Skip to main content
Top
Published in: NeuroMolecular Medicine 2/2014

01-06-2014 | Original Paper

Deciphering the Roles of Trehalose and Hsp104 in the Inhibition of Aggregation of Mutant Huntingtin in a Yeast Model of Huntington’s Disease

Authors: Rajeev Kumar Chaudhary, Jay Kardani, Kuljit Singh, Ruchira Banerjee, Ipsita Roy

Published in: NeuroMolecular Medicine | Issue 2/2014

Login to get access

Abstract

Despite the significant amount of experimental data available on trehalose, the molecular mechanism responsible for its intracellular stabilising properties has not emerged yet. The repair of cellular homeostasis in many protein-misfolding diseases by trehalose is credited to the disaccharide being an inducer of autophagy, a mechanism by which aggregates of misfolded proteins are cleared by the cell. In this work, we expressed the pathogenic N-terminal fragment of huntingtin in Δnth1 mutant (unable to degrade trehalose) of Saccharomyces cerevisiae BY4742 strain. We show that the presence of trehalose resulted in the partitioning of the mutant huntingtin in the soluble fraction of the cell. This led to reduced oxidative stress and improved cell survival. The beneficial effect was independent of the expression of the major cellular antioxidant enzyme, superoxide dismutase. Additionally, trehalose led to the overexpression of the heat shock protein, Hsp104p, in mutant huntingtin-expressing cells, and resulted in rescue of the endocytotic defect in the yeast cell. We propose that at least in the initial stages of aggregation, trehalose functions as a stabiliser, increasing the level of monomeric mutant huntingtin protein, with its concomitant beneficial effects, in addition to its role as an inducer of autophagy.
Literature
go back to reference Appl, T., Kaltenbach, L., Lo, D. C., & Terstappen, G. C. (2012). Targeting mutant huntingtin for the development of disease-modifying therapy. Drug Discovery Today, 17(21–22), 1217–1223.PubMedCrossRef Appl, T., Kaltenbach, L., Lo, D. C., & Terstappen, G. C. (2012). Targeting mutant huntingtin for the development of disease-modifying therapy. Drug Discovery Today, 17(21–22), 1217–1223.PubMedCrossRef
go back to reference Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R., & Finkbeiner, S. (2004). Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature, 431(7010), 805–810.PubMedCrossRef Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R., & Finkbeiner, S. (2004). Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature, 431(7010), 805–810.PubMedCrossRef
go back to reference Bai, M., Zhou, J. M., & Perret, S. (2004). The yeast prion protein Ure2 shows glutathione S-transferase activity in both native and fibrillar forms. Journal of Biological Chemistry, 279(48), 50025–50030.PubMedCrossRef Bai, M., Zhou, J. M., & Perret, S. (2004). The yeast prion protein Ure2 shows glutathione S-transferase activity in both native and fibrillar forms. Journal of Biological Chemistry, 279(48), 50025–50030.PubMedCrossRef
go back to reference Borlongan, C. V., Kanning, K., Poulos, S. G., Freeman, T. B., Cahill, D. W., & Sanberg, P. R. (1996). Free radical damage and oxidative stress in Huntington’s disease. Journal of Florida Medical Association, 83(5), 335–341. Borlongan, C. V., Kanning, K., Poulos, S. G., Freeman, T. B., Cahill, D. W., & Sanberg, P. R. (1996). Free radical damage and oxidative stress in Huntington’s disease. Journal of Florida Medical Association, 83(5), 335–341.
go back to reference Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.PubMedCrossRef Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.PubMedCrossRef
go back to reference Cashikar, A. G., Duennwald, M., & Lindquist, S. L. (2005). A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. Journal of Biological Chemistry, 280(25), 23869–23875.PubMedCentralPubMedCrossRef Cashikar, A. G., Duennwald, M., & Lindquist, S. L. (2005). A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. Journal of Biological Chemistry, 280(25), 23869–23875.PubMedCentralPubMedCrossRef
go back to reference Chafekar, S. M., & Duennwald, M. L. (2012). Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin. PLoS One, 7(5), e37929. Chafekar, S. M., & Duennwald, M. L. (2012). Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin. PLoS One, 7(5), e37929.
go back to reference Chattopadhyay, S., Roberts, P. M., & Pearce, D. A. (2003). The yeast model for Batten disease: A role for Btn2p in the trafficking of the Golgi-associated vesicular targeting protein, Yif1p. Biochemical and Biophysical Research Communications, 302(3), 534–538.PubMedCrossRef Chattopadhyay, S., Roberts, P. M., & Pearce, D. A. (2003). The yeast model for Batten disease: A role for Btn2p in the trafficking of the Golgi-associated vesicular targeting protein, Yif1p. Biochemical and Biophysical Research Communications, 302(3), 534–538.PubMedCrossRef
go back to reference Chen, Y., & Gibson, S. B. (2008). Is mitochondrial generation of reactive oxygen species a trigger for autophagy? Autophagy, 4(2), 246–248.PubMed Chen, Y., & Gibson, S. B. (2008). Is mitochondrial generation of reactive oxygen species a trigger for autophagy? Autophagy, 4(2), 246–248.PubMed
go back to reference Davies, J. E., Sarkar, S., & Rubinsztein, D. C. (2006). Trehalose reduces aggregate formation and delays pathology in a transgenic mouse model of oculopharyngeal muscular dystrophy. Human Molecular Genetics, 15(1), 23–31.PubMedCrossRef Davies, J. E., Sarkar, S., & Rubinsztein, D. C. (2006). Trehalose reduces aggregate formation and delays pathology in a transgenic mouse model of oculopharyngeal muscular dystrophy. Human Molecular Genetics, 15(1), 23–31.PubMedCrossRef
go back to reference Davies, S. W., Turmaine, M., Cozens, B. A., DiFiglia, M., Sharp, A. H., Ross, C. A., et al. (1997). Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell, 90(3), 537–548.PubMedCrossRef Davies, S. W., Turmaine, M., Cozens, B. A., DiFiglia, M., Sharp, A. H., Ross, C. A., et al. (1997). Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell, 90(3), 537–548.PubMedCrossRef
go back to reference De Souza, E. B., Cload, S. T., Pendergrast, P. S., & Sah, D. W. (2009). Novel therapeutic modalities to address nondrugable protein interaction targets. Neuropsychopharmacology, 34(1), 142–158.PubMedCrossRef De Souza, E. B., Cload, S. T., Pendergrast, P. S., & Sah, D. W. (2009). Novel therapeutic modalities to address nondrugable protein interaction targets. Neuropsychopharmacology, 34(1), 142–158.PubMedCrossRef
go back to reference Derkatch, I. L., Bradley, M. E., & Liebman, S. W. (1998). Overexpression of the SUP45 gene encoding a Sup35p-binding protein inhibits the induction of the de novo appearance of the [PSI+] prion. Proceedings of National Academy of Sciences of USA, 95(5), 2400–2405.CrossRef Derkatch, I. L., Bradley, M. E., & Liebman, S. W. (1998). Overexpression of the SUP45 gene encoding a Sup35p-binding protein inhibits the induction of the de novo appearance of the [PSI+] prion. Proceedings of National Academy of Sciences of USA, 95(5), 2400–2405.CrossRef
go back to reference Derkatch, I. L., Uptain, S. M., Outeiro, T. F., Krishnan, R., Lindquist, S. L., & Liebman, S. W. (2004). Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proceedings of National Academy of Sciences of USA, 101(35), 12934–12939.CrossRef Derkatch, I. L., Uptain, S. M., Outeiro, T. F., Krishnan, R., Lindquist, S. L., & Liebman, S. W. (2004). Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proceedings of National Academy of Sciences of USA, 101(35), 12934–12939.CrossRef
go back to reference Duennwald, M. L., & Lindquist, S. (2008). Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes & Development, 22(23), 3308–3319.CrossRef Duennwald, M. L., & Lindquist, S. (2008). Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes & Development, 22(23), 3308–3319.CrossRef
go back to reference Einhauer, A., Schuster, M., Wasserbauer, E., & Jungbauer, A. (2002). Expression and purification of homogenous proteins in Saccharomyces cerevisiae based on ubiquitin-FLAG fusion. Protein Expression and Purification, 24(3), 497–504.PubMedCrossRef Einhauer, A., Schuster, M., Wasserbauer, E., & Jungbauer, A. (2002). Expression and purification of homogenous proteins in Saccharomyces cerevisiae based on ubiquitin-FLAG fusion. Protein Expression and Purification, 24(3), 497–504.PubMedCrossRef
go back to reference Faber, P. W., Voisine, C., King, D. C., Bates, E. A., & Hart, A. C. (2002). Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis elegans neurons from huntingtin polyglutamine neurotoxicity. Proceedings of National Academy of Sciences of USA, 99(26), 17131–17136.CrossRef Faber, P. W., Voisine, C., King, D. C., Bates, E. A., & Hart, A. C. (2002). Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis elegans neurons from huntingtin polyglutamine neurotoxicity. Proceedings of National Academy of Sciences of USA, 99(26), 17131–17136.CrossRef
go back to reference Ferreira, J. C., Paschoalin, V. M. F., Panek, A. D., & Trugo, L. C. (1997). Comparison of three different methods for trehalose determination in yeast extracts. Food Chemistry, 60(2), 251–254.CrossRef Ferreira, J. C., Paschoalin, V. M. F., Panek, A. D., & Trugo, L. C. (1997). Comparison of three different methods for trehalose determination in yeast extracts. Food Chemistry, 60(2), 251–254.CrossRef
go back to reference Gietz, D., St. Jean, A., Woods, R. A., & Schiestl, R. H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Research, 20(6), 1425–1431.PubMedCentralPubMedCrossRef Gietz, D., St. Jean, A., Woods, R. A., & Schiestl, R. H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Research, 20(6), 1425–1431.PubMedCentralPubMedCrossRef
go back to reference Glover, J. R., & Lindquist, S. (1998). Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell, 94(1), 73–82.PubMedCrossRef Glover, J. R., & Lindquist, S. (1998). Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell, 94(1), 73–82.PubMedCrossRef
go back to reference Gopinath, K., & Sudhandiran, G. (2012). Naringin modulates oxidative stress and inflammation in 3-nitropropionic acid-induced neurodegeneration through the activation of Nrf2 signalling pathway. Neuroscience, 227, 134–143.PubMedCrossRef Gopinath, K., & Sudhandiran, G. (2012). Naringin modulates oxidative stress and inflammation in 3-nitropropionic acid-induced neurodegeneration through the activation of Nrf2 signalling pathway. Neuroscience, 227, 134–143.PubMedCrossRef
go back to reference Hames, B. D. (1998). Gel electrophoresis of proteins: A practical approach (3rd ed.). Oxford: Oxford University Press. Hames, B. D. (1998). Gel electrophoresis of proteins: A practical approach (3rd ed.). Oxford: Oxford University Press.
go back to reference Hands, S., Sajjad, M. U., Newton, M. J., & Wyttenbach, A. (2011). In vitro and in vivo aggregation of a fragment of huntingtin protein directly causes free radical production. Journal of Biological Chemistry, 286(52), 44512–44520.PubMedCentralPubMedCrossRef Hands, S., Sajjad, M. U., Newton, M. J., & Wyttenbach, A. (2011). In vitro and in vivo aggregation of a fragment of huntingtin protein directly causes free radical production. Journal of Biological Chemistry, 286(52), 44512–44520.PubMedCentralPubMedCrossRef
go back to reference Iwahashi, H., Nwaka, S., Obuchi, K., & Komatsu, Y. (1998). Evidence for the interplay between trehalose metabolism and Hsp104 in yeast. Applied and Environmental Microbiology, 64(11), 4614–4617.PubMedCentralPubMed Iwahashi, H., Nwaka, S., Obuchi, K., & Komatsu, Y. (1998). Evidence for the interplay between trehalose metabolism and Hsp104 in yeast. Applied and Environmental Microbiology, 64(11), 4614–4617.PubMedCentralPubMed
go back to reference Kanneganti, V., Kama, R., & Gerst, J. E. (2011). Btn3 is a negative regulator of Btn2-mediated endosomal protein trafficking and prion curing in yeast. Molecular Biology of Cell, 22(10), 1648–1663.CrossRef Kanneganti, V., Kama, R., & Gerst, J. E. (2011). Btn3 is a negative regulator of Btn2-mediated endosomal protein trafficking and prion curing in yeast. Molecular Biology of Cell, 22(10), 1648–1663.CrossRef
go back to reference Krobitsch, S., & Lindquist, S. (2000). Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proceedings of National Academy of Sciences of USA, 97(4), 1589–1594.CrossRef Krobitsch, S., & Lindquist, S. (2000). Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proceedings of National Academy of Sciences of USA, 97(4), 1589–1594.CrossRef
go back to reference Labbadia, J., Cunliffe, H., Weiss, A., Katsyuba, E., Sathasivam, K., Seredenina, T., et al. (2011). Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. Journal of Clinical Investigation, 121(8), 3306–3319.PubMedCentralPubMedCrossRef Labbadia, J., Cunliffe, H., Weiss, A., Katsyuba, E., Sathasivam, K., Seredenina, T., et al. (2011). Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. Journal of Clinical Investigation, 121(8), 3306–3319.PubMedCentralPubMedCrossRef
go back to reference Lan, D. M., Liu, F. T., Zhao, J., Chen, Y., Wu, J. J., Ding, Z. T., et al. (2012). Effect of trehalose on PC12 Cells overexpressing wild-type or A53T mutant α-synuclein. Neurochemistry Research, 37(9), 2025–2032.CrossRef Lan, D. M., Liu, F. T., Zhao, J., Chen, Y., Wu, J. J., Ding, Z. T., et al. (2012). Effect of trehalose on PC12 Cells overexpressing wild-type or A53T mutant α-synuclein. Neurochemistry Research, 37(9), 2025–2032.CrossRef
go back to reference Landles, C., Sathasivam, K., Weiss, A., Woodman, B., Moffitt, H., Finkbeiner, S., et al. (2010). Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. Journal of Biological Chemistry, 285(12), 8808–8823.PubMedCentralPubMedCrossRef Landles, C., Sathasivam, K., Weiss, A., Woodman, B., Moffitt, H., Finkbeiner, S., et al. (2010). Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. Journal of Biological Chemistry, 285(12), 8808–8823.PubMedCentralPubMedCrossRef
go back to reference Lillie, S. H., & Pringle, J. R. (1980). Reserve carbohydrate metabolism in Saccharomyces cerevisiae: Responses to nutrient limitation. Journal of Bacteriology, 143(3), 1384–1394.PubMedCentralPubMed Lillie, S. H., & Pringle, J. R. (1980). Reserve carbohydrate metabolism in Saccharomyces cerevisiae: Responses to nutrient limitation. Journal of Bacteriology, 143(3), 1384–1394.PubMedCentralPubMed
go back to reference Maat-Schieman, M., Roos, R., Losekoot, M., Dorsman, J., Welling-Graafland, C., Hegeman-Kleinn, I., et al. (2007). Neuronal intranuclear and neuropil inclusions for pathological assessment of Huntington’s disease. Brain Pathology, 17(1), 31–37.PubMedCrossRef Maat-Schieman, M., Roos, R., Losekoot, M., Dorsman, J., Welling-Graafland, C., Hegeman-Kleinn, I., et al. (2007). Neuronal intranuclear and neuropil inclusions for pathological assessment of Huntington’s disease. Brain Pathology, 17(1), 31–37.PubMedCrossRef
go back to reference Malinovska, L., Kroschwald, S., Munder, M. C., Richter, D., & Alberti, S. (2012). Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates. Molecular Biology of the Cell, 23(16), 3041–3056.PubMedCentralPubMedCrossRef Malinovska, L., Kroschwald, S., Munder, M. C., Richter, D., & Alberti, S. (2012). Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates. Molecular Biology of the Cell, 23(16), 3041–3056.PubMedCentralPubMedCrossRef
go back to reference Meriin, A. B., Zhang, X., He, X., Newnam, G. P., Chernoff, Y. O., & Sherman, M. Y. (2002). Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. Journal of Cell Biology, 157(6), 997–1004.PubMedCentralPubMedCrossRef Meriin, A. B., Zhang, X., He, X., Newnam, G. P., Chernoff, Y. O., & Sherman, M. Y. (2002). Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. Journal of Cell Biology, 157(6), 997–1004.PubMedCentralPubMedCrossRef
go back to reference Meriin, A. B., Zhang, X., Miliaras, N. B., Kazantsev, A., Chernoff, Y. O., McCaffery, J. M., et al. (2003). Aggregation of expanded polyglutamine domain in yeast leads to defects in endocytosis. Molecular and Cell Biology, 23(21), 7554–7565.CrossRef Meriin, A. B., Zhang, X., Miliaras, N. B., Kazantsev, A., Chernoff, Y. O., McCaffery, J. M., et al. (2003). Aggregation of expanded polyglutamine domain in yeast leads to defects in endocytosis. Molecular and Cell Biology, 23(21), 7554–7565.CrossRef
go back to reference Nestor, C. E., & Monckton, D. G. (2011). Correlation of inter-locus polyglutamine toxicity with CAG•CTG triplet repeat expandability and flanking genomic DNA GC content. PLoS ONE, 6(12), e28260.PubMedCentralPubMedCrossRef Nestor, C. E., & Monckton, D. G. (2011). Correlation of inter-locus polyglutamine toxicity with CAG•CTG triplet repeat expandability and flanking genomic DNA GC content. PLoS ONE, 6(12), e28260.PubMedCentralPubMedCrossRef
go back to reference Noubhani, A., Bunoust, O., Bonini, B. M., Thevelein, J. M., Devin, A., & Rigoulet, M. (2009). The trehalose pathway regulates mitochondrial respiratory chain content through hexokinase 2 and cAMP in Saccharomyces cerevisiae. Journal of Biological Chemistry, 284(40), 27229–27234.PubMedCentralPubMedCrossRef Noubhani, A., Bunoust, O., Bonini, B. M., Thevelein, J. M., Devin, A., & Rigoulet, M. (2009). The trehalose pathway regulates mitochondrial respiratory chain content through hexokinase 2 and cAMP in Saccharomyces cerevisiae. Journal of Biological Chemistry, 284(40), 27229–27234.PubMedCentralPubMedCrossRef
go back to reference Ravikumar, B., Duden, R., & Rubinsztein, D. C. (2002). Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Human Molecular Genetics, 11(9), 1107–1117.PubMedCrossRef Ravikumar, B., Duden, R., & Rubinsztein, D. C. (2002). Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Human Molecular Genetics, 11(9), 1107–1117.PubMedCrossRef
go back to reference Renna, M., Jimenez-Sanchez, M., Sarkar, S., & Rubinsztein, D. C. (2010). Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. Journal of Biological Chemistry, 285(15), 11061–11067.PubMedCentralPubMedCrossRef Renna, M., Jimenez-Sanchez, M., Sarkar, S., & Rubinsztein, D. C. (2010). Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. Journal of Biological Chemistry, 285(15), 11061–11067.PubMedCentralPubMedCrossRef
go back to reference Rodríguez-Navarro, J. A., Rodríguez, L., Casarejos, M. J., Solano, R. M., Gómez, A., Perucho, J., et al. (2010). Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiology of Disease, 39(3), 423–438.PubMedCrossRef Rodríguez-Navarro, J. A., Rodríguez, L., Casarejos, M. J., Solano, R. M., Gómez, A., Perucho, J., et al. (2010). Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiology of Disease, 39(3), 423–438.PubMedCrossRef
go back to reference Ross, C. A., & Tabrizi, S. J. (2011). Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurology, 10(1), 83–98.PubMedCrossRef Ross, C. A., & Tabrizi, S. J. (2011). Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurology, 10(1), 83–98.PubMedCrossRef
go back to reference Rozen, S., & Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology, 132, 365–386.PubMed Rozen, S., & Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology, 132, 365–386.PubMed
go back to reference Sanchéz, I., Mahlke, C., & Yuan, J. (2003). Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature, 421(6921), 373–379.PubMedCrossRef Sanchéz, I., Mahlke, C., & Yuan, J. (2003). Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature, 421(6921), 373–379.PubMedCrossRef
go back to reference Sarkar, S., Davies, J. E., Huang, Z., Tunnacliffe, A., & Rubinsztein, D. C. (2007). Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. Journal of Biological Chemistry, 282(8), 5641–5652.PubMedCrossRef Sarkar, S., Davies, J. E., Huang, Z., Tunnacliffe, A., & Rubinsztein, D. C. (2007). Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. Journal of Biological Chemistry, 282(8), 5641–5652.PubMedCrossRef
go back to reference Sarkar, S., Ravikumar, B., Floto, R. A., & Rubinsztein, D. C. (2009). Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death and Differentiation, 16(1), 46–56.PubMedCrossRef Sarkar, S., Ravikumar, B., Floto, R. A., & Rubinsztein, D. C. (2009). Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death and Differentiation, 16(1), 46–56.PubMedCrossRef
go back to reference Sarkar, S., & Rubinsztein, D. C. (2008). Huntington’s disease: Degradation of mutant huntingtin by autophagy. FEBS Journal, 275(17), 4263–4270.PubMedCrossRef Sarkar, S., & Rubinsztein, D. C. (2008). Huntington’s disease: Degradation of mutant huntingtin by autophagy. FEBS Journal, 275(17), 4263–4270.PubMedCrossRef
go back to reference Schaeffer, V., Lavenir, I., Ozcelik, S., Tolnay, M., Winkler, D. T., & Goedert, M. (2012). Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain, 135(Pt 7), 2169–2177.PubMedCentralPubMedCrossRef Schaeffer, V., Lavenir, I., Ozcelik, S., Tolnay, M., Winkler, D. T., & Goedert, M. (2012). Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain, 135(Pt 7), 2169–2177.PubMedCentralPubMedCrossRef
go back to reference Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101–1108.PubMedCrossRef Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101–1108.PubMedCrossRef
go back to reference Shenton, D., Smirnova, J. B., Selley, J. N., Carroll, K., Hubbard, S. J., Pavitt, G. D., et al. (2006). Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. Journal of Biological Chemistry, 281(39), 29011–29021.PubMedCrossRef Shenton, D., Smirnova, J. B., Selley, J. N., Carroll, K., Hubbard, S. J., Pavitt, G. D., et al. (2006). Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. Journal of Biological Chemistry, 281(39), 29011–29021.PubMedCrossRef
go back to reference Singer, M. A., & Lindquist, S. (1998). Multiple effects of trehalose on protein folding in vitro and in vivo. Molecular Cell, 1(5), 639–648.PubMedCrossRef Singer, M. A., & Lindquist, S. (1998). Multiple effects of trehalose on protein folding in vitro and in vivo. Molecular Cell, 1(5), 639–648.PubMedCrossRef
go back to reference Singh, K., Saleh, A. A., Bhadra, A. K., & Roy, I. (2013). Hsp104 as a key modulator of prion-mediated oxidative stress in Saccharomyces cerevisiae. Biochemical Journal, 454(2), 217–225.PubMedCrossRef Singh, K., Saleh, A. A., Bhadra, A. K., & Roy, I. (2013). Hsp104 as a key modulator of prion-mediated oxidative stress in Saccharomyces cerevisiae. Biochemical Journal, 454(2), 217–225.PubMedCrossRef
go back to reference Sorolla, M. A., Reverter-Branchat, G., Tamarit, J., Ferrer, I., Ros, J., & Cabiscol, E. (2008). Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radical Biology & Medicine, 45(5), 667–678.CrossRef Sorolla, M. A., Reverter-Branchat, G., Tamarit, J., Ferrer, I., Ros, J., & Cabiscol, E. (2008). Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radical Biology & Medicine, 45(5), 667–678.CrossRef
go back to reference Sorolla, M. A., Rodríguez-Colman, M. J., Vall-llaura, N., Tamarit, J., Ros, J., & Cabiscol, E. (2012). Protein oxidation in Huntington disease. BioFactors, 38(3), 173–185.PubMedCrossRef Sorolla, M. A., Rodríguez-Colman, M. J., Vall-llaura, N., Tamarit, J., Ros, J., & Cabiscol, E. (2012). Protein oxidation in Huntington disease. BioFactors, 38(3), 173–185.PubMedCrossRef
go back to reference Stefani, M., & Dobson, C. M. (2003). Protein aggregation and aggregate toxicity: New insights into protein folding, misfolding diseases and biological evolution. Journal of Molecular Medicine (Berlin), 81(11), 678–699.CrossRef Stefani, M., & Dobson, C. M. (2003). Protein aggregation and aggregate toxicity: New insights into protein folding, misfolding diseases and biological evolution. Journal of Molecular Medicine (Berlin), 81(11), 678–699.CrossRef
go back to reference Tanaka, M., Machida, Y., Niu, S., Ikeda, T., Jana, N. R., Doi, H., et al. (2004). Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nature Medicine, 10(2), 148–154.PubMedCrossRef Tanaka, M., Machida, Y., Niu, S., Ikeda, T., Jana, N. R., Doi, H., et al. (2004). Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nature Medicine, 10(2), 148–154.PubMedCrossRef
go back to reference The Huntington’s Disease Collaborative Research Group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72(6), 971–983.CrossRef The Huntington’s Disease Collaborative Research Group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72(6), 971–983.CrossRef
go back to reference Trushina, E., Dyer, R. B., Badger, J. D., 2nd, Ure, D., Eide, L., Tran, D. D., et al. (2004). Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Molecular and Cell Biology, 24(18), 8195–8209.CrossRef Trushina, E., Dyer, R. B., Badger, J. D., 2nd, Ure, D., Eide, L., Tran, D. D., et al. (2004). Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Molecular and Cell Biology, 24(18), 8195–8209.CrossRef
go back to reference Trushina, E., Singh, R. D., Dyer, R. B., Cao, S., Shah, V. H., Parton, R. G., et al. (2006). Mutant huntingtin inhibits clathrin-independent endocytosis and causes accumulation of cholesterol in vitro and in vivo. Human Molecular Genetics, 15(24), 3578–3591.PubMedCrossRef Trushina, E., Singh, R. D., Dyer, R. B., Cao, S., Shah, V. H., Parton, R. G., et al. (2006). Mutant huntingtin inhibits clathrin-independent endocytosis and causes accumulation of cholesterol in vitro and in vivo. Human Molecular Genetics, 15(24), 3578–3591.PubMedCrossRef
go back to reference Vogel, C., Silva, G. M., & Marcotte, E. M. (2011). Protein expression regulation under oxidative stress. Molecular and Cellular Proteomics, 10(12), 1–12.CrossRef Vogel, C., Silva, G. M., & Marcotte, E. M. (2011). Protein expression regulation under oxidative stress. Molecular and Cellular Proteomics, 10(12), 1–12.CrossRef
go back to reference Weiss, K. R., Kimura, Y., Lee, W. C., & Littleton, J. T. (2012). Huntingtin aggregation kinetics and their pathological role in a Drosophila Huntington’s disease model. Genetics, 190(2), 581–600.PubMedCentralPubMedCrossRef Weiss, K. R., Kimura, Y., Lee, W. C., & Littleton, J. T. (2012). Huntingtin aggregation kinetics and their pathological role in a Drosophila Huntington’s disease model. Genetics, 190(2), 581–600.PubMedCentralPubMedCrossRef
go back to reference Winkler, J., Tyedmers, J., Bukau, B., & Mogk, A. (2012). Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. Journal of Cell Biology, 198(3), 387–404.PubMedCentralPubMedCrossRef Winkler, J., Tyedmers, J., Bukau, B., & Mogk, A. (2012). Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. Journal of Cell Biology, 198(3), 387–404.PubMedCentralPubMedCrossRef
go back to reference Wong, C. M., Zhou, Y., Ng, R. W. M., Kung, H., & Jin, D. Y. (2002). Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. Journal of Biological Chemistry, 277(7), 5385–5394.PubMedCrossRef Wong, C. M., Zhou, Y., Ng, R. W. M., Kung, H., & Jin, D. Y. (2002). Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. Journal of Biological Chemistry, 277(7), 5385–5394.PubMedCrossRef
Metadata
Title
Deciphering the Roles of Trehalose and Hsp104 in the Inhibition of Aggregation of Mutant Huntingtin in a Yeast Model of Huntington’s Disease
Authors
Rajeev Kumar Chaudhary
Jay Kardani
Kuljit Singh
Ruchira Banerjee
Ipsita Roy
Publication date
01-06-2014
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 2/2014
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-013-8275-5

Other articles of this Issue 2/2014

NeuroMolecular Medicine 2/2014 Go to the issue