., et al. (2010). AMPK and SIRT1: A long-standing partnership? American Journal of Physiology Endocrinology and Metabolism, 298(4), E751–E760.PubMedPubMedCentralCrossRef
go back to reference Sasaki, T., Kim, H. J., Kobayashi, M., Kitamura, Y. I., Yokota-Hashimoto, H., Shiuchi, T., et al. (2010). Induction of hypothalamic Sirt1 leads to cessation of feeding via agouti-related peptide. Endocrinology, 151(6), 2556–2566.PubMedCrossRef Sasaki, T., Kim, H. J., Kobayashi, M., Kitamura, Y. I., Yokota-Hashimoto, H., Shiuchi, T., et al. (2010). Induction of hypothalamic Sirt1 leads to cessation of feeding via agouti-related peptide. Endocrinology, 151(6), 2556–2566.PubMedCrossRef
go back to reference Sbarbati, A., Tizzano, M., Merigo, F., Benati, D., Nicolato, E., Boschi, F., et al. (2009). Acyl homoserine lactones induce early response in the airway. Anatomical Record (Hoboken), 292(3), 439–448.CrossRef Sbarbati, A., Tizzano, M., Merigo, F., Benati, D., Nicolato, E., Boschi, F., et al. (2009). Acyl homoserine lactones induce early response in the airway. Anatomical Record (Hoboken), 292(3), 439–448.CrossRef
go back to reference Schubert, D. (2005). Glucose metabolism and Alzheimer’s disease. Ageing Research Reviews, 4(2), 240–257.PubMedCrossRef Schubert, D. (2005). Glucose metabolism and Alzheimer’s disease. Ageing Research Reviews, 4(2), 240–257.PubMedCrossRef
go back to reference Shah, K., DeSilva, S., & Abbruscato, T. (2012). The role of glucose transporters in brain disease: Diabetes and Alzheimer’s disease. International Journal of Molecular Sciences, 13(10), 12629–12655.PubMedPubMedCentralCrossRef Shah, K., DeSilva, S., & Abbruscato, T. (2012). The role of glucose transporters in brain disease: Diabetes and Alzheimer’s disease. International Journal of Molecular Sciences, 13(10), 12629–12655.PubMedPubMedCentralCrossRef
go back to reference Shim, J. H., Xiao, C., Paschal, A. E., Bailey, S. T., Rao, P., Hayden, M. S., et al. (2005). TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes & Development, 19(22), 2668–2681.CrossRef Shim, J. H., Xiao, C., Paschal, A. E., Bailey, S. T., Rao, P., Hayden, M. S., et al. (2005). TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes & Development, 19(22), 2668–2681.CrossRef
go back to reference Smith, M. A., Katsouri, L., Irvine, E. E., Hankir, M. K., Pedroni, S. M., Voshol, P. J., et al. (2015). Ribosomal S6K1 in POMC and AgRP neurons regulates glucose homeostasis but not feeding behavior in mice. Cell Reports, 11(3), 335–343.PubMedPubMedCentralCrossRef Smith, M. A., Katsouri, L., Irvine, E. E., Hankir, M. K., Pedroni, S. M., Voshol, P. J., et al. (2015). Ribosomal S6K1 in POMC and AgRP neurons regulates glucose homeostasis but not feeding behavior in mice. Cell Reports, 11(3), 335–343.PubMedPubMedCentralCrossRef
go back to reference Sokoloff, L. (1960). The metabolism of the central nervous system in vivo. In J. Field, H. W. Magoun & V. E. Hall (Eds.), Handbook of physiology, section I, neurophysiology (Vol. 3, pp. 1843–1864). Washington DC: American Physiological Society. Sokoloff, L. (1960). The metabolism of the central nervous system in vivo. In J. Field, H. W. Magoun & V. E. Hall (Eds.), Handbook of physiology, section I, neurophysiology (Vol. 3, pp. 1843–1864). Washington DC: American Physiological Society.
go back to reference Sokoloff, L., Takahashi, S., Gotoh, J., Driscoll, B. F., & Law, M. J. (1996). Contribution of astroglia to functionally activated energy metabolism. Developmental Neuroscience, 18(5–6), 344–352.PubMed Sokoloff, L., Takahashi, S., Gotoh, J., Driscoll, B. F., & Law, M. J. (1996). Contribution of astroglia to functionally activated energy metabolism. Developmental Neuroscience, 18(5–6), 344–352.PubMed
go back to reference Song, Z., Levin, B. E., McArdle, J. J., Bakhos, N., & Routh, V. H. (2001). Convergence of pre-and postsynaptic influences on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes, 50, 2673–2681.PubMedCrossRef Song, Z., Levin, B. E., McArdle, J. J., Bakhos, N., & Routh, V. H. (2001). Convergence of pre-and postsynaptic influences on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes, 50, 2673–2681.PubMedCrossRef
go back to reference Sonnewald, U., Westergaard, N., & Schousboe, A. (1997). Glutamate transport and metabolism in astrocytes. Glia, 21(1), 56–63.PubMedCrossRef Sonnewald, U., Westergaard, N., & Schousboe, A. (1997). Glutamate transport and metabolism in astrocytes. Glia, 21(1), 56–63.PubMedCrossRef
go back to reference Soták, M., Marks, J., & Unwin, R. J. (2017). Putative tissue location and function of the SLC5 family member SGLT3. Experimental Physiology, 102, 5–13.PubMedCrossRef Soták, M., Marks, J., & Unwin, R. J. (2017). Putative tissue location and function of the SLC5 family member SGLT3. Experimental Physiology, 102, 5–13.PubMedCrossRef
go back to reference Sprous, D., & Palmer, K. R. (2010). The T1R2/T1R3 sweet receptor and TRPM5 ion channel taste targets with therapeutic potential. Progress in Molecular Biology and Translational Science, 91, 151–208.PubMedCrossRef Sprous, D., & Palmer, K. R. (2010). The T1R2/T1R3 sweet receptor and TRPM5 ion channel taste targets with therapeutic potential. Progress in Molecular Biology and Translational Science, 91, 151–208.PubMedCrossRef
go back to reference Steinman, M. Q., Gao, V., & Alberini, C. M. (2016). The role of lactate-mediated metabolic coupling between astrocytes and neurons in long-term memory formation. Frontiers in Integrative Neuroscience, 10, 10.PubMedPubMedCentralCrossRef Steinman, M. Q., Gao, V., & Alberini, C. M. (2016). The role of lactate-mediated metabolic coupling between astrocytes and neurons in long-term memory formation. Frontiers in Integrative Neuroscience, 10, 10.PubMedPubMedCentralCrossRef
go back to reference Stride, A., Shields, B., Gill-Carey, O., Chakera, A. J., Colclough, K., Ellard, S., et al. (2014). Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. Diabetologia, 57(1), 54–56.PubMedCrossRef Stride, A., Shields, B., Gill-Carey, O., Chakera, A. J., Colclough, K., Ellard, S., et al. (2014). Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. Diabetologia, 57(1), 54–56.PubMedCrossRef
go back to reference Tallroth, G., Ryding, E., & Agardh, C.-D. (1992). Regional cerebral blood flow in normal man during insulin-induced hypoglycemia and in the recovery period following glucose infusion. Metabolism, 41(7), 717–721.PubMedCrossRef Tallroth, G., Ryding, E., & Agardh, C.-D. (1992). Regional cerebral blood flow in normal man during insulin-induced hypoglycemia and in the recovery period following glucose infusion. Metabolism, 41(7), 717–721.PubMedCrossRef
go back to reference Tang, B. L. (2018). Brain activity-induced neuronal glucose uptake/glycolysis: Is the lactate shuttle not required? Brain Research Bulletin, 137, 225–228.PubMedCrossRef Tang, B. L. (2018). Brain activity-induced neuronal glucose uptake/glycolysis: Is the lactate shuttle not required? Brain Research Bulletin, 137, 225–228.PubMedCrossRef
go back to reference Tang, H.-M. V., Gao, W.-W., Chan, C.-P., Cheng, Y., Deng, J.-J., Yuen, K.-S., et al. (2015). SIRT1 suppresses human T-cell leukemia virus type 1 transcription. Journal of Virology, 89(16), 8623–8631.PubMedPubMedCentralCrossRef Tang, H.-M. V., Gao, W.-W., Chan, C.-P., Cheng, Y., Deng, J.-J., Yuen, K.-S., et al. (2015). SIRT1 suppresses human T-cell leukemia virus type 1 transcription. Journal of Virology, 89(16), 8623–8631.PubMedPubMedCentralCrossRef
go back to reference Thorens, B. (2011). Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes, Obesity and Metabolism, 13(1), 82–88.PubMedCrossRef Thorens, B. (2011). Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes, Obesity and Metabolism, 13(1), 82–88.PubMedCrossRef
go back to reference Thorens, B. (2015). GLUT2, glucose sensing and glucose homeostasis. Diabetologia, 58(2), 221–232.PubMedCrossRef Thorens, B. (2015). GLUT2, glucose sensing and glucose homeostasis. Diabetologia, 58(2), 221–232.PubMedCrossRef
go back to reference Velagapudi, R., El-Bakoush, A., Lepiarz, I., Ogunrinade, F., & Olajide, O. A. (2017). AMPK and SIRT1 activation contribute to inhibition of neuroinflammation by thymoquinone in BV2 microglia. Molecular and Cellular Biochemistry, 435(1), 149–162.PubMedPubMedCentralCrossRef Velagapudi, R., El-Bakoush, A., Lepiarz, I., Ogunrinade, F., & Olajide, O. A. (2017). AMPK and SIRT1 activation contribute to inhibition of neuroinflammation by thymoquinone in BV2 microglia. Molecular and Cellular Biochemistry, 435(1), 149–162.PubMedPubMedCentralCrossRef
go back to reference Veldhuizen, M. G., Babbs, R. K., Patel, B., Fobbs, W., Kroemer, N. B., Garcia, E., et al. (2017). Integration of sweet taste and metabolism determines carbohydrate reward. Current Biology, 27(16), 2476–2485.PubMedCrossRef Veldhuizen, M. G., Babbs, R. K., Patel, B., Fobbs, W., Kroemer, N. B., Garcia, E., et al. (2017). Integration of sweet taste and metabolism determines carbohydrate reward. Current Biology, 27(16), 2476–2485.PubMedCrossRef
go back to reference Verberne, A. J., Sabetghadam, A., & Korim, W. S. (2014). Neural pathways that control the glucose counterregulatory response. Frontiers in Neuroscience, 8, 38.PubMedPubMedCentralCrossRef Verberne, A. J., Sabetghadam, A., & Korim, W. S. (2014). Neural pathways that control the glucose counterregulatory response. Frontiers in Neuroscience, 8, 38.PubMedPubMedCentralCrossRef
go back to reference Wang, R., Liu, X., Hentges, S. T., Dunn-Meynell, A. A., Levin, B. E., Wang, W., et al. (2004). The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes, 53, 1959–1965.PubMedCrossRef Wang, R., Liu, X., Hentges, S. T., Dunn-Meynell, A. A., Levin, B. E., Wang, W., et al. (2004). The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes, 53, 1959–1965.PubMedCrossRef
go back to reference Watterson, K. R., Bestow, D., Gallagher, J., Hamilton, D. L., Ashford, F. B., Meakin, P. J., et al. (2013). Anorexigenic and orexigenic hormone modulation of mammalian target of rapamycin complex 1 activity and the regulation of hypothalamic agouti-related protein mRNA expression. Neurosignals, 21(1–2), 28–41.PubMedCrossRef Watterson, K. R., Bestow, D., Gallagher, J., Hamilton, D. L., Ashford, F. B., Meakin, P. J., et al. (2013). Anorexigenic and orexigenic hormone modulation of mammalian target of rapamycin complex 1 activity and the regulation of hypothalamic agouti-related protein mRNA expression. Neurosignals, 21(1–2), 28–41.PubMedCrossRef
go back to reference Welcome, M. O. (2018). Gastrointestinal physiology: Development, principles and mechanism of regulation. Cham: Springer.CrossRef Welcome, M. O. (2018). Gastrointestinal physiology: Development, principles and mechanism of regulation. Cham: Springer.CrossRef
go back to reference Welcome, M. O., Mastorakis, N. E., & Pereverzev, V. A. (2015) Sweet taste receptor signaling network: Possible implication for cognitive functioning. Neurology Research International 2015, 606479.PubMedPubMedCentralCrossRef Welcome, M. O., Mastorakis, N. E., & Pereverzev, V. A. (2015) Sweet taste receptor signaling network: Possible implication for cognitive functioning. Neurology Research International 2015, 606479.PubMedPubMedCentralCrossRef
go back to reference Welcome, M. O., & Pereverzev, V. A. (2014). Glycemic allostasis during mental activities on fasting in non-alcohol users and alcohol users with different durations of abstinence. Annals of Medical and Health Science Research, 4(3), 199–207.CrossRef Welcome, M. O., & Pereverzev, V. A. (2014). Glycemic allostasis during mental activities on fasting in non-alcohol users and alcohol users with different durations of abstinence. Annals of Medical and Health Science Research, 4(3), 199–207.CrossRef
go back to reference Welcome, M. O., Pereverzeva, E. V., & Pereverzev, V. A. (2010). A novel psychophysiological model of the effect of alcohol use on academic performance of male medical students of Belarusian State Medical University. International Journal of Collaborative Research on Internal Medicine & Public Health, 2(6), 183–197. Welcome, M. O., Pereverzeva, E. V., & Pereverzev, V. A. (2010). A novel psychophysiological model of the effect of alcohol use on academic performance of male medical students of Belarusian State Medical University. International Journal of Collaborative Research on Internal Medicine & Public Health, 2(6), 183–197.
go back to reference Wiesinger, H., Hamprecht, B., & Dringen, R. (1997). Metabolic pathways for glucose in astrocytes. Glia, 21(1), 22–34.PubMedCrossRef Wiesinger, H., Hamprecht, B., & Dringen, R. (1997). Metabolic pathways for glucose in astrocytes. Glia, 21(1), 22–34.PubMedCrossRef
go back to reference Williams, J., & Mobarhan, S. (2003). A critical interaction: Leptin and ghrelin. Nutrition Reviews, 61(11), 391–393.PubMedCrossRef Williams, J., & Mobarhan, S. (2003). A critical interaction: Leptin and ghrelin. Nutrition Reviews, 61(11), 391–393.PubMedCrossRef
go back to reference Wong, G. T., Gannon, K. S., & Margolskee, R. F. (1996). Transduction of bitter and sweet taste by gustducin. Nature, 381(6585), 796–800.PubMedCrossRef Wong, G. T., Gannon, K. S., & Margolskee, R. F. (1996). Transduction of bitter and sweet taste by gustducin. Nature, 381(6585), 796–800.PubMedCrossRef
go back to reference Xia, T., Cheng, Y., Zhang, Q., Xiao, F., Liu, B., Chen, S., et al. (2012). S6K1 in the central nervous system regulates energy expenditure via MC4R/CRH pathways in response to deprivation of an essential amino acid. Diabetes, 61(10), 2461–2471.PubMedPubMedCentralCrossRef Xia, T., Cheng, Y., Zhang, Q., Xiao, F., Liu, B., Chen, S., et al. (2012). S6K1 in the central nervous system regulates energy expenditure via MC4R/CRH pathways in response to deprivation of an essential amino acid. Diabetes, 61(10), 2461–2471.PubMedPubMedCentralCrossRef
go back to reference Yasumatsu, K., Ohkuri, T., Sanematsu, K., Shigemura, N., Katsukawa, H., Sako, N., et al. (2009). Genetically-increased taste cell population with G(alpha)-gustducin-coupled sweet receptors is associated with increase of gurmarin-sensitive taste nerve fibers in mice. BMC Neuroscience, 10, 152.PubMedPubMedCentralCrossRef Yasumatsu, K., Ohkuri, T., Sanematsu, K., Shigemura, N., Katsukawa, H., Sako, N., et al. (2009). Genetically-increased taste cell population with G(alpha)-gustducin-coupled sweet receptors is associated with increase of gurmarin-sensitive taste nerve fibers in mice. BMC Neuroscience, 10, 152.PubMedPubMedCentralCrossRef
go back to reference Ye, X., Li, M., Hou, T., Gao, T., Zhu, W.-G., & Yang, Y. (2017). Sirtuins in glucose and lipid metabolism. Oncotarget, 8(1), 1845–1859.PubMedCrossRef Ye, X., Li, M., Hou, T., Gao, T., Zhu, W.-G., & Yang, Y. (2017). Sirtuins in glucose and lipid metabolism. Oncotarget, 8(1), 1845–1859.PubMedCrossRef
go back to reference Yee, K. K, Sukumaran, S. K., Kotha, R., Gilbertson, T. A., & Margolskee, R. F (2011) Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proceedings of the National Academy of Sciences USA, 108(13), 5431–5436.CrossRef Yee, K. K, Sukumaran, S. K., Kotha, R., Gilbertson, T. A., & Margolskee, R. F (2011) Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proceedings of the National Academy of Sciences USA, 108(13), 5431–5436.CrossRef
go back to reference Yu, J., & Auwerx, J. (2009). The role of sirtuins in the control of metabolic homeostasis. Annals of the New York Academy of Sciences, 1173, E10–E19.PubMedPubMedCentralCrossRef Yu, J., & Auwerx, J. (2009). The role of sirtuins in the control of metabolic homeostasis. Annals of the New York Academy of Sciences, 1173, E10–E19.PubMedPubMedCentralCrossRef
go back to reference Yu, N., Martin, J. L., Stella, N., & Magistretti, P. J. (1993). Arachidonic acid stimulates glucose uptake in cerebral cortical astrocytes. Proceedings of the National Academy of Sciences USA, 90(9), 4042–4046.CrossRef Yu, N., Martin, J. L., Stella, N., & Magistretti, P. J. (1993). Arachidonic acid stimulates glucose uptake in cerebral cortical astrocytes. Proceedings of the National Academy of Sciences USA, 90(9), 4042–4046.CrossRef
go back to reference Zhang, C., Bosch, M. A., Levine, J. E., Rønnekleiv, O. K., & Kelly, M. J. (2007). Gonadotropin-releasing hormone neurons express K(ATP) channels that are regulated by estrogen and responsive to glucose and metabolic inhibition. The Journal of Neuroscience, 27(38), 10153–10164.PubMedCrossRef Zhang, C., Bosch, M. A., Levine, J. E., Rønnekleiv, O. K., & Kelly, M. J. (2007). Gonadotropin-releasing hormone neurons express K(ATP) channels that are regulated by estrogen and responsive to glucose and metabolic inhibition. The Journal of Neuroscience, 27(38), 10153–10164.PubMedCrossRef
go back to reference Zhang, D.-D., Zhang, J.-G., Wang, Y.-Z., Liu, Y., Liu, G.-L., & Li, X.-Y. (2015). Per-Arnt-Sim Kinase (PASK): An emerging regulator of mammalian glucose and lipid metabolism. Nutrients, 7(9), 7437–7450.PubMedPubMedCentralCrossRef Zhang, D.-D., Zhang, J.-G., Wang, Y.-Z., Liu, Y., Liu, G.-L., & Li, X.-Y. (2015). Per-Arnt-Sim Kinase (PASK): An emerging regulator of mammalian glucose and lipid metabolism. Nutrients, 7(9), 7437–7450.PubMedPubMedCentralCrossRef
go back to reference Zhang, Y., Hoon, M. A., Chandrashekar, J., Mueller, K. L., Cook, B., Wu, D., et al. (2003). Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell, 112(3), 293–301.PubMedCrossRef Zhang, Y., Hoon, M. A., Chandrashekar, J., Mueller, K. L., Cook, B., Wu, D., et al. (2003). Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell, 112(3), 293–301.PubMedCrossRef
go back to reference Zhang, Y., Xue, Y., Meng, S., Luo, Y., Liang, J., Li, J., et al. (2016). Inhibition of lactate transport erases drug memory and prevents drug relapse. Biological Psychiatry, 79(11), 928–939.PubMedCrossRef Zhang, Y., Xue, Y., Meng, S., Luo, Y., Liang, J., Li, J., et al. (2016). Inhibition of lactate transport erases drug memory and prevents drug relapse. Biological Psychiatry, 79(11), 928–939.PubMedCrossRef
go back to reference Zhou, L., Huang, W., Xu, Y., Gao, C., Zhang, T., Guo, M., et al. (2018) Sweet taste receptors mediated ROS-NLRP3 inflammasome signaling activation: implications for diabetic nephropathy. Journal of Diabetes Research, 2018, 7078214.PubMedPubMedCentral Zhou, L., Huang, W., Xu, Y., Gao, C., Zhang, T., Guo, M., et al. (2018) Sweet taste receptors mediated ROS-NLRP3 inflammasome signaling activation: implications for diabetic nephropathy. Journal of Diabetes Research, 2018, 7078214.PubMedPubMedCentral
Metadata
Title
Emerging Concepts in Brain Glucose Metabolic Functions: From Glucose Sensing to How the Sweet Taste of Glucose Regulates Its Own Metabolism in Astrocytes and Neurons
Authors
Menizibeya O. Welcome
Nikos E. Mastorakis
Publication date
01-09-2018
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 3/2018
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-018-8503-0

Other articles of this Issue 3/2018

NeuroMolecular Medicine 3/2018 Go to the issue