Skip to main content
Top
Published in: NeuroMolecular Medicine 2/2018

Open Access 01-06-2018 | Review Paper

Neuroimmunologic and Neurotrophic Interactions in Autism Spectrum Disorders: Relationship to Neuroinflammation

Authors: Kshama Ohja, Evelyne Gozal, Margaret Fahnestock, Lu Cai, Jun Cai, Jonathan H. Freedman, Andy Switala, Ayman El-Baz, Gregory Neal Barnes

Published in: NeuroMolecular Medicine | Issue 2/2018

Login to get access

Abstract

Autism spectrum disorders (ASD) are the most prevalent set of pediatric neurobiological disorders. The etiology of ASD has both genetic and environmental components including possible dysfunction of the immune system. The relationship of the immune system to aberrant neural circuitry output in the form of altered behaviors and communication characterized by ASD is unknown. Dysregulation of neurotrophins such as BDNF and their signaling pathways have been implicated in ASD. While abnormal cortical formation and autistic behaviors in mouse models of immune activation have been described, no one theory has been described to link activation of the immune system to specific brain signaling pathways aberrant in ASD. In this paper we explore the relationship between neurotrophin signaling, the immune system and ASD. To this effect we hypothesize that an interplay of dysregulated immune system, synaptogenic growth factors and their signaling pathways contribute to the development of ASD phenotypes.
Literature
go back to reference Ahmad, S. F., Nadeem, A., Ansari, M. A., Bakheet, S. A., Attia, S. M., Zoheir, K. M., et al. (2017a). Imbalance between the anti- and pro- inflammatory milieu in blood leukocytes of autistic children. Molecular Immunology, 82, 57–65.PubMedCrossRef Ahmad, S. F., Nadeem, A., Ansari, M. A., Bakheet, S. A., Attia, S. M., Zoheir, K. M., et al. (2017a). Imbalance between the anti- and pro- inflammatory milieu in blood leukocytes of autistic children. Molecular Immunology, 82, 57–65.PubMedCrossRef
go back to reference Ahmad, S. F., Zoheir, K. M., Ansari, M. A., Nadeem, A., Bakheet, S. A., Al-Ayadhi, L. Y., et al. (2017b). Dysregulation of Th1, Th2, Th17, and T regulatory cell-related transcription factor signaling in children with autism. Molecular Neurobiolology, 54(6), 4390–4400.CrossRef Ahmad, S. F., Zoheir, K. M., Ansari, M. A., Nadeem, A., Bakheet, S. A., Al-Ayadhi, L. Y., et al. (2017b). Dysregulation of Th1, Th2, Th17, and T regulatory cell-related transcription factor signaling in children with autism. Molecular Neurobiolology, 54(6), 4390–4400.CrossRef
go back to reference Aloisi, F., Ria, F., & Adorin, L. (2000). Regulation of T-cell responses by CNS antigen-presenting cells: Different roles for microglia and astrocytes. Immunology Today, 21(3), 141–147.PubMedCrossRef Aloisi, F., Ria, F., & Adorin, L. (2000). Regulation of T-cell responses by CNS antigen-presenting cells: Different roles for microglia and astrocytes. Immunology Today, 21(3), 141–147.PubMedCrossRef
go back to reference Alonso, P., Gratacòs, M., Menchón, J. M., Saiz-Ruiz, J., Segalas, C., Baca-Garcia, E., et al. (2008). Extensive genotyping of the BDNF and NTRK2 genes define protective haplotypes against obsessive-compulsive disorder. Biological Psychiatry, 63(6), 619–628.PubMedCrossRef Alonso, P., Gratacòs, M., Menchón, J. M., Saiz-Ruiz, J., Segalas, C., Baca-Garcia, E., et al. (2008). Extensive genotyping of the BDNF and NTRK2 genes define protective haplotypes against obsessive-compulsive disorder. Biological Psychiatry, 63(6), 619–628.PubMedCrossRef
go back to reference American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., Text Revision). Washington, DC: Authors. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., Text Revision). Washington, DC: Authors.
go back to reference Aoki, C. A., Borchers, A. T., Li, M., Flavell, R. A., Bowlus, C. L., Ansari, A. A., et al. (2005). Transforming growth factor beta (TGF-beta) and autoimmunity. Autoimmunity Reviews, 4(7), 450–459.PubMedCrossRef Aoki, C. A., Borchers, A. T., Li, M., Flavell, R. A., Bowlus, C. L., Ansari, A. A., et al. (2005). Transforming growth factor beta (TGF-beta) and autoimmunity. Autoimmunity Reviews, 4(7), 450–459.PubMedCrossRef
go back to reference Ashwood, P., Anthony, A., Pellicer, A. A., Torrente, F., Walker-Smith, J. A., & Wakefield, A. J. (2003). Intestinal lymphocyte populations in children with regressive autism: Evidence for extensive mucosal immunopathology. Journal of Clinical Immunology, 23(6), 504–517.PubMedCrossRef Ashwood, P., Anthony, A., Pellicer, A. A., Torrente, F., Walker-Smith, J. A., & Wakefield, A. J. (2003). Intestinal lymphocyte populations in children with regressive autism: Evidence for extensive mucosal immunopathology. Journal of Clinical Immunology, 23(6), 504–517.PubMedCrossRef
go back to reference Ashwood, P., Anthony, A., Torrente, F., & Wakefield, A. J. (2004). Spontaneous mucosal lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms: Mucosal immune activation and reduced counter regulatory interleukin-10. Journal of Clinical Immunology, 24(6), 664–673.PubMedCrossRef Ashwood, P., Anthony, A., Torrente, F., & Wakefield, A. J. (2004). Spontaneous mucosal lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms: Mucosal immune activation and reduced counter regulatory interleukin-10. Journal of Clinical Immunology, 24(6), 664–673.PubMedCrossRef
go back to reference Ashwood, P., Enstrom, A., Krakowiak, P., Hertz-Picciotto, I., Hansen, R. L., Croen, L. A., et al. (2008). Decreased transforming growth factor Beta 1 in autism: A potential link between immune dysregulation and impairment in clinical behavioral outcomes. Journal of Neuroimmunology, 204, 149–153.PubMedPubMedCentralCrossRef Ashwood, P., Enstrom, A., Krakowiak, P., Hertz-Picciotto, I., Hansen, R. L., Croen, L. A., et al. (2008). Decreased transforming growth factor Beta 1 in autism: A potential link between immune dysregulation and impairment in clinical behavioral outcomes. Journal of Neuroimmunology, 204, 149–153.PubMedPubMedCentralCrossRef
go back to reference Ashwood, P., Krakowiak, P., Hertz-Picciotto, I., Hansen, R., Pessah, I. N., & Van de Water, J. (2011). Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. Journal of Neuroimmunology, 232(1–2), 196–199.PubMedCrossRef Ashwood, P., Krakowiak, P., Hertz-Picciotto, I., Hansen, R., Pessah, I. N., & Van de Water, J. (2011). Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. Journal of Neuroimmunology, 232(1–2), 196–199.PubMedCrossRef
go back to reference Bailey, A., Le Counteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzad, E., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–77.PubMedCrossRef Bailey, A., Le Counteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzad, E., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–77.PubMedCrossRef
go back to reference Bartlett, C. W., Garoni, N., Millonig, J. H., & Brzustiwicz, L. M. (2005). Three autism candidate genes: A synthesis of human genetic analysis with other disciplines. International Journal of Developmental Neuroscience, 23(2–3), 221–234.PubMedCrossRef Bartlett, C. W., Garoni, N., Millonig, J. H., & Brzustiwicz, L. M. (2005). Three autism candidate genes: A synthesis of human genetic analysis with other disciplines. International Journal of Developmental Neuroscience, 23(2–3), 221–234.PubMedCrossRef
go back to reference Boche, D., Perry, V. H., & Nicoll, J. A. (2013). Review: Activation patterns of microglia and their identification in the human brain. Neuropathology and Applied Neurobiology, 39(1), 3–18.PubMedCrossRef Boche, D., Perry, V. H., & Nicoll, J. A. (2013). Review: Activation patterns of microglia and their identification in the human brain. Neuropathology and Applied Neurobiology, 39(1), 3–18.PubMedCrossRef
go back to reference Bourgeron, T. (2015). From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nature Reviews Neuroscience, 16(9), 551–563.PubMedCrossRef Bourgeron, T. (2015). From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nature Reviews Neuroscience, 16(9), 551–563.PubMedCrossRef
go back to reference Caleo, M., & Maffei, L. (2002). Neurotrophins and plasticity in the visual cortex. Neuroscientist, 8(1), 52–61.PubMedCrossRef Caleo, M., & Maffei, L. (2002). Neurotrophins and plasticity in the visual cortex. Neuroscientist, 8(1), 52–61.PubMedCrossRef
go back to reference Campbell, D. B., Li, C., Sutcliffe, J. S., & Lewitt, P. (2008). Genetic evidence implicating multiple genes in the MET receptor tyrosine kinase pathway in autism spectrum disorder. Autism Research, 1, 159–168.PubMedPubMedCentralCrossRef Campbell, D. B., Li, C., Sutcliffe, J. S., & Lewitt, P. (2008). Genetic evidence implicating multiple genes in the MET receptor tyrosine kinase pathway in autism spectrum disorder. Autism Research, 1, 159–168.PubMedPubMedCentralCrossRef
go back to reference Chan, W. Y., Kohsaka, S., & Rezaie, P. (2007). The origin and cell lineage of microglia: New concepts. Brain Research Reviews, 53, 344–354.PubMedCrossRef Chan, W. Y., Kohsaka, S., & Rezaie, P. (2007). The origin and cell lineage of microglia: New concepts. Brain Research Reviews, 53, 344–354.PubMedCrossRef
go back to reference Chen, B. Y., Wang, X., Wang, Z. Y., Wang, Y. Z., Chen, L. W., & Luo, Z. J. (2013). Brain-derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/β-catenin signaling pathway. Journal of Neuroscience Research, 91(1), 30–41.PubMed Chen, B. Y., Wang, X., Wang, Z. Y., Wang, Y. Z., Chen, L. W., & Luo, Z. J. (2013). Brain-derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/β-catenin signaling pathway. Journal of Neuroscience Research, 91(1), 30–41.PubMed
go back to reference Chhor, V., Le Charpentier, T., Lebon, S., Ore, M. V., Celador, E. L., Josserand, J., et al. (2013). Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain, Behavior, and Immunity, 32, 70–85.PubMedPubMedCentralCrossRef Chhor, V., Le Charpentier, T., Lebon, S., Ore, M. V., Celador, E. L., Josserand, J., et al. (2013). Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain, Behavior, and Immunity, 32, 70–85.PubMedPubMedCentralCrossRef
go back to reference Choi, G. B., Yim, Y. S., Wong, H., Kim, S., Kim, H., Kim, S. V., et al. (2016). The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 351(6276), 933–939.PubMedPubMedCentralCrossRef Choi, G. B., Yim, Y. S., Wong, H., Kim, S., Kim, H., Kim, S. V., et al. (2016). The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 351(6276), 933–939.PubMedPubMedCentralCrossRef
go back to reference Cholfin, J. A., & Rubenstein, J. L. (2007). Patterning of frontal cortex subdivisions by Fgf17. Proceedings of the National Academy of Sciences USA, 104(18), 7652–7657.CrossRef Cholfin, J. A., & Rubenstein, J. L. (2007). Patterning of frontal cortex subdivisions by Fgf17. Proceedings of the National Academy of Sciences USA, 104(18), 7652–7657.CrossRef
go back to reference Cohen-Cory, S., & Frazer, S. E. (1995). Effects of brain-derived neurotrophic factor on optic axon branching and remodeling in vivo. Nature, 378, 192–196.PubMedCrossRef Cohen-Cory, S., & Frazer, S. E. (1995). Effects of brain-derived neurotrophic factor on optic axon branching and remodeling in vivo. Nature, 378, 192–196.PubMedCrossRef
go back to reference Colvert, E., Tick, B., McEwen, F., Stewart, C., Curran, S. R., Woodhouse, E., et al. (2015). Heritability of Autism Spectrum Disorder in a UK Population-Based Twin Sample. JAMA Psychiatry, 72(5), 415–423.PubMedPubMedCentralCrossRef Colvert, E., Tick, B., McEwen, F., Stewart, C., Curran, S. R., Woodhouse, E., et al. (2015). Heritability of Autism Spectrum Disorder in a UK Population-Based Twin Sample. JAMA Psychiatry, 72(5), 415–423.PubMedPubMedCentralCrossRef
go back to reference Connolly, A. M., Chez, M., Streif, E. M., Keeling, R. M., Golumbek, P. T., Kwon, J. M., et al. (2006). Brain-derived neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic spectrum disorders, Landau-Kleffner syndrome, and epilepsy. Biological Psychiatry, 59(4), 354–363.PubMedCrossRef Connolly, A. M., Chez, M., Streif, E. M., Keeling, R. M., Golumbek, P. T., Kwon, J. M., et al. (2006). Brain-derived neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic spectrum disorders, Landau-Kleffner syndrome, and epilepsy. Biological Psychiatry, 59(4), 354–363.PubMedCrossRef
go back to reference Correia, C. T., Coutinho, A. M., Sequeira, A. F., Sousa, I. G., Lourenco-Venda, L., Almeida, J. P., et al. (2010). Increased BDNF levels and NTRK2 gene association suggest a disruption of BDNF/TrkB signaling in autism. Genes, Brain and Behavior, 9(7), 841–848.CrossRef Correia, C. T., Coutinho, A. M., Sequeira, A. F., Sousa, I. G., Lourenco-Venda, L., Almeida, J. P., et al. (2010). Increased BDNF levels and NTRK2 gene association suggest a disruption of BDNF/TrkB signaling in autism. Genes, Brain and Behavior, 9(7), 841–848.CrossRef
go back to reference Croonenberghs, J., Bosmans, E., Deboutte, D., Kenis, G., & Maes, M. (2002). Activation of the inflammatory response system in autism. Neuropsychobiology, 45(1), 1–6.PubMedCrossRef Croonenberghs, J., Bosmans, E., Deboutte, D., Kenis, G., & Maes, M. (2002). Activation of the inflammatory response system in autism. Neuropsychobiology, 45(1), 1–6.PubMedCrossRef
go back to reference Curran, L. K., Newschaffer, C. J., Lee, L. C., Crawford, S. O., Johnston, M. V., & Zimmerman, A. W. (2007). Behaviors associated with fever in children with autism spectrum disorders. Pediatrics, 120(6), e1386–e1392.PubMedCrossRef Curran, L. K., Newschaffer, C. J., Lee, L. C., Crawford, S. O., Johnston, M. V., & Zimmerman, A. W. (2007). Behaviors associated with fever in children with autism spectrum disorders. Pediatrics, 120(6), e1386–e1392.PubMedCrossRef
go back to reference De Rubeis, S., He, X., Goldberg, A. P., Poultney, C. S., Samocha, K., Cicek, A. E., et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515(7526), 209–215.PubMedPubMedCentralCrossRef De Rubeis, S., He, X., Goldberg, A. P., Poultney, C. S., Samocha, K., Cicek, A. E., et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515(7526), 209–215.PubMedPubMedCentralCrossRef
go back to reference Devlin, B., & Scherer, S. W. (2012). Genetic architecture in autism spectrum disorder. Current Opinion in Genetics & Development, 22(3), 229–237.CrossRef Devlin, B., & Scherer, S. W. (2012). Genetic architecture in autism spectrum disorder. Current Opinion in Genetics & Development, 22(3), 229–237.CrossRef
go back to reference Dhabhar, F. S. (2014). Effects of stress on immune function: The good, the bad, and the beautiful. Immunology Research, 58, 193–210.CrossRef Dhabhar, F. S. (2014). Effects of stress on immune function: The good, the bad, and the beautiful. Immunology Research, 58, 193–210.CrossRef
go back to reference Edmiston, E., Ashwood, P., & Van de Water, J. (2017). Autoimmunity, Autoantibodies, and Autism Spectrum Disorder. Biological Psychiatry, 81(5), 383–390.PubMedCrossRef Edmiston, E., Ashwood, P., & Van de Water, J. (2017). Autoimmunity, Autoantibodies, and Autism Spectrum Disorder. Biological Psychiatry, 81(5), 383–390.PubMedCrossRef
go back to reference Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269.PubMedCrossRef Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269.PubMedCrossRef
go back to reference Enstrom, A. M., Lit, L., Onore, C. E., Gregg, J. P., Hansen, R. L., Pessah, I. N., et al. (2009). Altered gene expression and function of peripheral blood natural killer cells in children with autism. Brain, Behavior, and Immunity, 23, 124–133.PubMedCrossRef Enstrom, A. M., Lit, L., Onore, C. E., Gregg, J. P., Hansen, R. L., Pessah, I. N., et al. (2009). Altered gene expression and function of peripheral blood natural killer cells in children with autism. Brain, Behavior, and Immunity, 23, 124–133.PubMedCrossRef
go back to reference Enstrom, A. M., Onore, C. E., Van de Water, J. A., et al. (2010). Differential monocyte responses to TLR ligands in children with autism spectrum disorders. Brain, Behavior, and Immunity, 24(1), 64–71.PubMedCrossRef Enstrom, A. M., Onore, C. E., Van de Water, J. A., et al. (2010). Differential monocyte responses to TLR ligands in children with autism spectrum disorders. Brain, Behavior, and Immunity, 24(1), 64–71.PubMedCrossRef
go back to reference Estes, M. L., & McAllister, A. K. (2015). Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nature Reviews in Neuroscience, 16(8), 469–486.PubMedCrossRef Estes, M. L., & McAllister, A. K. (2015). Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nature Reviews in Neuroscience, 16(8), 469–486.PubMedCrossRef
go back to reference Falk, S., Wurdak, H., Ittner, L. M., Ille, F., Sumara, G., Schmid, M. T., et al. (2008). Brain Area-Specific Effect of TGF-β Signaling on Wnt-Dependent Neural Stem Cell Expansion. Cell Stem Cell, 2(5), 472–483.PubMedCrossRef Falk, S., Wurdak, H., Ittner, L. M., Ille, F., Sumara, G., Schmid, M. T., et al. (2008). Brain Area-Specific Effect of TGF-β Signaling on Wnt-Dependent Neural Stem Cell Expansion. Cell Stem Cell, 2(5), 472–483.PubMedCrossRef
go back to reference Fanous, A. H., Neale, M. C., Straub, R. E., Webb, B. T., O’Neill, A. F., Walsh, D., et al. (2004). Clinical features of psychotic disorders and polymorphisms in HT2A, DRD2, DRD4, SLC6A3 (DAT1), and BDNF: A family based association study. American Journal of Medical Genetics Part B Neuropsychiatric Genetics, 125B(1), 69–78.CrossRef Fanous, A. H., Neale, M. C., Straub, R. E., Webb, B. T., O’Neill, A. F., Walsh, D., et al. (2004). Clinical features of psychotic disorders and polymorphisms in HT2A, DRD2, DRD4, SLC6A3 (DAT1), and BDNF: A family based association study. American Journal of Medical Genetics Part B Neuropsychiatric Genetics, 125B(1), 69–78.CrossRef
go back to reference Fenner, B. M. (2012). Truncated TrkB: Beyond a dominant negative receptor. Cytokine TrkB signaling and its role in autistic behaviour. Growth Factor Reviews, 23(1–2), 15–24.CrossRef Fenner, B. M. (2012). Truncated TrkB: Beyond a dominant negative receptor. Cytokine TrkB signaling and its role in autistic behaviour. Growth Factor Reviews, 23(1–2), 15–24.CrossRef
go back to reference Flavell, R. A. (1999). The molecular basis of T cell differentiation. Immunological Research, 19, 159–168.CrossRef Flavell, R. A. (1999). The molecular basis of T cell differentiation. Immunological Research, 19, 159–168.CrossRef
go back to reference Franco, R., & Fernandez-Surarez, D. (2015). Alternatively activated microglia and macrophages in the central nervous system. Progress in Neurobiology, 131, 65–86.PubMedCrossRef Franco, R., & Fernandez-Surarez, D. (2015). Alternatively activated microglia and macrophages in the central nervous system. Progress in Neurobiology, 131, 65–86.PubMedCrossRef
go back to reference Frazier, T. W., Thompson, L., Youngstrom, E. A., Law, P., Hardan, A. Y., Eng, C., et al. (2014). A twin study of heritable and shared environmental contributions to autism. Journal of Autism and Developmental Disorders, 44(8), 2013–2025.PubMedPubMedCentralCrossRef Frazier, T. W., Thompson, L., Youngstrom, E. A., Law, P., Hardan, A. Y., Eng, C., et al. (2014). A twin study of heritable and shared environmental contributions to autism. Journal of Autism and Developmental Disorders, 44(8), 2013–2025.PubMedPubMedCentralCrossRef
go back to reference Gant, J. C., Thibault, O., Blalock, E. M., Yang, J., Bachstetter, A., Kotick, J., et al. (2009). Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: Implications for autism and epilepsy. Epilepsia, 50(4), 629–645.PubMedCrossRef Gant, J. C., Thibault, O., Blalock, E. M., Yang, J., Bachstetter, A., Kotick, J., et al. (2009). Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: Implications for autism and epilepsy. Epilepsia, 50(4), 629–645.PubMedCrossRef
go back to reference Garbett, K., Ebert, P. J., Mitchell, A., Lintas, C., Manzi, B., Mirnics, K., et al. (2008). Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiology of Disease, 30(3), 303–311.PubMedPubMedCentralCrossRef Garbett, K., Ebert, P. J., Mitchell, A., Lintas, C., Manzi, B., Mirnics, K., et al. (2008). Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiology of Disease, 30(3), 303–311.PubMedPubMedCentralCrossRef
go back to reference Garcia, K. L., Yu, G., Nicolini, C., Michalski, B., Garzon, D. J., Chiu, V. S., et al. (2012). Altered Balance of Proteolytic Isoforms of Pro–Brain-Derived Neurotrophic Factor in Autism. Journal of Neuropathology and Experimental Neurology, 71(4), 289–297.PubMedPubMedCentralCrossRef Garcia, K. L., Yu, G., Nicolini, C., Michalski, B., Garzon, D. J., Chiu, V. S., et al. (2012). Altered Balance of Proteolytic Isoforms of Pro–Brain-Derived Neurotrophic Factor in Autism. Journal of Neuropathology and Experimental Neurology, 71(4), 289–297.PubMedPubMedCentralCrossRef
go back to reference Gentile, I., Zappulo, E., Militerni, R., Pascotto, A., Borgia, G., & Bravaccio, C. (2013). Etiopathogenesis of autism spectrum disorders: Fitting the pieces of the puzzle together. Medical Hypotheses, 81(1), 26–35.PubMedCrossRef Gentile, I., Zappulo, E., Militerni, R., Pascotto, A., Borgia, G., & Bravaccio, C. (2013). Etiopathogenesis of autism spectrum disorders: Fitting the pieces of the puzzle together. Medical Hypotheses, 81(1), 26–35.PubMedCrossRef
go back to reference Gesundheit, B., Rosenzweig, J. P., Naor, D., Lerer, B., Zachor, D. A., Prochazja, V., et al. (2013). Immunological and autoimmune considerations of Autism Spectrum Disorders. Journal of Autoimmunity, 44, 1–7.PubMedCrossRef Gesundheit, B., Rosenzweig, J. P., Naor, D., Lerer, B., Zachor, D. A., Prochazja, V., et al. (2013). Immunological and autoimmune considerations of Autism Spectrum Disorders. Journal of Autoimmunity, 44, 1–7.PubMedCrossRef
go back to reference Gkogkas, C. G., Khoutorsky, A., Ran, I., Rampakakis, E., Nevarko, T., Weatherill, D. B., et al. (2013). Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature, 493, 371–377.PubMedCrossRef Gkogkas, C. G., Khoutorsky, A., Ran, I., Rampakakis, E., Nevarko, T., Weatherill, D. B., et al. (2013). Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature, 493, 371–377.PubMedCrossRef
go back to reference Goines, P. E., & Ashwood, P. (2013). Cytokine dysregulation in autism spectrum disorders (ASD): Possible role of the environment. Neurotoxicology and Teratology, 36, 67–81.PubMedCrossRef Goines, P. E., & Ashwood, P. (2013). Cytokine dysregulation in autism spectrum disorders (ASD): Possible role of the environment. Neurotoxicology and Teratology, 36, 67–81.PubMedCrossRef
go back to reference Guan, Z., & Fang, J. (2006). Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain, Behavior, and Immunity, 20(1), 64–71.PubMedCrossRef Guan, Z., & Fang, J. (2006). Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain, Behavior, and Immunity, 20(1), 64–71.PubMedCrossRef
go back to reference Gupta, S., Aggarwal, S., Rashanravan, B., & Lee, T. (1998). Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism. Journal of Neuroimmunology, 85(1), 106–109.PubMedCrossRef Gupta, S., Aggarwal, S., Rashanravan, B., & Lee, T. (1998). Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism. Journal of Neuroimmunology, 85(1), 106–109.PubMedCrossRef
go back to reference Hallmayer, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B., Torigoe, T., et al. (2011). Genetic heritability and shared environmental factors among twin pairs with autism. Archives of General Psychiatry, 68(11), 1095–1102.PubMedPubMedCentralCrossRef Hallmayer, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B., Torigoe, T., et al. (2011). Genetic heritability and shared environmental factors among twin pairs with autism. Archives of General Psychiatry, 68(11), 1095–1102.PubMedPubMedCentralCrossRef
go back to reference Hiester, B. G., Galati, D. F., Salinas, Patricia C., & Jones, K. R. (2013). Neurotrophin and Wnt signaling cooperatively regulate dendritic spine formation. Molecular Cellular Neuroscience, 56, 115–127.PubMedPubMedCentralCrossRef Hiester, B. G., Galati, D. F., Salinas, Patricia C., & Jones, K. R. (2013). Neurotrophin and Wnt signaling cooperatively regulate dendritic spine formation. Molecular Cellular Neuroscience, 56, 115–127.PubMedPubMedCentralCrossRef
go back to reference Je, H. S., Yang, F., Ji, Y., Nagappan, G., Heamstead, B. L., & Lu, B. (2012). Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proceedings of the National Academy of Sciences USA, 109, 15924–15929.CrossRef Je, H. S., Yang, F., Ji, Y., Nagappan, G., Heamstead, B. L., & Lu, B. (2012). Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proceedings of the National Academy of Sciences USA, 109, 15924–15929.CrossRef
go back to reference Jyonouchi, H., Geng, L., & Davidow, A. L. (2014). Cytokine profiles by peripheral blood monocytes are associated with changes in behavioral symptoms following immune insults in a subset of ASD subjects: An inflammatory subtype? Journal of Neuroinflammation, 27(11), 187. https://doi.org/10.1186/s12974-014-0187-2.CrossRef Jyonouchi, H., Geng, L., & Davidow, A. L. (2014). Cytokine profiles by peripheral blood monocytes are associated with changes in behavioral symptoms following immune insults in a subset of ASD subjects: An inflammatory subtype? Journal of Neuroinflammation, 27(11), 187. https://​doi.​org/​10.​1186/​s12974-014-0187-2.CrossRef
go back to reference Jyonouchi, H., Geng, L., Streck, D. L., & Toruner, G. A. (2011). Children with autism spectrum disorders (ASD) who exhibit chronic gastrointestinal (GI) symptoms and marked fluctuation of behavioral symptoms exhibit distinct innate immune abnormalities and transcriptional profiles of peripheral blood (PB) monocytes. Journal of Neuroimmunology, 238(1–2), 73–80.PubMedCrossRef Jyonouchi, H., Geng, L., Streck, D. L., & Toruner, G. A. (2011). Children with autism spectrum disorders (ASD) who exhibit chronic gastrointestinal (GI) symptoms and marked fluctuation of behavioral symptoms exhibit distinct innate immune abnormalities and transcriptional profiles of peripheral blood (PB) monocytes. Journal of Neuroimmunology, 238(1–2), 73–80.PubMedCrossRef
go back to reference Jyonouchi, H., Sun, S., & Le, H. (2001). Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. Journal of Neuroimmunology, 120, 170–179.PubMedCrossRef Jyonouchi, H., Sun, S., & Le, H. (2001). Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. Journal of Neuroimmunology, 120, 170–179.PubMedCrossRef
go back to reference Kang, H., & Schuman, E. M. (1995). Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science, 267(5204), 1658–1662.PubMedCrossRef Kang, H., & Schuman, E. M. (1995). Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science, 267(5204), 1658–1662.PubMedCrossRef
go back to reference Kaplan, D. R., & Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system. Current Opinion in Neurobiology, 10(3), 381–391.PubMedCrossRef Kaplan, D. R., & Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system. Current Opinion in Neurobiology, 10(3), 381–391.PubMedCrossRef
go back to reference Kelleher, R. J., 3rd, & Bear, M. F. (2008). The autistic neuron: Troubled translation? Cell, 135, 401–406.PubMedCrossRef Kelleher, R. J., 3rd, & Bear, M. F. (2008). The autistic neuron: Troubled translation? Cell, 135, 401–406.PubMedCrossRef
go back to reference Krakowiak, P., Goines, P. E., Tancredi, D. J., Ashwood, P., Hansen, R. L., Herz- Picciotto, I., et al. (2017a). Neonatal Cytokine Profiles Associated with Autism Spectrum Disorder. Biological Psychiatry, 81(5), 442–451.PubMedCrossRef Krakowiak, P., Goines, P. E., Tancredi, D. J., Ashwood, P., Hansen, R. L., Herz- Picciotto, I., et al. (2017a). Neonatal Cytokine Profiles Associated with Autism Spectrum Disorder. Biological Psychiatry, 81(5), 442–451.PubMedCrossRef
go back to reference Krakowiak, P., Walker, C. K., Tancredi, D., Hertz-Picciotto, I., & Van de Water, J. (2017b). Autism-specific maternal anti-fetal brain autoantibodies are associated with metabolic conditions. Autism Research, 10(1), 89–98.PubMedCrossRef Krakowiak, P., Walker, C. K., Tancredi, D., Hertz-Picciotto, I., & Van de Water, J. (2017b). Autism-specific maternal anti-fetal brain autoantibodies are associated with metabolic conditions. Autism Research, 10(1), 89–98.PubMedCrossRef
go back to reference Kwan, V., Unda, B. K., & Singh, K. K. (2016). Wnt signaling networks in autism spectrum disorder and intellectual disability. Journal of Neurodevelopmental Disorders, 8, 45. (eCollection 2016. Review).PubMedPubMedCentralCrossRef Kwan, V., Unda, B. K., & Singh, K. K. (2016). Wnt signaling networks in autism spectrum disorder and intellectual disability. Journal of Neurodevelopmental Disorders, 8, 45. (eCollection 2016. Review).PubMedPubMedCentralCrossRef
go back to reference Lan, R. Y., Ansari, A. A., Lian, Z. X., & Gershwin, M. E. (2005). Regulatory T cells: Development, function and role in autoimmunity. Autoimmunity Reviews, 4(6), 351–363.PubMedCrossRef Lan, R. Y., Ansari, A. A., Lian, Z. X., & Gershwin, M. E. (2005). Regulatory T cells: Development, function and role in autoimmunity. Autoimmunity Reviews, 4(6), 351–363.PubMedCrossRef
go back to reference Lee, R., Kermani, P., Teng, K. K., & Hempstead, B. L. (2001). Regulation of cell survival by secreted proneurotrophins. Science, 294(5548), 1945–1948.PubMedCrossRef Lee, R., Kermani, P., Teng, K. K., & Hempstead, B. L. (2001). Regulation of cell survival by secreted proneurotrophins. Science, 294(5548), 1945–1948.PubMedCrossRef
go back to reference Li, X., Chauhan, A., Sheikh, A. M., Patil, S., Chauhan, V., Li, X. M., et al. (2009). Elevated immune response in the brain of autistic patients. Journal of Neuroimmunology, 207(1–2), 111–116.PubMedPubMedCentralCrossRef Li, X., Chauhan, A., Sheikh, A. M., Patil, S., Chauhan, V., Li, X. M., et al. (2009). Elevated immune response in the brain of autistic patients. Journal of Neuroimmunology, 207(1–2), 111–116.PubMedPubMedCentralCrossRef
go back to reference Lintas, C., & Persico, A. (2009). Autistic phenotypes and genetic testing: State-of-the-art for the clinical geneticist. Journal of Medical Genetics, 46, 1–8.PubMedCrossRef Lintas, C., & Persico, A. (2009). Autistic phenotypes and genetic testing: State-of-the-art for the clinical geneticist. Journal of Medical Genetics, 46, 1–8.PubMedCrossRef
go back to reference Mantel, P. Y., & Schmidt-Weber, C. B. (2011). Transforming growth factor-beta: Recent advances on its role in immune tolerance. Methods in Molecular Biology, 677, 303–338.PubMedCrossRef Mantel, P. Y., & Schmidt-Weber, C. B. (2011). Transforming growth factor-beta: Recent advances on its role in immune tolerance. Methods in Molecular Biology, 677, 303–338.PubMedCrossRef
go back to reference Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., & Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25, 677–686.PubMedCrossRef Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., & Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25, 677–686.PubMedCrossRef
go back to reference Marui, T., Funatogawa, I., Koishi, S., Yamamoto, K., Matsumoto, H., Jinde, S., et al. (2010). Association between autism and variants in the wingless-type MMTV integration site family member 2 (WNT2) gene. International Journal of Neuropsychopharmacology, 13, 443–449.PubMedCrossRef Marui, T., Funatogawa, I., Koishi, S., Yamamoto, K., Matsumoto, H., Jinde, S., et al. (2010). Association between autism and variants in the wingless-type MMTV integration site family member 2 (WNT2) gene. International Journal of Neuropsychopharmacology, 13, 443–449.PubMedCrossRef
go back to reference McAllister, A. K., Lo, D. C., & Katz, L. C. (1995). Neurotrophins regulate dendritic growth in developing visual cortex. Neuron, 115(4), 791–803.CrossRef McAllister, A. K., Lo, D. C., & Katz, L. C. (1995). Neurotrophins regulate dendritic growth in developing visual cortex. Neuron, 115(4), 791–803.CrossRef
go back to reference McQuillan, K., Lynch, M. A., & Mills, K. H. (2010). Activation of mixed glia by Aβ-specific Th1 and Th17 cells and its regulation by Th2 cells. Brain, Behavior, and Immunity, 24(4), 598–607.PubMedCrossRef McQuillan, K., Lynch, M. A., & Mills, K. H. (2010). Activation of mixed glia by Aβ-specific Th1 and Th17 cells and its regulation by Th2 cells. Brain, Behavior, and Immunity, 24(4), 598–607.PubMedCrossRef
go back to reference Medzhitov, R., & Janeway, C., Jr. (2000). Innate immunity. New England Journal of Medicine, 343, 338–344.PubMedCrossRef Medzhitov, R., & Janeway, C., Jr. (2000). Innate immunity. New England Journal of Medicine, 343, 338–344.PubMedCrossRef
go back to reference Memet, S. (2006). NFκB functions in the nervous system: From development to disease. Biochemical Pharmacology, 72, 1180–1195.PubMedCrossRef Memet, S. (2006). NFκB functions in the nervous system: From development to disease. Biochemical Pharmacology, 72, 1180–1195.PubMedCrossRef
go back to reference Menna, E., Zambetti, S., Morini, R., Donzelli, A., Disanza, A., Calviogioni, D., et al. (2013). Eps8 controls dendritic spine density and synaptic plasticity through its actin-capping activity. EMBO Journal, 32(12), 1730–1744.PubMedPubMedCentralCrossRef Menna, E., Zambetti, S., Morini, R., Donzelli, A., Disanza, A., Calviogioni, D., et al. (2013). Eps8 controls dendritic spine density and synaptic plasticity through its actin-capping activity. EMBO Journal, 32(12), 1730–1744.PubMedPubMedCentralCrossRef
go back to reference Michalski, B., & Fahnestock, M. (2003). Pro-brain-derived neurotrophic factor is decreased in parietal cortex in Alzheimer’s disease. Brain Research. Molecular Brain Research, 111(1–2), 148–154.PubMedCrossRef Michalski, B., & Fahnestock, M. (2003). Pro-brain-derived neurotrophic factor is decreased in parietal cortex in Alzheimer’s disease. Brain Research. Molecular Brain Research, 111(1–2), 148–154.PubMedCrossRef
go back to reference Minichiello, L., Korte, M., Wolfer, D., Kühn, R., Unsicker, K., Cestari, V., et al. (1999). Essential role for TrkB receptors in hippocampus-mediated learning. Neuron, 24, 401–414.PubMedCrossRef Minichiello, L., Korte, M., Wolfer, D., Kühn, R., Unsicker, K., Cestari, V., et al. (1999). Essential role for TrkB receptors in hippocampus-mediated learning. Neuron, 24, 401–414.PubMedCrossRef
go back to reference Miyazaki, K., Narita, N., Sakuta, R., Miyahara, T., Naruse, H., Okado, N., et al. (2004). Serum neurotrophin concentrations in autism and mental retardation: A pilot study. Brain Development, 26(5), 292–295.PubMedCrossRef Miyazaki, K., Narita, N., Sakuta, R., Miyahara, T., Naruse, H., Okado, N., et al. (2004). Serum neurotrophin concentrations in autism and mental retardation: A pilot study. Brain Development, 26(5), 292–295.PubMedCrossRef
go back to reference Mizoguchi, H., Nakade, J., Tachibana, M., Ibi, D., Someya, E., Koike, H., et al. (2011). Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus. Journal of Neuroscience, 31(36), 12963–12971.PubMedCrossRef Mizoguchi, H., Nakade, J., Tachibana, M., Ibi, D., Someya, E., Koike, H., et al. (2011). Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus. Journal of Neuroscience, 31(36), 12963–12971.PubMedCrossRef
go back to reference Molloy, C. A., Morrow, A. L., Meinzen-Derr, J., Schleifer, K., Dienger, K., Manning-Courtney, P., et al. (2006). Elevated cytokine levels in children with autism spectrum disorder. Journal Neuroimmunology, 172, 198–205.CrossRef Molloy, C. A., Morrow, A. L., Meinzen-Derr, J., Schleifer, K., Dienger, K., Manning-Courtney, P., et al. (2006). Elevated cytokine levels in children with autism spectrum disorder. Journal Neuroimmunology, 172, 198–205.CrossRef
go back to reference Morgan, J. T., Chana, G., Pardo, C. A., Achim, C., Semendeferi, K., Buckwalter, J., et al. (2010). Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biological Psychiatry, 68, 368–376.PubMedCrossRef Morgan, J. T., Chana, G., Pardo, C. A., Achim, C., Semendeferi, K., Buckwalter, J., et al. (2010). Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biological Psychiatry, 68, 368–376.PubMedCrossRef
go back to reference Murphy, A. C., Lalor, S. J., Lynch, M. A., & Mills, K. H. (2010). Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 24(4), 641–651.PubMedCrossRef Murphy, A. C., Lalor, S. J., Lynch, M. A., & Mills, K. H. (2010). Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 24(4), 641–651.PubMedCrossRef
go back to reference Nimmerjanhn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308, 1314–1318.CrossRef Nimmerjanhn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308, 1314–1318.CrossRef
go back to reference Nishimura, K., Nakamura, K., Anitha, A., Yamada, K., Tsujii, M., Iwayama, Y., et al. (2007). Genetic analyses of the brain-derived neurotrophic factor (BDNF) gene in autism. Biochemical Biophysical Research Communications, 356(1), 200–206.PubMedCrossRef Nishimura, K., Nakamura, K., Anitha, A., Yamada, K., Tsujii, M., Iwayama, Y., et al. (2007). Genetic analyses of the brain-derived neurotrophic factor (BDNF) gene in autism. Biochemical Biophysical Research Communications, 356(1), 200–206.PubMedCrossRef
go back to reference Onore, C., Enstrom, A., Krakowiak, P., Hertz-Picciotto, I., Hansen, R., Van de Water, J., et al. (2009). Decreased cellular IL-23 but not IL-17 production in children with autism spectrum disorders. Journal of Neuroimmunology, 216(1–2), 126–129.PubMedPubMedCentralCrossRef Onore, C., Enstrom, A., Krakowiak, P., Hertz-Picciotto, I., Hansen, R., Van de Water, J., et al. (2009). Decreased cellular IL-23 but not IL-17 production in children with autism spectrum disorders. Journal of Neuroimmunology, 216(1–2), 126–129.PubMedPubMedCentralCrossRef
go back to reference Pang, P. T., Teng, H. K., Zaitsev, E., Woo, N. T., Sakata, K., Zhen, S., et al. (2004). Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science, 306(5695), 487–491.PubMedCrossRef Pang, P. T., Teng, H. K., Zaitsev, E., Woo, N. T., Sakata, K., Zhen, S., et al. (2004). Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science, 306(5695), 487–491.PubMedCrossRef
go back to reference Paolicelli, R. C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P., et al. (2011). Synaptic pruning by microglia is necessary for normal brain development. Science, 71, 656–662. Paolicelli, R. C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P., et al. (2011). Synaptic pruning by microglia is necessary for normal brain development. Science, 71, 656–662.
go back to reference Parkhurst, C. N., Yang, G., Ninan, I., Savas, J. N., Yates, J. R., Lafgaille, J. J., et al. (2013). Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell, 155, 1596–1609.PubMedPubMedCentralCrossRef Parkhurst, C. N., Yang, G., Ninan, I., Savas, J. N., Yates, J. R., Lafgaille, J. J., et al. (2013). Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell, 155, 1596–1609.PubMedPubMedCentralCrossRef
go back to reference Persico, T., & Bourgeron, T. (2006). Searching for ways out of the autism maze: Genetic, epigenetic and environmental clues. Trends in Neuroscience, 29, 349–358.CrossRef Persico, T., & Bourgeron, T. (2006). Searching for ways out of the autism maze: Genetic, epigenetic and environmental clues. Trends in Neuroscience, 29, 349–358.CrossRef
go back to reference Polleux, F., & Lauder, J. M. (2004). Towards a Developmental Neurobiology of Autism. Mental Retardation and Developmental Disabilities Research Reviews, 10(4), 303–317.PubMedCrossRef Polleux, F., & Lauder, J. M. (2004). Towards a Developmental Neurobiology of Autism. Mental Retardation and Developmental Disabilities Research Reviews, 10(4), 303–317.PubMedCrossRef
go back to reference Prakash, N., Cohen-Cory, S., & Frostig, R. (1996). Rapid and opposite effects of BDNF and NGF on the functional organization of the adult cortex in vivo. Nature, 381, 702–706.PubMedCrossRef Prakash, N., Cohen-Cory, S., & Frostig, R. (1996). Rapid and opposite effects of BDNF and NGF on the functional organization of the adult cortex in vivo. Nature, 381, 702–706.PubMedCrossRef
go back to reference Quattrocchi, C. C., Wannenes, F., Persico, A. M., Ciafre, S. A., D’argengelo, G., Farace, M. G., et al. (2002). Reelin is a serine protease of the extracellular matrix. Journal of Biological Chemistry, 277, 303–309.PubMedCrossRef Quattrocchi, C. C., Wannenes, F., Persico, A. M., Ciafre, S. A., D’argengelo, G., Farace, M. G., et al. (2002). Reelin is a serine protease of the extracellular matrix. Journal of Biological Chemistry, 277, 303–309.PubMedCrossRef
go back to reference Ransohoff, R. M., & Perry, V. H. (2009). Microglial physiology: Unique stimuli, specialized responses. Annual Review of Immunology, 27, 119–145.PubMedCrossRef Ransohoff, R. M., & Perry, V. H. (2009). Microglial physiology: Unique stimuli, specialized responses. Annual Review of Immunology, 27, 119–145.PubMedCrossRef
go back to reference Rauskolb, S., Zagrebelsky, M., Dreznjak, A., Deogracias, R., Matsumoto, T., Wiese, S., et al. (2010). Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. Journal of Neuroscience, 30(5), 1739–1749.PubMedCrossRef Rauskolb, S., Zagrebelsky, M., Dreznjak, A., Deogracias, R., Matsumoto, T., Wiese, S., et al. (2010). Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. Journal of Neuroscience, 30(5), 1739–1749.PubMedCrossRef
go back to reference Raznahan, A., Toro, R., Proitsi, P., Powell, J., Paus, T., Bolton, P. F., et al. (2009). A functional polymorphism of the brain derived neurotrophic factor gene and cortical anatomy in autism spectrum disorder. Journal of Neurodevelopmental Disorders, 1(3), 215–223.PubMedPubMedCentralCrossRef Raznahan, A., Toro, R., Proitsi, P., Powell, J., Paus, T., Bolton, P. F., et al. (2009). A functional polymorphism of the brain derived neurotrophic factor gene and cortical anatomy in autism spectrum disorder. Journal of Neurodevelopmental Disorders, 1(3), 215–223.PubMedPubMedCentralCrossRef
go back to reference Rodier, P. M., Ingram, J. L., Tisdale, B., Nelson, S., & Romano, J. (1996). Embryological origin for autism: Developmental anomalies of the cranial nerve motor nuclei. Journal of Comparative Neurology, 370(2), 247–261.PubMedCrossRef Rodier, P. M., Ingram, J. L., Tisdale, B., Nelson, S., & Romano, J. (1996). Embryological origin for autism: Developmental anomalies of the cranial nerve motor nuclei. Journal of Comparative Neurology, 370(2), 247–261.PubMedCrossRef
go back to reference Romagnani, S. (1997). Atopic allergy and other hypersensitivities interactions between genetic susceptibility, innocuous and microbial antigens and the immune system. Current Opinion in Immunology, 9, 773–775.PubMedCrossRef Romagnani, S. (1997). Atopic allergy and other hypersensitivities interactions between genetic susceptibility, innocuous and microbial antigens and the immune system. Current Opinion in Immunology, 9, 773–775.PubMedCrossRef
go back to reference Roux, P. P., & Barker, P. A. (2002). Neurotrophin signaling through the p75 neurotrophin receptor. Progress in Neurobiology, 67(3), 203–233.PubMedCrossRef Roux, P. P., & Barker, P. A. (2002). Neurotrophin signaling through the p75 neurotrophin receptor. Progress in Neurobiology, 67(3), 203–233.PubMedCrossRef
go back to reference Sato, A., Kasai, S., Kobayashi, T., Takamatsu, Y., Hino, O., Ikeda, K., et al. (2012). Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex. Nature Communications, 3, 1292.PubMedPubMedCentralCrossRef Sato, A., Kasai, S., Kobayashi, T., Takamatsu, Y., Hino, O., Ikeda, K., et al. (2012). Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex. Nature Communications, 3, 1292.PubMedPubMedCentralCrossRef
go back to reference Scearce-Levie, K., Roberson, E. D., Gerstein, H., Cholfin, J. A., Mandiyan, V. S., Shah, N. M., et al. (2008). Abnormal social behaviors in mice lacking Fgf17. Genes Brain and Behavior, 7(3), 344–354.CrossRef Scearce-Levie, K., Roberson, E. D., Gerstein, H., Cholfin, J. A., Mandiyan, V. S., Shah, N. M., et al. (2008). Abnormal social behaviors in mice lacking Fgf17. Genes Brain and Behavior, 7(3), 344–354.CrossRef
go back to reference Schafer, D. P., Lehrman, E. K., Kautzman, A. G., Koyama, R., Mardinly, A. R., Yamasaki, R., et al. (2012). Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron, 74, 691–705.PubMedPubMedCentralCrossRef Schafer, D. P., Lehrman, E. K., Kautzman, A. G., Koyama, R., Mardinly, A. R., Yamasaki, R., et al. (2012). Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron, 74, 691–705.PubMedPubMedCentralCrossRef
go back to reference Schafer, D. P., Lehrman, E. K., & Stevens, B. (2013). The “quad-partite” synapse: Microglia-synapse interactions in the developing and mature CNS. Glia, 61, 24–36.PubMedCrossRef Schafer, D. P., Lehrman, E. K., & Stevens, B. (2013). The “quad-partite” synapse: Microglia-synapse interactions in the developing and mature CNS. Glia, 61, 24–36.PubMedCrossRef
go back to reference Schmid, D. A., Yang, T., Ogier, M., Adams, I., Mirakhur, Y., Wang, Q., et al. (2012). A TrkB small molecule partial agonist rescues TrkB phosphorylation deficits and improves respiratory function in a mouse model of Rett syndrome. Journal of Neuroscience, 32, 1803–1810.PubMedPubMedCentralCrossRef Schmid, D. A., Yang, T., Ogier, M., Adams, I., Mirakhur, Y., Wang, Q., et al. (2012). A TrkB small molecule partial agonist rescues TrkB phosphorylation deficits and improves respiratory function in a mouse model of Rett syndrome. Journal of Neuroscience, 32, 1803–1810.PubMedPubMedCentralCrossRef
go back to reference Seidah, N. G., Benjannet, S., Pareek, S., Chrétien, M., & Murphy, R. A. (1996). Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Letters, 379(3), 247–250.PubMedCrossRef Seidah, N. G., Benjannet, S., Pareek, S., Chrétien, M., & Murphy, R. A. (1996). Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Letters, 379(3), 247–250.PubMedCrossRef
go back to reference Shatz, C. J. (1990). Impulse activity and the patterning of connections during CNS development. Neuron, 5, 745–756.PubMedCrossRef Shatz, C. J. (1990). Impulse activity and the patterning of connections during CNS development. Neuron, 5, 745–756.PubMedCrossRef
go back to reference Sheikh, A. M., Malik, M., Wen, G., Chauhan, A., Chauhan, V., Gong, C. X., et al. (2010). BDNFAkt-Bcl2 antiapoptotic signaling pathway is compromised in the brain of autistic subjects. Journal of Neuroscience Research, 88, 2641–2647.PubMed Sheikh, A. M., Malik, M., Wen, G., Chauhan, A., Chauhan, V., Gong, C. X., et al. (2010). BDNFAkt-Bcl2 antiapoptotic signaling pathway is compromised in the brain of autistic subjects. Journal of Neuroscience Research, 88, 2641–2647.PubMed
go back to reference Sometani, A., Kataoka, H., Nitta, A., Fukumitsu, H., Nomoto, H., & Furukawa, S. (2001). Transforming growth factor-beta1 enhances expression of brain-derived neurotrophic factor and its receptor, TrkB, in neurons cultured from rat cerebral cortex. Journal of Neuroscience Research, 66(3), 369–376.PubMedCrossRef Sometani, A., Kataoka, H., Nitta, A., Fukumitsu, H., Nomoto, H., & Furukawa, S. (2001). Transforming growth factor-beta1 enhances expression of brain-derived neurotrophic factor and its receptor, TrkB, in neurons cultured from rat cerebral cortex. Journal of Neuroscience Research, 66(3), 369–376.PubMedCrossRef
go back to reference Stephan, A. H., Barres, B. A., & Stevens, B. (2012). The complement system: An unexpected role in synaptic pruning during development and disease. Annual Review in Neuroscience, 35, 369–389.CrossRef Stephan, A. H., Barres, B. A., & Stevens, B. (2012). The complement system: An unexpected role in synaptic pruning during development and disease. Annual Review in Neuroscience, 35, 369–389.CrossRef
go back to reference Stromland, K., Nordin, V., Miller, M., et al. (1994). Autism in thalidomide embryopathy: A population study. Developmental Medicine and Child Neurology, 36(4), 351–356.PubMedCrossRef Stromland, K., Nordin, V., Miller, M., et al. (1994). Autism in thalidomide embryopathy: A population study. Developmental Medicine and Child Neurology, 36(4), 351–356.PubMedCrossRef
go back to reference Sun, Y., Lim, Y., Li, F., Liu, S., Lu, J. J., Haberberger, R., et al. (2012). ProBDNF collapses neurite outgrowth of primary neurons by activating RhoA. PLoS ONE, 7(4), e35883.PubMedPubMedCentralCrossRef Sun, Y., Lim, Y., Li, F., Liu, S., Lu, J. J., Haberberger, R., et al. (2012). ProBDNF collapses neurite outgrowth of primary neurons by activating RhoA. PLoS ONE, 7(4), e35883.PubMedPubMedCentralCrossRef
go back to reference Sutton, C., Brereton, C., Keogh, B., Mills, K. H. G., & Lavelle, E. C. (2006). A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. Journal of Experimental Medicine, 203, 1685–1691.PubMedPubMedCentralCrossRef Sutton, C., Brereton, C., Keogh, B., Mills, K. H. G., & Lavelle, E. C. (2006). A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. Journal of Experimental Medicine, 203, 1685–1691.PubMedPubMedCentralCrossRef
go back to reference Tanako, T. (2015). Role of microglia in Autism: Recent advances. Developmental Neuroscience, 37, 195–202.CrossRef Tanako, T. (2015). Role of microglia in Autism: Recent advances. Developmental Neuroscience, 37, 195–202.CrossRef
go back to reference Tong, L., Prieto, G. A., Kramár, E. A., Smith, E. D., Cribbs, D. H., Lynch, G., et al. (2012). Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase. Journal of Neuroscience, 32(49), 17714–17724.PubMedPubMedCentralCrossRef Tong, L., Prieto, G. A., Kramár, E. A., Smith, E. D., Cribbs, D. H., Lynch, G., et al. (2012). Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase. Journal of Neuroscience, 32(49), 17714–17724.PubMedPubMedCentralCrossRef
go back to reference Tropea, D., Giacometti, E., Wilson, N. R., Beard, C., McCurry, C., Fu, D. D., et al. (2009). Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proceedings of the National Academy of Sciences USA, 106(6), 2029–2034.CrossRef Tropea, D., Giacometti, E., Wilson, N. R., Beard, C., McCurry, C., Fu, D. D., et al. (2009). Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proceedings of the National Academy of Sciences USA, 106(6), 2029–2034.CrossRef
go back to reference Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W., & Pardo, C. A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology, 57(1), 67–81.PubMedCrossRef Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W., & Pardo, C. A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology, 57(1), 67–81.PubMedCrossRef
go back to reference Vyssotski, A. L., Dell’Omo, G., Poletaeva, I. I., Vyssotsk, D. L., Minichiello, L., Klein, R., et al. (2002). Long-term monitoring of hippocampus-dependent behavior in naturalistic settings: Mutant mice lacking neurotrophin receptor TrkB in the forebrain show spatial learning but impaired behavioral flexibility. Hippocampus, 12(1), 27–38.PubMedCrossRef Vyssotski, A. L., Dell’Omo, G., Poletaeva, I. I., Vyssotsk, D. L., Minichiello, L., Klein, R., et al. (2002). Long-term monitoring of hippocampus-dependent behavior in naturalistic settings: Mutant mice lacking neurotrophin receptor TrkB in the forebrain show spatial learning but impaired behavioral flexibility. Hippocampus, 12(1), 27–38.PubMedCrossRef
go back to reference Wetmore, C., Ernfors, P., Persson, H., & Olson, L. (1990). Localization of brain-derived neurotrophic factor mRNA in neurons in the brain by in situ hybridization. Experimental Neurology, 109, 141–152.PubMedCrossRef Wetmore, C., Ernfors, P., Persson, H., & Olson, L. (1990). Localization of brain-derived neurotrophic factor mRNA in neurons in the brain by in situ hybridization. Experimental Neurology, 109, 141–152.PubMedCrossRef
go back to reference Wetsel, W. C., Rodriguiz, R. M., Guillemot, J., Rousselet, E., Essalmani, R., Kim, I. H., et al. (2013). Disruption of the expression of the proprotein convertase PC7 reduces BDNF production and affects learning and memory in mice. Proceedings of the National Academy of Sciences USA, 110(43), 17362–17367.CrossRef Wetsel, W. C., Rodriguiz, R. M., Guillemot, J., Rousselet, E., Essalmani, R., Kim, I. H., et al. (2013). Disruption of the expression of the proprotein convertase PC7 reduces BDNF production and affects learning and memory in mice. Proceedings of the National Academy of Sciences USA, 110(43), 17362–17367.CrossRef
go back to reference Wong, J., & Garner, B. (2012). Evidence that truncated TrkB isoform, TrkB-Shc can regulate phosphorylated TrkB protein levels. Biochemical and Biophysical Research Communications, 420(2), 331–335.PubMedCrossRef Wong, J., & Garner, B. (2012). Evidence that truncated TrkB isoform, TrkB-Shc can regulate phosphorylated TrkB protein levels. Biochemical and Biophysical Research Communications, 420(2), 331–335.PubMedCrossRef
go back to reference Wong, Y. H., Lee, C. M., Xie, W., Cui, B., & Poo, M. M. (2015). Activity-dependent BDNF release via endocytic pathways is regulated by synaptotagmin-6 and complexin. Proceedings of the National Academy of Sciences USA, 112(32), E4475–E4484.CrossRef Wong, Y. H., Lee, C. M., Xie, W., Cui, B., & Poo, M. M. (2015). Activity-dependent BDNF release via endocytic pathways is regulated by synaptotagmin-6 and complexin. Proceedings of the National Academy of Sciences USA, 112(32), E4475–E4484.CrossRef
go back to reference Xie, L., Choudhury, G. R., Winters, A., Yang, S. H., & Jin, K. (2015). Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. European Journal of Immunology, 45(1), 180–191.PubMedCrossRef Xie, L., Choudhury, G. R., Winters, A., Yang, S. H., & Jin, K. (2015). Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. European Journal of Immunology, 45(1), 180–191.PubMedCrossRef
go back to reference Yang, L., Anderson, D. E., Baecher-Allan, C., Hastings, W. D., Bettelli, E., Oukka, M., et al. (2008). IL-21 and TGF-β are required for differentiation of human TH17 cells. Nature, 454(7202), 350–352.PubMedPubMedCentralCrossRef Yang, L., Anderson, D. E., Baecher-Allan, C., Hastings, W. D., Bettelli, E., Oukka, M., et al. (2008). IL-21 and TGF-β are required for differentiation of human TH17 cells. Nature, 454(7202), 350–352.PubMedPubMedCentralCrossRef
go back to reference Yang, F., Je, H. S., Ji, Y., Nagappan, G., Heamstead, B., & Lu, B. (2009). Pro-BDNF-induced synaptic depression and retraction at developing neuromuscular synapses. Journal of Cell Biology, 185, 727–741.PubMedPubMedCentralCrossRef Yang, F., Je, H. S., Ji, Y., Nagappan, G., Heamstead, B., & Lu, B. (2009). Pro-BDNF-induced synaptic depression and retraction at developing neuromuscular synapses. Journal of Cell Biology, 185, 727–741.PubMedPubMedCentralCrossRef
go back to reference Yi, H., Hu, J., Qian, J., & Hackam, A. S. (2012). Expression of brain-derived neurotrophic factor (BDNF) is regulated by the Wnt signaling pathway. NeuroReport, 23(3), 189–194.PubMedPubMedCentralCrossRef Yi, H., Hu, J., Qian, J., & Hackam, A. S. (2012). Expression of brain-derived neurotrophic factor (BDNF) is regulated by the Wnt signaling pathway. NeuroReport, 23(3), 189–194.PubMedPubMedCentralCrossRef
go back to reference Yoshii, A., & Constantine-Paton, M. (2010). Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Developmental Neurobiology, 70(5), 304–322.PubMedPubMedCentral Yoshii, A., & Constantine-Paton, M. (2010). Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Developmental Neurobiology, 70(5), 304–322.PubMedPubMedCentral
go back to reference Zhan, Y., Paolicelli, R. C., Sforazzini, F., Weinhard, L., Bolasco, G., Pagani, F., et al. (2014). Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nature Neuroscience, 17, 400–406.PubMedCrossRef Zhan, Y., Paolicelli, R. C., Sforazzini, F., Weinhard, L., Bolasco, G., Pagani, F., et al. (2014). Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nature Neuroscience, 17, 400–406.PubMedCrossRef
go back to reference Zhou, J., Blundell, J., Ogawa, S., Kwon, C. H., Zhang, W., Sinton, C., et al. (2009). Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. Journal of Neuroscience, 29(6), 1773–1783.PubMedPubMedCentralCrossRef Zhou, J., Blundell, J., Ogawa, S., Kwon, C. H., Zhang, W., Sinton, C., et al. (2009). Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. Journal of Neuroscience, 29(6), 1773–1783.PubMedPubMedCentralCrossRef
go back to reference Zimmerman, A. W., Jyonouchi, H., Comi, A. M., Connors, S. L., Milstien, S., Varsou, A., et al. (2005). Cerebrospinal fluid and serum markers of inflammation in autism. Pediatric Neurology, 33, 195–201.PubMedCrossRef Zimmerman, A. W., Jyonouchi, H., Comi, A. M., Connors, S. L., Milstien, S., Varsou, A., et al. (2005). Cerebrospinal fluid and serum markers of inflammation in autism. Pediatric Neurology, 33, 195–201.PubMedCrossRef
go back to reference Ziv, Y., Ron, N., Butovsky, O., Landa, G., Sudai, E., Grinberg, N., et al. (2006). Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nature Neuroscience, 9, 268–275.PubMedCrossRef Ziv, Y., Ron, N., Butovsky, O., Landa, G., Sudai, E., Grinberg, N., et al. (2006). Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nature Neuroscience, 9, 268–275.PubMedCrossRef
go back to reference Ziv, Y., & Schwartz, M. (2008). Immune-based regulation of adult neurogenesis: Implications for learning and memory. Brain, Behavior, and Immunity, 22, 167–176.PubMedCrossRef Ziv, Y., & Schwartz, M. (2008). Immune-based regulation of adult neurogenesis: Implications for learning and memory. Brain, Behavior, and Immunity, 22, 167–176.PubMedCrossRef
go back to reference Zörner, B., Wolfer, D. P., Brandis, D., Kretz, O., Zacher, C., Madani, R., et al. (2003). Forebrain-specific trkB-receptor knockout mice: Behaviorally more hyperactive than “depressive”. Biological Psychiatry, 54(10), 972–982.PubMedCrossRef Zörner, B., Wolfer, D. P., Brandis, D., Kretz, O., Zacher, C., Madani, R., et al. (2003). Forebrain-specific trkB-receptor knockout mice: Behaviorally more hyperactive than “depressive”. Biological Psychiatry, 54(10), 972–982.PubMedCrossRef
Metadata
Title
Neuroimmunologic and Neurotrophic Interactions in Autism Spectrum Disorders: Relationship to Neuroinflammation
Authors
Kshama Ohja
Evelyne Gozal
Margaret Fahnestock
Lu Cai
Jun Cai
Jonathan H. Freedman
Andy Switala
Ayman El-Baz
Gregory Neal Barnes
Publication date
01-06-2018
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 2/2018
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-018-8488-8

Other articles of this Issue 2/2018

NeuroMolecular Medicine 2/2018 Go to the issue