Skip to main content
Top
Published in: NeuroMolecular Medicine 2/2014

01-06-2014 | Original Paper

C-terminus of Human BKca Channel Alpha Subunit Enhances the Permeability of the Brain Endothelial Cells by Interacting with Caveolin-1 and Triggering Caveolin-1 Intracellular Trafficking

Authors: Yang Song, Ping Wang, Jun Ma, Yixue Xue

Published in: NeuroMolecular Medicine | Issue 2/2014

Login to get access

Abstract

The blood–tumor barrier (BTB) significantly limits the delivery of chemotherapeutic drugs to brain tumors. In this study, we found a significant increase in the permeability of BTB by mediating the association of the C-terminus of alpha subunit of human large-conductance calcium-activated potassium channels (hSlo1c) with caveolin-1 (Cav-1). We present evidence for the first time that hSlo1c associates with Cav-1 in human brain microvascular endothelial cells (HBMECs). A 57-amino acid (966–1022) fragment in hSlo1c was identified to be critical for hSlo1c/Cav-1 interaction. Activation of HBMECs transfected with fusion plasmids of pCMV–hSlo1c containing aa966–1022 by NS1619 selectively enhanced BTB permeability in a BTB model from the co-culture of HBMECs and U87 MG cells but not if the fusion plasmid lacks this fragment. This effect was attenuated by filipin, an agent disrupting caveolae or deletion of the potential interaction fragment, suggesting hSlo1c/Cav-1 association is crucial for regulating the permeability of BTB. Furthermore, we found that hSlo1c/Cav-1 association boosted Cav-1 transferring from the cell membrane to the cytoplasm of HBMECs. Our study indicates that cytoplasmic hSlo1c not only associates with Cav-1 but also has functional consequences on the permeability of BTB by triggering the intracellular trafficking of its interacting protein partner, Cav-1.
Literature
go back to reference Alioua, A., Lu, R., Kumar, Y., Eghbali, M., Kundu, P., Toro, L., et al. (2008). Slo1 caveolin-binding fragment, a mechanism of caveolin-1-Slo1 interaction regulating Slo1 surface expression. Journal of Biological Chemistry, 283, 4808–4817.PubMedCrossRef Alioua, A., Lu, R., Kumar, Y., Eghbali, M., Kundu, P., Toro, L., et al. (2008). Slo1 caveolin-binding fragment, a mechanism of caveolin-1-Slo1 interaction regulating Slo1 surface expression. Journal of Biological Chemistry, 283, 4808–4817.PubMedCrossRef
go back to reference Black, K. L., & Ningaraj, N. S. (2004). Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control, 11, 165–173.PubMed Black, K. L., & Ningaraj, N. S. (2004). Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control, 11, 165–173.PubMed
go back to reference Black, K. L., et al. (2008). Different effects of KCa and KATP agonists on brain tumor permeability between syngeneic and allogeneic rat models. Brain Research, 1227, 198–206.PubMedCentralPubMedCrossRef Black, K. L., et al. (2008). Different effects of KCa and KATP agonists on brain tumor permeability between syngeneic and allogeneic rat models. Brain Research, 1227, 198–206.PubMedCentralPubMedCrossRef
go back to reference Brainard, A. M., Korovkina, V. P., & England, S. K. (2009). Disruption of the maxi-K-caveolin-1 interaction alters current expression in human myometrial cells. Reproductive Biology and Endocrinology, 7, 131.PubMedCentralPubMedCrossRef Brainard, A. M., Korovkina, V. P., & England, S. K. (2009). Disruption of the maxi-K-caveolin-1 interaction alters current expression in human myometrial cells. Reproductive Biology and Endocrinology, 7, 131.PubMedCentralPubMedCrossRef
go back to reference Brainard, A. M., Miller, A. J., Martens, J. R., & England, S. K. (2005). Maxi-K channels localize to caveolae in human myometrium: a role for an actin-channel-caveolin complex in the regulation of myometrial smooth muscle K+ current. American Journal of Physiology-Cell Physiology, 289, C49–C57.PubMedCrossRef Brainard, A. M., Miller, A. J., Martens, J. R., & England, S. K. (2005). Maxi-K channels localize to caveolae in human myometrium: a role for an actin-channel-caveolin complex in the regulation of myometrial smooth muscle K+ current. American Journal of Physiology-Cell Physiology, 289, C49–C57.PubMedCrossRef
go back to reference Cheng, X., & Jaggar, J. H. (2006). Genetic ablation of caveolin-1 modifies Ca2+ spark coupling in murine arterial smooth muscle cells. American Journal of Physiology-Heart and Circulatory Physiology, 290, H2309–H2319.PubMedCentralPubMedCrossRef Cheng, X., & Jaggar, J. H. (2006). Genetic ablation of caveolin-1 modifies Ca2+ spark coupling in murine arterial smooth muscle cells. American Journal of Physiology-Heart and Circulatory Physiology, 290, H2309–H2319.PubMedCentralPubMedCrossRef
go back to reference Cornford, E. M., & Hyman, S. (2005). Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. NeuroRx, 2, 27–43.PubMedCentralPubMedCrossRef Cornford, E. M., & Hyman, S. (2005). Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. NeuroRx, 2, 27–43.PubMedCentralPubMedCrossRef
go back to reference Côté, J., et al. (2012). Induction of selective blood–tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model. PLoS One, 7, e37485.PubMedCentralPubMedCrossRef Côté, J., et al. (2012). Induction of selective blood–tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model. PLoS One, 7, e37485.PubMedCentralPubMedCrossRef
go back to reference Daniel, E. E., Jury, J., & Wang, Y. F. (2001). nNOS in canine lower esophageal sphincter: colocalized with Cav-1 and Ca2 + -handling proteins? American Journal of Physiology-Gastrointestinal and Liver Physiology, 281, G1101–G1114.PubMed Daniel, E. E., Jury, J., & Wang, Y. F. (2001). nNOS in canine lower esophageal sphincter: colocalized with Cav-1 and Ca2 + -handling proteins? American Journal of Physiology-Gastrointestinal and Liver Physiology, 281, G1101–G1114.PubMed
go back to reference Dunn, I. F., Heese, O., & Black, P. M. (2000). Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. Journal of Neuro-oncology, 50, 121–137.PubMedCrossRef Dunn, I. F., Heese, O., & Black, P. M. (2000). Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. Journal of Neuro-oncology, 50, 121–137.PubMedCrossRef
go back to reference Frank, P. G., Woodman, S. E., Park, D. S., & Lisanti, M. P. (2003). Caveolin, caveolae, and endothelial cell function. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1161–1168.PubMedCrossRef Frank, P. G., Woodman, S. E., Park, D. S., & Lisanti, M. P. (2003). Caveolin, caveolae, and endothelial cell function. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1161–1168.PubMedCrossRef
go back to reference Gu, Y. T., Xue, Y. X., Wang, Y. F., Wang, J. H., ShangGuan, Q. R., Zhang, J. X., et al. (2012). Role of ROS/RhoA/PI3 K/PKB signaling in NS1619-mediated blood–tumor barrier permeability increase. Journal of Molecular Neuroscience, 48, 302–312.PubMedCrossRef Gu, Y. T., Xue, Y. X., Wang, Y. F., Wang, J. H., ShangGuan, Q. R., Zhang, J. X., et al. (2012). Role of ROS/RhoA/PI3 K/PKB signaling in NS1619-mediated blood–tumor barrier permeability increase. Journal of Molecular Neuroscience, 48, 302–312.PubMedCrossRef
go back to reference Hu, J., et al. (2007). Calcium-activated potassium channels mediated blood–brain tumor barrier opening in a rat metastatic brain tumor model. Molecular Cancer, 6, 22.PubMedCentralPubMedCrossRef Hu, J., et al. (2007). Calcium-activated potassium channels mediated blood–brain tumor barrier opening in a rat metastatic brain tumor model. Molecular Cancer, 6, 22.PubMedCentralPubMedCrossRef
go back to reference Lam, R. S., Shaw, A. R., & Duszyk, M. (2004). Membrane cholesterol content modulates activation of BK channels in colonic epithelia. Biochimica et Biophysica Acta, 1667, 241–248.PubMedCrossRef Lam, R. S., Shaw, A. R., & Duszyk, M. (2004). Membrane cholesterol content modulates activation of BK channels in colonic epithelia. Biochimica et Biophysica Acta, 1667, 241–248.PubMedCrossRef
go back to reference Liu, L. B., Xue, Y. X., & Liu, Y. H. (2010). Bradykinin increases the permeability of the blood–tumor barrier by the caveolae-mediated transcellular pathway. Journal of Neuro-oncology, 99, 187–194.PubMedCrossRef Liu, L. B., Xue, Y. X., & Liu, Y. H. (2010). Bradykinin increases the permeability of the blood–tumor barrier by the caveolae-mediated transcellular pathway. Journal of Neuro-oncology, 99, 187–194.PubMedCrossRef
go back to reference Matveev, S., Li, X., Everson, W., & Smart, E. J. (2001). The role of caveolae and caveolin in vesicle-dependent and vesicle-independent trafficking. Advanced Drug Delivery Reviews, 49, 237–250.PubMedCrossRef Matveev, S., Li, X., Everson, W., & Smart, E. J. (2001). The role of caveolae and caveolin in vesicle-dependent and vesicle-independent trafficking. Advanced Drug Delivery Reviews, 49, 237–250.PubMedCrossRef
go back to reference Meera, P., Wallner, M., Song, M., & Toro, L. (1997). Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0–S6), an extracellular N terminus, and an intracellular (S9–S10) C terminus. Proceedings of the National Academy of Sciences of the United States of America, 94, 14066–14071.PubMedCentralPubMedCrossRef Meera, P., Wallner, M., Song, M., & Toro, L. (1997). Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0–S6), an extracellular N terminus, and an intracellular (S9–S10) C terminus. Proceedings of the National Academy of Sciences of the United States of America, 94, 14066–14071.PubMedCentralPubMedCrossRef
go back to reference Ningaraj, N. S., Rao, M., Hashizume, K., Asotra, K., & Black, K. L. (2002). Regulation of blood–brain tumor barrier permeability by calcium-activated potassium channels. Journal of Pharmacology and Experimental Therapeutics, 301, 838–851.PubMedCrossRef Ningaraj, N. S., Rao, M., Hashizume, K., Asotra, K., & Black, K. L. (2002). Regulation of blood–brain tumor barrier permeability by calcium-activated potassium channels. Journal of Pharmacology and Experimental Therapeutics, 301, 838–851.PubMedCrossRef
go back to reference Park, E. J., Zhang, Y. Z., Vykhodtseva, N., & McDannold, N. (2012). Ultrasound-mediated blood–brain/blood–tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. Journal of Controlled Release, 163, 277–284.PubMedCentralPubMedCrossRef Park, E. J., Zhang, Y. Z., Vykhodtseva, N., & McDannold, N. (2012). Ultrasound-mediated blood–brain/blood–tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. Journal of Controlled Release, 163, 277–284.PubMedCentralPubMedCrossRef
go back to reference Predescu, D., Vogel, S. M., & Malik, A. B. (2004). Functional and morphological studies of protein transcytosis in continuous endothelia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 287, L895–L901.PubMedCrossRef Predescu, D., Vogel, S. M., & Malik, A. B. (2004). Functional and morphological studies of protein transcytosis in continuous endothelia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 287, L895–L901.PubMedCrossRef
go back to reference Proescholdt, M. A., Heiss, J. D., Walbridge, S., Mühlhauser, J., Capogrossi, M. C., Oldfield, E. H., et al. (1999). Vascular endothelial growth factor (VEGF) modulates vascular permeability and inflammation in rat brain. Journal of Neuropathology and Experimental Neurology, 58, 613–627.PubMedCrossRef Proescholdt, M. A., Heiss, J. D., Walbridge, S., Mühlhauser, J., Capogrossi, M. C., Oldfield, E. H., et al. (1999). Vascular endothelial growth factor (VEGF) modulates vascular permeability and inflammation in rat brain. Journal of Neuropathology and Experimental Neurology, 58, 613–627.PubMedCrossRef
go back to reference Qin, L. J., Gu, Y. T., Zhang, H., & Xue, Y. X. (2009). Bradykinin-induced blood–tumor barrier opening is mediated by tumor necrosis factor-alpha. Neuroscience Letters, 450, 172–175.PubMedCrossRef Qin, L. J., Gu, Y. T., Zhang, H., & Xue, Y. X. (2009). Bradykinin-induced blood–tumor barrier opening is mediated by tumor necrosis factor-alpha. Neuroscience Letters, 450, 172–175.PubMedCrossRef
go back to reference Salkoff, L., Butler, A., Ferreira, G., Santi, C., & Wei, A. (2006). High-conductance potassium channels of the SLO family. Nature Reviews Neuroscience, 7, 921–931.PubMedCrossRef Salkoff, L., Butler, A., Ferreira, G., Santi, C., & Wei, A. (2006). High-conductance potassium channels of the SLO family. Nature Reviews Neuroscience, 7, 921–931.PubMedCrossRef
go back to reference Sheikov, N., McDannold, N., Jolesz, F., Zhang, Y. Z., Tam, K., & Hynynen, K. (2006). Brain arterioles show more active vesicular transport of blood-borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood–brain barrier. Ultrasound in Medicine and Biology, 32, 1399–1409.PubMedCrossRef Sheikov, N., McDannold, N., Jolesz, F., Zhang, Y. Z., Tam, K., & Hynynen, K. (2006). Brain arterioles show more active vesicular transport of blood-borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood–brain barrier. Ultrasound in Medicine and Biology, 32, 1399–1409.PubMedCrossRef
go back to reference Stewart, P. A., Hayakawa, K., & Farrell, C. L. (1994). Quantitation of blood–brain barrier ultrastructure. Microscopy Research and Technique, 27, 516–527.PubMedCrossRef Stewart, P. A., Hayakawa, K., & Farrell, C. L. (1994). Quantitation of blood–brain barrier ultrastructure. Microscopy Research and Technique, 27, 516–527.PubMedCrossRef
go back to reference Terasaki, T., & Pardridge, W. M. (2000). Targeted drug delivery to the brain; (blood–brain barrier, efflux, endothelium, biological transport). Journal of Drug Targeting, 8, 353–355.PubMedCrossRef Terasaki, T., & Pardridge, W. M. (2000). Targeted drug delivery to the brain; (blood–brain barrier, efflux, endothelium, biological transport). Journal of Drug Targeting, 8, 353–355.PubMedCrossRef
go back to reference Wallner, M., Meera, P., & Toro, L. (1996). Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca2+-sensitive K+ channels: an additional transmembrane region at the N terminus. Proceedings of the National Academy of Sciences of the United States of America, 93, 14922–14927.PubMedCentralPubMedCrossRef Wallner, M., Meera, P., & Toro, L. (1996). Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca2+-sensitive K+ channels: an additional transmembrane region at the N terminus. Proceedings of the National Academy of Sciences of the United States of America, 93, 14922–14927.PubMedCentralPubMedCrossRef
go back to reference Wang, X. L., Ye, D., Peterson, T. E., Cao, S., Shah, V. H., Katusic, Z. S., et al. (2005). Caveolae targeting and regulation of large conductance Ca(2+)-activated K+ channels in vascular endothelial cells. Journal of Biological Chemistry, 280, 11656–11664.PubMedCrossRef Wang, X. L., Ye, D., Peterson, T. E., Cao, S., Shah, V. H., Katusic, Z. S., et al. (2005). Caveolae targeting and regulation of large conductance Ca(2+)-activated K+ channels in vascular endothelial cells. Journal of Biological Chemistry, 280, 11656–11664.PubMedCrossRef
go back to reference Weksler, B. B., et al. (2005). Blood–brain barrier-specific properties of a human adult brain endothelial cell line. The FASEB Journal, 19, 1872–1874. Weksler, B. B., et al. (2005). Blood–brain barrier-specific properties of a human adult brain endothelial cell line. The FASEB Journal, 19, 1872–1874.
go back to reference Weyerbrock, A., Walbridge, S., Saavedra, J. E., Keefer, L. K., & Oldfield, E. H. (2011). Differential effects of nitric oxide on blood–brain barrier integrity and cerebral blood flow in intracerebral C6 gliomas. Neuro-oncology, 13, 203–211.PubMedCentralPubMedCrossRef Weyerbrock, A., Walbridge, S., Saavedra, J. E., Keefer, L. K., & Oldfield, E. H. (2011). Differential effects of nitric oxide on blood–brain barrier integrity and cerebral blood flow in intracerebral C6 gliomas. Neuro-oncology, 13, 203–211.PubMedCentralPubMedCrossRef
go back to reference Xie, H., Xue, Y. X., Liu, L. B., & Liu, Y. H. (2010). Endothelial-monocyte-activating polypeptide II increases blood–tumor barrier permeability by down-regulating the expression levels of tight junction associated proteins. Brain Research, 1319, 13–20.PubMedCrossRef Xie, H., Xue, Y. X., Liu, L. B., & Liu, Y. H. (2010). Endothelial-monocyte-activating polypeptide II increases blood–tumor barrier permeability by down-regulating the expression levels of tight junction associated proteins. Brain Research, 1319, 13–20.PubMedCrossRef
go back to reference Xie, H., Xue, Y. X., Liu, L. B., Liu, Y. H., & Wang, P. (2012). Role of RhoA/ROCK signaling in endothelial-monocyte-activating polypeptide II opening of the blood–tumor barrier: Role of RhoA/ROCK signaling in EMAP II opening of the BTB. Journal of Molecular Neuroscience, 46, 666–676.PubMedCrossRef Xie, H., Xue, Y. X., Liu, L. B., Liu, Y. H., & Wang, P. (2012). Role of RhoA/ROCK signaling in endothelial-monocyte-activating polypeptide II opening of the blood–tumor barrier: Role of RhoA/ROCK signaling in EMAP II opening of the BTB. Journal of Molecular Neuroscience, 46, 666–676.PubMedCrossRef
go back to reference Yao, Y., Kubota, T., Sato, K., Kitai, R., Takeuchi, H., & Arishima, H. (2001). Prognostic value of vascular endothelial growth factor and its receptors Flt-1 and Flk-1 in astrocytic tumours. Acta Neurochirurgica, 143, 159–166.PubMedCrossRef Yao, Y., Kubota, T., Sato, K., Kitai, R., Takeuchi, H., & Arishima, H. (2001). Prognostic value of vascular endothelial growth factor and its receptors Flt-1 and Flk-1 in astrocytic tumours. Acta Neurochirurgica, 143, 159–166.PubMedCrossRef
go back to reference Yuan, F., Chen, Y., Dellian, M., Safabakhsh, N., Ferrara, N., & Jain, R. K. (1996). Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proceedings of the National Academy of Sciences of the United States of America, 93, 14765–14770.PubMedCentralPubMedCrossRef Yuan, F., Chen, Y., Dellian, M., Safabakhsh, N., Ferrara, N., & Jain, R. K. (1996). Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proceedings of the National Academy of Sciences of the United States of America, 93, 14765–14770.PubMedCentralPubMedCrossRef
go back to reference Zagzag, D., Miller, D. C., Sato, Y., Rifkin, D. B., & Burstein, D. E. (1990). Immunohistochemical localization of basic fibroblast growth factor in astrocytomas. Cancer Research, 50, 7393–7398.PubMed Zagzag, D., Miller, D. C., Sato, Y., Rifkin, D. B., & Burstein, D. E. (1990). Immunohistochemical localization of basic fibroblast growth factor in astrocytomas. Cancer Research, 50, 7393–7398.PubMed
go back to reference Zhao, L. N., Yang, Z. H., Liu, Y. H., Ying, H. Q., Zhang, H., & Xue, Y. X. (2011). Vascular endothelial growth factor increases permeability of the blood–tumor barrier via caveolae-mediated transcellular pathway. Journal of Molecular Neuroscience, 44, 122–129.PubMedCrossRef Zhao, L. N., Yang, Z. H., Liu, Y. H., Ying, H. Q., Zhang, H., & Xue, Y. X. (2011). Vascular endothelial growth factor increases permeability of the blood–tumor barrier via caveolae-mediated transcellular pathway. Journal of Molecular Neuroscience, 44, 122–129.PubMedCrossRef
Metadata
Title
C-terminus of Human BKca Channel Alpha Subunit Enhances the Permeability of the Brain Endothelial Cells by Interacting with Caveolin-1 and Triggering Caveolin-1 Intracellular Trafficking
Authors
Yang Song
Ping Wang
Jun Ma
Yixue Xue
Publication date
01-06-2014
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 2/2014
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-014-8300-3

Other articles of this Issue 2/2014

NeuroMolecular Medicine 2/2014 Go to the issue