Skip to main content
Top
Published in: NeuroMolecular Medicine 2/2018

01-06-2018 | Review Paper

How to Spot Congenital Myasthenic Syndromes Resembling the Lambert–Eaton Myasthenic Syndrome? A Brief Review of Clinical, Electrophysiological, and Genetics Features

Authors: Paulo José Lorenzoni, Rosana Herminia Scola, Claudia Suemi Kamoi Kay, Lineu Cesar Werneck, Rita Horvath, Hanns Lochmüller

Published in: NeuroMolecular Medicine | Issue 2/2018

Login to get access

Abstract

Congenital myasthenic syndromes (CMS) are heterogeneous genetic diseases in which neuromuscular transmission is compromised. CMS resembling the Lambert–Eaton myasthenic syndrome (CMS–LEMS) are emerging as a rare group of distinct presynaptic CMS that share the same electrophysiological features. They have low compound muscular action potential amplitude that increment after brief exercise (facilitation) or high-frequency repetitive nerve stimulation. Although clinical signs similar to LEMS can be present, the main hallmark is the electrophysiological findings, which are identical to autoimmune LEMS. CMS–LEMS occurs due to deficits in acetylcholine vesicle release caused by dysfunction of different components in its pathway. To date, the genes that have been associated with CMS–LEMS are AGRN, SYT2, MUNC13-1, VAMP1, and LAMA5. Clinicians should keep in mind these newest subtypes of CMS–LEMS to achieve the correct diagnosis and therapy. We believe that CMS–LEMS must be included as an important diagnostic clue to genetic investigation in the diagnostic algorithms to CMS. We briefly review the main features of CMS–LEMS.
Literature
go back to reference Aran, A., Segel, R., Kaneshige, K., et al. (2017). Vesicular acetylcholine transporter defect underlies devastating congenital myasthenia syndrome. Neurology, 88, 1021–1028.CrossRefPubMedPubMedCentral Aran, A., Segel, R., Kaneshige, K., et al. (2017). Vesicular acetylcholine transporter defect underlies devastating congenital myasthenia syndrome. Neurology, 88, 1021–1028.CrossRefPubMedPubMedCentral
go back to reference Bady, D., Chauplannaz, G., & Carrier, H. (1987). Congenital Lambert-Eaton myasthenic syndrome. Journal of Neurology, Neurosurgery, and Psychiatry, 50, 476–478.CrossRefPubMedPubMedCentral Bady, D., Chauplannaz, G., & Carrier, H. (1987). Congenital Lambert-Eaton myasthenic syndrome. Journal of Neurology, Neurosurgery, and Psychiatry, 50, 476–478.CrossRefPubMedPubMedCentral
go back to reference Beeson, D., Hantaï, D., Lochmüller, H., & Engel, A. G. (2005). 126th International Workshop: congenital myasthenic syndromes, 24–26 September 2004, Naarden, The Netherlands. Neuromuscular Disorders, 15, 498–512.CrossRefPubMed Beeson, D., Hantaï, D., Lochmüller, H., & Engel, A. G. (2005). 126th International Workshop: congenital myasthenic syndromes, 24–26 September 2004, Naarden, The Netherlands. Neuromuscular Disorders, 15, 498–512.CrossRefPubMed
go back to reference Campagna, J. A., Ruegg, M. A., & Bixby, J. L. (1997). Evidence that agrin directly influences presynaptic differentiation at neuromuscular junctions in vitro. European Journal of Neuroscience, 9, 2269–2283.CrossRefPubMed Campagna, J. A., Ruegg, M. A., & Bixby, J. L. (1997). Evidence that agrin directly influences presynaptic differentiation at neuromuscular junctions in vitro. European Journal of Neuroscience, 9, 2269–2283.CrossRefPubMed
go back to reference Engel, A. G., Ohno, K., & Sine, S. M. (2003). Congenital myasthenic syndromes: Progress over the past decade. Muscle and Nerve, 27, 4–25.CrossRefPubMed Engel, A. G., Ohno, K., & Sine, S. M. (2003). Congenital myasthenic syndromes: Progress over the past decade. Muscle and Nerve, 27, 4–25.CrossRefPubMed
go back to reference Engel, A. G., Selcen, D., Shen, X. M., Milone, M., & Harper, C. M. (2016). Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. Neurology Genetics, 2, e105.CrossRefPubMedPubMedCentral Engel, A. G., Selcen, D., Shen, X. M., Milone, M., & Harper, C. M. (2016). Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. Neurology Genetics, 2, e105.CrossRefPubMedPubMedCentral
go back to reference Engel, A. G., Shen, X. M., & Selcen, D. (2018). The unfolding landscape of the congenital myasthenic syndromes. Annals of the New York Academy of Sciences, 1413, 25–34.CrossRefPubMed Engel, A. G., Shen, X. M., & Selcen, D. (2018). The unfolding landscape of the congenital myasthenic syndromes. Annals of the New York Academy of Sciences, 1413, 25–34.CrossRefPubMed
go back to reference Herrmann, D. N., Horvath, R., Sowden, J. E., et al. (2014). Synaptotagmin 2 mutations cause an autosomal-dominant form of Lambert-Eaton myasthenic syndrome and nonprogressive motor neuropathy. American Journal of Human Genetics, 95, 332–339.CrossRefPubMedPubMedCentral Herrmann, D. N., Horvath, R., Sowden, J. E., et al. (2014). Synaptotagmin 2 mutations cause an autosomal-dominant form of Lambert-Eaton myasthenic syndrome and nonprogressive motor neuropathy. American Journal of Human Genetics, 95, 332–339.CrossRefPubMedPubMedCentral
go back to reference Hülsbrink, R., & Hashemolhosseini, S. (2014). Lambert-Eaton myasthenic syndrome: diagnosis, pathogenesis and therapy. Clinical Neurophysiology, 125, 2328–2336.CrossRefPubMed Hülsbrink, R., & Hashemolhosseini, S. (2014). Lambert-Eaton myasthenic syndrome: diagnosis, pathogenesis and therapy. Clinical Neurophysiology, 125, 2328–2336.CrossRefPubMed
go back to reference Lorenzoni, P. J., Scola, R. H., Kay, C. S., Parolin, S. F., & Werneck, L. C. (2010). Non-paraneoplastic Lambert-Eaton myasthenic syndrome: A brief review of 10 cases. Arquivos de Neuro-Psiquiatria, 68, 849–854.CrossRefPubMed Lorenzoni, P. J., Scola, R. H., Kay, C. S., Parolin, S. F., & Werneck, L. C. (2010). Non-paraneoplastic Lambert-Eaton myasthenic syndrome: A brief review of 10 cases. Arquivos de Neuro-Psiquiatria, 68, 849–854.CrossRefPubMed
go back to reference Lorenzoni, P. J., Scola, R. H., Kay, C. S. K., & Werneck, L. C. (2012). Congenital myasthenic syndrome: A brief review. Pediatric Neurology, 46, 141–148.CrossRefPubMed Lorenzoni, P. J., Scola, R. H., Kay, C. S. K., & Werneck, L. C. (2012). Congenital myasthenic syndrome: A brief review. Pediatric Neurology, 46, 141–148.CrossRefPubMed
go back to reference Ma, C., Su, L., Seven, A. B., Yu, Y., & Rizo, J. (2013). Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science, 339, 421–425.CrossRefPubMed Ma, C., Su, L., Seven, A. B., Yu, Y., & Rizo, J. (2013). Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science, 339, 421–425.CrossRefPubMed
go back to reference Malsam, J., Kreye, S., & Sollner, T. H. (2008). Membrane fusion: SNAREs and regulation. Cellular and Molecular Life Sciences, 65, 2814–2832.CrossRefPubMed Malsam, J., Kreye, S., & Sollner, T. H. (2008). Membrane fusion: SNAREs and regulation. Cellular and Molecular Life Sciences, 65, 2814–2832.CrossRefPubMed
go back to reference Maselli, R. A., Arredondo, J., Ferns, M. J., & Wollmann, R. L. (2012). Synaptic basal lamina-associated congenital myasthenic syndromes. Annals of the New York Academy of Sciences, 1275, 36–48.CrossRefPubMed Maselli, R. A., Arredondo, J., Ferns, M. J., & Wollmann, R. L. (2012). Synaptic basal lamina-associated congenital myasthenic syndromes. Annals of the New York Academy of Sciences, 1275, 36–48.CrossRefPubMed
go back to reference Maselli, R. A., Arredondo, J., Vazquez, J., et al. (2017). Presynaptic congenital myasthenic syndrome with a homozygous sequence variant in LAMA5 combines myopia, facial tics, and failure of neuromuscular transmission. American Journal of Medical Genetics, 173, 2240–2245.CrossRefPubMed Maselli, R. A., Arredondo, J., Vazquez, J., et al. (2017). Presynaptic congenital myasthenic syndrome with a homozygous sequence variant in LAMA5 combines myopia, facial tics, and failure of neuromuscular transmission. American Journal of Medical Genetics, 173, 2240–2245.CrossRefPubMed
go back to reference Maselli, R. A., Fernandez, J. M., Arredondo, J., et al. (2012). LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (z-) agrin. Human Genetics, 131, 1123–1135.CrossRefPubMed Maselli, R. A., Fernandez, J. M., Arredondo, J., et al. (2012). LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (z-) agrin. Human Genetics, 131, 1123–1135.CrossRefPubMed
go back to reference McMacken, G., Abicht, A., Evangelista, T., Spendiff, S., & Lochmüller, H. (2017). The increasing genetic and phenotypical diversity of congenital myasthenic syndromes. Neuropediatrics, 48, 294–308.CrossRefPubMed McMacken, G., Abicht, A., Evangelista, T., Spendiff, S., & Lochmüller, H. (2017). The increasing genetic and phenotypical diversity of congenital myasthenic syndromes. Neuropediatrics, 48, 294–308.CrossRefPubMed
go back to reference Miner, J. H., Cunningham, J., & Sanes, J. R. (1998). Roles for laminin in embryogenesis: Exencephaly, syndactyly, and placentopathy in mice lacking the laminin-5 chain. Journal of Cell Biology, 143, 1713–1723.CrossRefPubMedPubMedCentral Miner, J. H., Cunningham, J., & Sanes, J. R. (1998). Roles for laminin in embryogenesis: Exencephaly, syndactyly, and placentopathy in mice lacking the laminin-5 chain. Journal of Cell Biology, 143, 1713–1723.CrossRefPubMedPubMedCentral
go back to reference Nicole, S., Azuma, Y., Bauché, S., Eymard, B., Lochmüller, H., & Slater, C. (2017). Congenital myasthenic syndromes or inherited disorders of neuromuscular transmission: Recent discoveries and open questions. Journal of Neuromuscular Diseases, 4, 269–284.CrossRefPubMedPubMedCentral Nicole, S., Azuma, Y., Bauché, S., Eymard, B., Lochmüller, H., & Slater, C. (2017). Congenital myasthenic syndromes or inherited disorders of neuromuscular transmission: Recent discoveries and open questions. Journal of Neuromuscular Diseases, 4, 269–284.CrossRefPubMedPubMedCentral
go back to reference Nicole, S., Chaouch, A., Torbergsen, T., et al. (2014). Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain, 137, 2429–2443.CrossRefPubMed Nicole, S., Chaouch, A., Torbergsen, T., et al. (2014). Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain, 137, 2429–2443.CrossRefPubMed
go back to reference Nishimune, H., Sanes, J. R., & Carlson, S. S. (2004). A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature, 432, 580–587.CrossRefPubMed Nishimune, H., Sanes, J. R., & Carlson, S. S. (2004). A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature, 432, 580–587.CrossRefPubMed
go back to reference Rizo, J., & Xu, J. (2015). The synaptic vesicle release machinery. Annual Review of Biophysics, 44, 339–367.CrossRefPubMed Rizo, J., & Xu, J. (2015). The synaptic vesicle release machinery. Annual Review of Biophysics, 44, 339–367.CrossRefPubMed
go back to reference Salpietro, V., Lin, W., Vedove, A. D., et al. (2017). Homozygous mutations in VAMP1 cause a presynaptic congenital myasthenic syndrome. Annals of Neurology, 81, 597–603.CrossRefPubMedPubMedCentral Salpietro, V., Lin, W., Vedove, A. D., et al. (2017). Homozygous mutations in VAMP1 cause a presynaptic congenital myasthenic syndrome. Annals of Neurology, 81, 597–603.CrossRefPubMedPubMedCentral
go back to reference Schoser, B., Eymard, B., Datt, J., & Mantegazza, R. (2017). Lambert-Eaton myasthenic syndrome (LEMS): A rare autoimmune presynaptic disorder often associated with cancer. Journal of Neurology, 264, 1854–1863.CrossRefPubMed Schoser, B., Eymard, B., Datt, J., & Mantegazza, R. (2017). Lambert-Eaton myasthenic syndrome (LEMS): A rare autoimmune presynaptic disorder often associated with cancer. Journal of Neurology, 264, 1854–1863.CrossRefPubMed
go back to reference Shen, X. M., Scola, R. H., Lorenzoni, P. J., et al. (2017). Novel synaptobrevin-1 mutation causes fatal congenital myasthenic syndrome. Annals of Clinical and Translational Neurology, 4, 130–138.CrossRefPubMedPubMedCentral Shen, X. M., Scola, R. H., Lorenzoni, P. J., et al. (2017). Novel synaptobrevin-1 mutation causes fatal congenital myasthenic syndrome. Annals of Clinical and Translational Neurology, 4, 130–138.CrossRefPubMedPubMedCentral
go back to reference Shen, X. M., Selcen, D., Brengman, J., & Engel, A. G. (2014). Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology, 83, 2247–2255.CrossRefPubMedPubMedCentral Shen, X. M., Selcen, D., Brengman, J., & Engel, A. G. (2014). Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology, 83, 2247–2255.CrossRefPubMedPubMedCentral
go back to reference Son, Y. J., Scranton, T. W., Sunderland, W. J., et al. (2000). The synaptic vesicle protein SV2 is complexed with an alpha5-containing laminin on the nerve terminal surface. Journal of Biological Chemistry, 275, 451–460.CrossRefPubMed Son, Y. J., Scranton, T. W., Sunderland, W. J., et al. (2000). The synaptic vesicle protein SV2 is complexed with an alpha5-containing laminin on the nerve terminal surface. Journal of Biological Chemistry, 275, 451–460.CrossRefPubMed
go back to reference Souza, P. V., Batistella, G. N., Lino, V. C., Pinto, W. B., Annes, M., & Oliveira, A. S. (2016). Clinical and genetic basis of congenital myasthenic syndromes. Arquivos de Neuro-Psiquiatria, 4, 750–760.CrossRef Souza, P. V., Batistella, G. N., Lino, V. C., Pinto, W. B., Annes, M., & Oliveira, A. S. (2016). Clinical and genetic basis of congenital myasthenic syndromes. Arquivos de Neuro-Psiquiatria, 4, 750–760.CrossRef
go back to reference Titulaer, M. J., Lang, B., & Verschuuren, J. (2011). Lambert–Eaton myasthenic syndrome: from clinical characteristics to therapeutic strategies. Lancet Neurology, 10, 1098–1107.CrossRefPubMed Titulaer, M. J., Lang, B., & Verschuuren, J. (2011). Lambert–Eaton myasthenic syndrome: from clinical characteristics to therapeutic strategies. Lancet Neurology, 10, 1098–1107.CrossRefPubMed
go back to reference Whittaker, R. G., Herrmann, D. N., Bansagi, B., et al. (2015). Electrophysiologic features of SYT2 mutations causing a treatable neuromuscular syndrome. Neurology, 85, 1964–1971.CrossRefPubMedPubMedCentral Whittaker, R. G., Herrmann, D. N., Bansagi, B., et al. (2015). Electrophysiologic features of SYT2 mutations causing a treatable neuromuscular syndrome. Neurology, 85, 1964–1971.CrossRefPubMedPubMedCentral
Metadata
Title
How to Spot Congenital Myasthenic Syndromes Resembling the Lambert–Eaton Myasthenic Syndrome? A Brief Review of Clinical, Electrophysiological, and Genetics Features
Authors
Paulo José Lorenzoni
Rosana Herminia Scola
Claudia Suemi Kamoi Kay
Lineu Cesar Werneck
Rita Horvath
Hanns Lochmüller
Publication date
01-06-2018
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 2/2018
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-018-8490-1

Other articles of this Issue 2/2018

NeuroMolecular Medicine 2/2018 Go to the issue