Skip to main content
Top
Published in: NeuroMolecular Medicine 4/2017

01-12-2017 | Original Paper

Purine Biosynthesis Enzymes in Hippocampal Neurons

Authors: Julie Williamson, Ronald S. Petralia, Ya-Xian Wang, Mark P. Mattson, Pamela J. Yao

Published in: NeuroMolecular Medicine | Issue 4/2017

Login to get access

Abstract

Despite reports implicating disrupted purine metabolism in causing a wide spectrum of neurological defects, the mechanistic details of purine biosynthesis in neurons are largely unknown. As an initial step in filling that gap, we examined the expression and subcellular distribution of three purine biosynthesis enzymes (PFAS, PAICS and ATIC) in rat hippocampal neurons. Using immunoblotting and high-resolution light and electron microscopic analysis, we find that all three enzymes are broadly distributed in hippocampal neurons with pools of these enzymes associated with mitochondria. These findings suggest a potential link between purine metabolism and mitochondrial function in neurons and provide an impetus for further studies.
Appendix
Available only for authorised users
Literature
go back to reference An, S., Kumar, R., Sheets, E. D., & Benkovic, S. J. (2008). Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science, 320(5872), 103–106.CrossRefPubMed An, S., Kumar, R., Sheets, E. D., & Benkovic, S. J. (2008). Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science, 320(5872), 103–106.CrossRefPubMed
go back to reference Brewer, G. J., Torricelli, J. R., Evege, E. K., & Price, P. J. (1993). Optimized survival of hippocampal neurons in B27-supplemented neurobasal, a new serum-free medium combination. Journal of Neuroscience Research, 35(5), 567–576.CrossRefPubMed Brewer, G. J., Torricelli, J. R., Evege, E. K., & Price, P. J. (1993). Optimized survival of hippocampal neurons in B27-supplemented neurobasal, a new serum-free medium combination. Journal of Neuroscience Research, 35(5), 567–576.CrossRefPubMed
go back to reference Buchanan, J. M., & Hartman, S. C. (1959). Enzymic reactions in the synthesis of the purines. In F. F. Ford (Ed.), Advances in Enzymology and Related Areas of Molecular Biology (pp. 199–261). London: Wiley. Buchanan, J. M., & Hartman, S. C. (1959). Enzymic reactions in the synthesis of the purines. In F. F. Ford (Ed.), Advances in Enzymology and Related Areas of Molecular Biology (pp. 199–261). London: Wiley.
go back to reference Endo, T., & Kohda, D. (2002). Functions of outer membrane receptors in mitochondrial protein import. Biochimica et Biophysica Acta, 1592(1), 3–14.CrossRefPubMed Endo, T., & Kohda, D. (2002). Functions of outer membrane receptors in mitochondrial protein import. Biochimica et Biophysica Acta, 1592(1), 3–14.CrossRefPubMed
go back to reference French, J. B., Jones, S. A., Deng, H., Pedley, A. M., Kim, D., Chan, C. Y., et al. (2016). Spatial colocalization and functional link of purinosomes with mitochondria. Science, 351(6274), 733–737.CrossRefPubMedPubMedCentral French, J. B., Jones, S. A., Deng, H., Pedley, A. M., Kim, D., Chan, C. Y., et al. (2016). Spatial colocalization and functional link of purinosomes with mitochondria. Science, 351(6274), 733–737.CrossRefPubMedPubMedCentral
go back to reference Greenberg, G. R., & Jaenicke, L. (1957). On the activation of the one-carbon unit for the biosynthesis of purine nucleotides. In G. E. W. Wolstenholme & C. M. O’Connor (Eds.), Ciba Foundation Symposium—Chemistry and Biology of Purines (pp. 204–232). London: Wiley.CrossRef Greenberg, G. R., & Jaenicke, L. (1957). On the activation of the one-carbon unit for the biosynthesis of purine nucleotides. In G. E. W. Wolstenholme & C. M. O’Connor (Eds.), Ciba Foundation Symposium—Chemistry and Biology of Purines (pp. 204–232). London: Wiley.CrossRef
go back to reference Hartman, S. C., & Buchanan, J. M. (1959). Nucleic acids, purines, pyrimidines (nucleotide synthesis). Annual Review of Biochemistry, 28, 365–410.CrossRefPubMed Hartman, S. C., & Buchanan, J. M. (1959). Nucleic acids, purines, pyrimidines (nucleotide synthesis). Annual Review of Biochemistry, 28, 365–410.CrossRefPubMed
go back to reference Hoogenraad, N. J., Ward, L. A., & Ryan, M. T. (2002). Import and assembly of proteins into mitochondria of mammalian cells. Biochimica et Biophysica Acta, 1592(1), 97–105.CrossRefPubMed Hoogenraad, N. J., Ward, L. A., & Ryan, M. T. (2002). Import and assembly of proteins into mitochondria of mammalian cells. Biochimica et Biophysica Acta, 1592(1), 97–105.CrossRefPubMed
go back to reference Jaeken, J., & Van den Berghe, G. (1984). An infantile autistic syndrome characterised by the presence of succinylpurines in body fluids. Lancet, 2(8411), 1058–1061.PubMed Jaeken, J., & Van den Berghe, G. (1984). An infantile autistic syndrome characterised by the presence of succinylpurines in body fluids. Lancet, 2(8411), 1058–1061.PubMed
go back to reference Marie, S., Heron, B., Bitoun, P., Timmerman, T., Van Den Berghe, G., & Vincent, M. F. (2004). AICA-ribosiduria: a novel, neurologically devastating inborn error of purine biosynthesis caused by mutation of ATIC. American Journal of Human Genetics, 74(6), 1276–1281.CrossRefPubMedPubMedCentral Marie, S., Heron, B., Bitoun, P., Timmerman, T., Van Den Berghe, G., & Vincent, M. F. (2004). AICA-ribosiduria: a novel, neurologically devastating inborn error of purine biosynthesis caused by mutation of ATIC. American Journal of Human Genetics, 74(6), 1276–1281.CrossRefPubMedPubMedCentral
go back to reference Mattson, M. P., Murrain, M., Guthrie, P. B., & Kater, S. B. (1989). Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture. Journal of Neuroscience, 9, 3728–3740.PubMed Mattson, M. P., Murrain, M., Guthrie, P. B., & Kater, S. B. (1989). Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture. Journal of Neuroscience, 9, 3728–3740.PubMed
go back to reference Murray, A. W. (1971). The biological significance of purine salvage. Annual Review of Biochemistry, 40, 811–826.CrossRefPubMed Murray, A. W. (1971). The biological significance of purine salvage. Annual Review of Biochemistry, 40, 811–826.CrossRefPubMed
go back to reference Natsumeda, Y., Prajda, N., Donohue, J. P., Glover, J. L., & Weber, G. (1984). Enzymic capacities of purine de Novo and salvage pathways for nucleotide synthesis in normal and neoplastic tissues. Cancer Research, 44(6), 2475–2479.PubMed Natsumeda, Y., Prajda, N., Donohue, J. P., Glover, J. L., & Weber, G. (1984). Enzymic capacities of purine de Novo and salvage pathways for nucleotide synthesis in normal and neoplastic tissues. Cancer Research, 44(6), 2475–2479.PubMed
go back to reference Pagliarini, D. J., Calvo, S. E., Chang, B., Sheth, S. A., Vafai, S. B., Ong, S. E., et al. (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell, 134(1), 112–123.CrossRefPubMedPubMedCentral Pagliarini, D. J., Calvo, S. E., Chang, B., Sheth, S. A., Vafai, S. B., Ong, S. E., et al. (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell, 134(1), 112–123.CrossRefPubMedPubMedCentral
go back to reference Pedley, A. M., & Benkovic, S. J. (2017). A new view into the regulation of purine metabolism: The purinosome. Trends in Biochemical Sciences, 42(2), 141–154.CrossRefPubMed Pedley, A. M., & Benkovic, S. J. (2017). A new view into the regulation of purine metabolism: The purinosome. Trends in Biochemical Sciences, 42(2), 141–154.CrossRefPubMed
go back to reference Petralia, R. S., Wang, Y. X., Hua, F., Yi, Z., Zhou, A., Ge, L., et al. (2010). Organization of NMDA receptors at extrasynaptic locations. Neuroscience, 167, 68–87.CrossRefPubMedPubMedCentral Petralia, R. S., Wang, Y. X., Hua, F., Yi, Z., Zhou, A., Ge, L., et al. (2010). Organization of NMDA receptors at extrasynaptic locations. Neuroscience, 167, 68–87.CrossRefPubMedPubMedCentral
go back to reference Petralia, R. S., & Wenthold, R. J. (1999). Immunocytochemistry of NMDA receptors. Methods in Molecular Biology, 128, 73–92.PubMed Petralia, R. S., & Wenthold, R. J. (1999). Immunocytochemistry of NMDA receptors. Methods in Molecular Biology, 128, 73–92.PubMed
go back to reference Wang, X., Yang, K., Xie, Q., Wu, Q., Mack, S. C., Shi, Y., et al. (2017). Purine synthesis promotes maintenance of brain tumor initiating cells in glioma. Nature Neuroscience, 20, 661–673.CrossRefPubMed Wang, X., Yang, K., Xie, Q., Wu, Q., Mack, S. C., Shi, Y., et al. (2017). Purine synthesis promotes maintenance of brain tumor initiating cells in glioma. Nature Neuroscience, 20, 661–673.CrossRefPubMed
go back to reference Yamaoka, T., Kondo, M., Honda, S., Iwahana, H., Moritani, M., Ii, S., et al. (1997). Amidophosphoribosyltransferase limits the rate of cell growth-linked de novo purine biosynthesis in the presence of constant capacity of salvage purine biosynthesis. Journal of Biological Chemistry, 272(28), 17719–17725.CrossRefPubMed Yamaoka, T., Kondo, M., Honda, S., Iwahana, H., Moritani, M., Ii, S., et al. (1997). Amidophosphoribosyltransferase limits the rate of cell growth-linked de novo purine biosynthesis in the presence of constant capacity of salvage purine biosynthesis. Journal of Biological Chemistry, 272(28), 17719–17725.CrossRefPubMed
go back to reference Yao, P. J., Manor, U., Petralia, R. S., Brose, R. D., Wu, R. T., Ott, C., et al. (2017). Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons. Molecular Biology of the Cell, 28(3), 387–395.CrossRefPubMedPubMedCentral Yao, P. J., Manor, U., Petralia, R. S., Brose, R. D., Wu, R. T., Ott, C., et al. (2017). Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons. Molecular Biology of the Cell, 28(3), 387–395.CrossRefPubMedPubMedCentral
go back to reference Yao, P. J., Petralia, R. S., Ott, C., Wang, Y. X., Lippincott-Schwartz, J., & Mattson, M. P. (2015). Dendrosomatic sonic hedgehog signaling in hippocampal neurons regulates axon elongation. Journal of Neuroscience, 35, 16126–41611.CrossRefPubMedPubMedCentral Yao, P. J., Petralia, R. S., Ott, C., Wang, Y. X., Lippincott-Schwartz, J., & Mattson, M. P. (2015). Dendrosomatic sonic hedgehog signaling in hippocampal neurons regulates axon elongation. Journal of Neuroscience, 35, 16126–41611.CrossRefPubMedPubMedCentral
Metadata
Title
Purine Biosynthesis Enzymes in Hippocampal Neurons
Authors
Julie Williamson
Ronald S. Petralia
Ya-Xian Wang
Mark P. Mattson
Pamela J. Yao
Publication date
01-12-2017
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 4/2017
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-017-8466-6

Other articles of this Issue 4/2017

NeuroMolecular Medicine 4/2017 Go to the issue