Skip to main content
Top
Published in: NeuroMolecular Medicine 2/2008

01-06-2008 | Original Paper

Exercise, Learned Helplessness, and the Stress-Resistant Brain

Authors: Benjamin N. Greenwood, Monika Fleshner

Published in: NeuroMolecular Medicine | Issue 2/2008

Login to get access

Abstract

Exercise can prevent the development of stress-related mood disorders, such as depression and anxiety. The underlying neurobiological mechanisms of this effect, however, remain unknown. Recently, researchers have used animal models to begin to elucidate the potential mechanisms underlying the protective effects of physical activity. Using the behavioral consequences of uncontrollable stress or “learned helplessness” as an animal analog of depression- and anxiety-like behaviors in rats, we are investigating factors that could be important for the antidepressant and anxiolytic properties of exercise (i.e., wheel running). The current review focuses on the following: (1) the effect of exercise on the behavioral consequences of uncontrollable stress and the implications of these effects on the specificity of the “learned helplessness” animal model; (2) the neurocircuitry of learned helplessness and the role of serotonin; and (3) exercise-associated neural adaptations and neural plasticity that may contribute to the stress-resistant brain. Identifying the mechanisms by which exercise prevents learned helplessness could shed light on the complex neurobiology of depression and anxiety and potentially lead to novel strategies for the prevention of stress-related mood disorders.
Literature
go back to reference Abrams, J. K., Johnson, P. L., Hay-Schmidt, A., et al. (2005). Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs. Neuroscience, 133, 983–997.PubMed Abrams, J. K., Johnson, P. L., Hay-Schmidt, A., et al. (2005). Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs. Neuroscience, 133, 983–997.PubMed
go back to reference Abrams, J. K., Johnson, P. L., Hollis, J. H., et al. (2004). Anatomic and functional topography of the dorsal raphe nucleus. Annals of the New York Academy of Sciences, 1018, 46–57.PubMed Abrams, J. K., Johnson, P. L., Hollis, J. H., et al. (2004). Anatomic and functional topography of the dorsal raphe nucleus. Annals of the New York Academy of Sciences, 1018, 46–57.PubMed
go back to reference Adell, A., Celada, P., & Artigas, F. (2001). The role of 5-HT1B receptors in the regulation of serotonin cell firing and release in the rat brain. Journal of Neurochemistry, 79, 172–182.PubMed Adell, A., Celada, P., & Artigas, F. (2001). The role of 5-HT1B receptors in the regulation of serotonin cell firing and release in the rat brain. Journal of Neurochemistry, 79, 172–182.PubMed
go back to reference Adlard, P. A., & Cotman, C. W. (2004). Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression. Neuroscience, 124, 985–992.PubMed Adlard, P. A., & Cotman, C. W. (2004). Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression. Neuroscience, 124, 985–992.PubMed
go back to reference Aghajanian, G. K. (1985). Modulation of a transient outward current in serotonergic neurones by alpha 1-adrenoceptors. Nature, 315, 501–503.PubMed Aghajanian, G. K. (1985). Modulation of a transient outward current in serotonergic neurones by alpha 1-adrenoceptors. Nature, 315, 501–503.PubMed
go back to reference Amat, J., Baratta, M. V., Paul, E., et al. (2005). Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nature Neuroscience, 8, 365–371.PubMed Amat, J., Baratta, M. V., Paul, E., et al. (2005). Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nature Neuroscience, 8, 365–371.PubMed
go back to reference Amat, J., Matus-Amat, P., Watkins, L. R., et al. (1998a). Escapable and inescapable stress differentially alter extracellular levels of 5-HT in the basolateral amygdala of the rat. Brain Research, 812, 113–120.PubMed Amat, J., Matus-Amat, P., Watkins, L. R., et al. (1998a). Escapable and inescapable stress differentially alter extracellular levels of 5-HT in the basolateral amygdala of the rat. Brain Research, 812, 113–120.PubMed
go back to reference Amat, J., Matus-Amat, P., Watkins, L. R., et al. (1998b). Escapable and inescapable stress differentially and selectively alter extracellular levels of 5-HT in the ventral hippocampus and dorsal periaqueductal gray of the rat. Brain Research, 797, 12–22.PubMed Amat, J., Matus-Amat, P., Watkins, L. R., et al. (1998b). Escapable and inescapable stress differentially and selectively alter extracellular levels of 5-HT in the ventral hippocampus and dorsal periaqueductal gray of the rat. Brain Research, 797, 12–22.PubMed
go back to reference Amat, J., Paul, E., Zarza, C., et al. (2006). Previous experience with behavioral control over stress blocks the behavioral and dorsal raphe nucleus activating effects of later uncontrollable stress: Role of the ventral medial prefrontal cortex. Journal of Neuroscience, 26, 13264–13272.PubMed Amat, J., Paul, E., Zarza, C., et al. (2006). Previous experience with behavioral control over stress blocks the behavioral and dorsal raphe nucleus activating effects of later uncontrollable stress: Role of the ventral medial prefrontal cortex. Journal of Neuroscience, 26, 13264–13272.PubMed
go back to reference Amat, J., Sparks, P. D., Matus-Amat, P., et al. (2001). The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Research, 917, 118–126.PubMed Amat, J., Sparks, P. D., Matus-Amat, P., et al. (2001). The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Research, 917, 118–126.PubMed
go back to reference Anderson, I. M., & Mortimore, C. (1999). 5-HT and human anxiety. Evidence from studies using acute tryptophan depletion. Advances in Experimental Medicine and Biology, 467, 43–55.PubMed Anderson, I. M., & Mortimore, C. (1999). 5-HT and human anxiety. Evidence from studies using acute tryptophan depletion. Advances in Experimental Medicine and Biology, 467, 43–55.PubMed
go back to reference Babyak, M., Blumenthal, J. A., Herman, S. P., et al. (2000). Exercise treatment for major depression: Maintenance of therapeutic benefit at 10 months. Psychosomatic Medicine, 62, 633–638.PubMed Babyak, M., Blumenthal, J. A., Herman, S. P., et al. (2000). Exercise treatment for major depression: Maintenance of therapeutic benefit at 10 months. Psychosomatic Medicine, 62, 633–638.PubMed
go back to reference Bailey, S. P., Davis, J. M., & Ahlborn, E. N. (1992). Effect of increased brain serotonergic activity on endurance performance in the rat. Acta Physiologica Scandinavica, 145, 75–76.PubMedCrossRef Bailey, S. P., Davis, J. M., & Ahlborn, E. N. (1992). Effect of increased brain serotonergic activity on endurance performance in the rat. Acta Physiologica Scandinavica, 145, 75–76.PubMedCrossRef
go back to reference Bailey, S. P., Davis, J. M., & Ahlborn, E. N. (1993). Serotonergic agonists and antagonists affect endurance performance in the rat. International Journal of Sports Medicine, 14, 330–333.PubMed Bailey, S. P., Davis, J. M., & Ahlborn, E. N. (1993). Serotonergic agonists and antagonists affect endurance performance in the rat. International Journal of Sports Medicine, 14, 330–333.PubMed
go back to reference Baker, S. C., Frith, C. D., & Dolan, R. J. (1997). The interaction between mood and cognitive function studied with PET. Psychological Medicine, 27, 565–578.PubMed Baker, S. C., Frith, C. D., & Dolan, R. J. (1997). The interaction between mood and cognitive function studied with PET. Psychological Medicine, 27, 565–578.PubMed
go back to reference Barde, Y. A. (1994). Neurotrophins: A family of proteins supporting the survival of neurons. Progress in Clinical and Biological Research, 390, 45–56.PubMed Barde, Y. A. (1994). Neurotrophins: A family of proteins supporting the survival of neurons. Progress in Clinical and Biological Research, 390, 45–56.PubMed
go back to reference Beasley, C. M. Jr., & Potvin, J. H. (1993). Fluoxetine: Activating and sedating effects. International Clinical Psychopharmacology, 8, 271–275.PubMedCrossRef Beasley, C. M. Jr., & Potvin, J. H. (1993). Fluoxetine: Activating and sedating effects. International Clinical Psychopharmacology, 8, 271–275.PubMedCrossRef
go back to reference Bequet, F., Gomez-Merino, D., Berthelot, M., et al. (2001). Exercise-induced changes in brain glucose and serotonin revealed by microdialysis in rat hippocampus: Effect of glucose supplementation. Acta Physiologica Scandinavica, 173, 223–230.PubMed Bequet, F., Gomez-Merino, D., Berthelot, M., et al. (2001). Exercise-induced changes in brain glucose and serotonin revealed by microdialysis in rat hippocampus: Effect of glucose supplementation. Acta Physiologica Scandinavica, 173, 223–230.PubMed
go back to reference Binder, E., Droste, S. K., Ohl, F., et al. (2004). Regular voluntary exercise reduces anxiety-related behaviour and impulsiveness in mice. Behavioural Brain Research, 155, 197–206.PubMed Binder, E., Droste, S. K., Ohl, F., et al. (2004). Regular voluntary exercise reduces anxiety-related behaviour and impulsiveness in mice. Behavioural Brain Research, 155, 197–206.PubMed
go back to reference Bjornebekk, A., Mathe, A. A., & Brene, S. (2005). The antidepressant effect of running is associated with increased hippocampal cell proliferation. International Journal of Neuropsychopharmacology, 8, 357–368.PubMed Bjornebekk, A., Mathe, A. A., & Brene, S. (2005). The antidepressant effect of running is associated with increased hippocampal cell proliferation. International Journal of Neuropsychopharmacology, 8, 357–368.PubMed
go back to reference Bjornebekk, A., Mathe, A. A., & Brene, S. (2006). Running has differential effects on NPY, opiates, and cell proliferation in an animal model of depression and controls. Neuropsychopharmacology, 31, 256–264.PubMed Bjornebekk, A., Mathe, A. A., & Brene, S. (2006). Running has differential effects on NPY, opiates, and cell proliferation in an animal model of depression and controls. Neuropsychopharmacology, 31, 256–264.PubMed
go back to reference Bland, S. T., Tamlyn, J. P., Barrientos, R. M., et al. (2007). Expression of fibroblast growth factor-2 and brain-derived neurotrophic factor mRNA in the medial prefrontal cortex and hippocampus after uncontrollable or controllable stress. Neuroscience, 144, 1219–1228.PubMed Bland, S. T., Tamlyn, J. P., Barrientos, R. M., et al. (2007). Expression of fibroblast growth factor-2 and brain-derived neurotrophic factor mRNA in the medial prefrontal cortex and hippocampus after uncontrollable or controllable stress. Neuroscience, 144, 1219–1228.PubMed
go back to reference Blomstrand, E., Perrett, D., Parry-Billings, M., et al. (1989). Effect of sustained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions in the rat Acta Physiologica Scandinavica, 136, 473–481.PubMed Blomstrand, E., Perrett, D., Parry-Billings, M., et al. (1989). Effect of sustained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions in the rat Acta Physiologica Scandinavica, 136, 473–481.PubMed
go back to reference Blumenthal, J. A., Babyak, M. A., Moore, K. A., et al. (1999). Effects of exercise training on older patients with major depression. Archives of Internal Medicine, 159, 2349–2356.PubMed Blumenthal, J. A., Babyak, M. A., Moore, K. A., et al. (1999). Effects of exercise training on older patients with major depression. Archives of Internal Medicine, 159, 2349–2356.PubMed
go back to reference Bremner, J. D., Staib, L. H., Kaloupek, D., et al. (1999). Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: A positron emission tomography study. Biological Psychiatry, 45, 806–816.PubMed Bremner, J. D., Staib, L. H., Kaloupek, D., et al. (1999). Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: A positron emission tomography study. Biological Psychiatry, 45, 806–816.PubMed
go back to reference Brosse, A. L., Sheets, E. S., Lett, H. S., et al. (2002). Exercise and the treatment of clinical depression in adults: Recent findings and future directions. Sports Medicine, 32, 741–760.PubMed Brosse, A. L., Sheets, E. S., Lett, H. S., et al. (2002). Exercise and the treatment of clinical depression in adults: Recent findings and future directions. Sports Medicine, 32, 741–760.PubMed
go back to reference Brown, L., Rosellini, R. A., Samuels, O. B., et al. (1982). Evidence for a serotonergic mechanism of the learned helplessness phenomenon. Pharmacology Biochemistry and Behavior, 17, 877–883. Brown, L., Rosellini, R. A., Samuels, O. B., et al. (1982). Evidence for a serotonergic mechanism of the learned helplessness phenomenon. Pharmacology Biochemistry and Behavior, 17, 877–883.
go back to reference Burghardt, P. R., Fulk, L. J., Hand, G. A., et al. (2004). The effects of chronic treadmill and wheel running on behavior in rats. Brain Research, 1019, 84–96.PubMed Burghardt, P. R., Fulk, L. J., Hand, G. A., et al. (2004). The effects of chronic treadmill and wheel running on behavior in rats. Brain Research, 1019, 84–96.PubMed
go back to reference Burghardt, P. R., Pasumarthi, R. K., Wilson, M. A., et al. (2006). Alterations in fear conditioning and amygdalar activation following chronic wheel running in rats. Pharmacology Biochemistry and Behavior, 84, 306–312. Burghardt, P. R., Pasumarthi, R. K., Wilson, M. A., et al. (2006). Alterations in fear conditioning and amygdalar activation following chronic wheel running in rats. Pharmacology Biochemistry and Behavior, 84, 306–312.
go back to reference Campisi, J., Leem, T. H., Greenwood, B. N., et al. (2003). Habitual physical activity facilitates stress-induced HSP72 induction in brain, peripheral, and immune tissues. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 284, R520–R530. Campisi, J., Leem, T. H., Greenwood, B. N., et al. (2003). Habitual physical activity facilitates stress-induced HSP72 induction in brain, peripheral, and immune tissues. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 284, R520–R530.
go back to reference Chambliss, H. O., Van Hoomissen, J. D., & Holmes, P. V. (2004). Effects of chronic activity wheel running and imipramine on masculine copulatory behavior after olfactory bulbectomy. Physiology & Behavior, 82, 593–600. Chambliss, H. O., Van Hoomissen, J. D., & Holmes, P. V. (2004). Effects of chronic activity wheel running and imipramine on masculine copulatory behavior after olfactory bulbectomy. Physiology & Behavior, 82, 593–600.
go back to reference Chaouloff, F. (1994). Influence of physical exercise on 5-HT1A receptor- and anxiety-related behaviours. Neuroscience Letters, 176, 226–230.PubMed Chaouloff, F. (1994). Influence of physical exercise on 5-HT1A receptor- and anxiety-related behaviours. Neuroscience Letters, 176, 226–230.PubMed
go back to reference Clark, M. S., McDevitt, R. A., & Neumaier, J. F. (2006). Quantitative mapping of tryptophan hydroxylase-2, 5-HT1A, 5-HT1B, and serotonin transporter expression across the anteroposterior axis of the rat dorsal and median raphe nuclei. Journal of Comparative Neurology, 498, 611–623.PubMed Clark, M. S., McDevitt, R. A., & Neumaier, J. F. (2006). Quantitative mapping of tryptophan hydroxylase-2, 5-HT1A, 5-HT1B, and serotonin transporter expression across the anteroposterior axis of the rat dorsal and median raphe nuclei. Journal of Comparative Neurology, 498, 611–623.PubMed
go back to reference Colcombe, S. J., Erickson, K. I., Scalf, P. E., et al. (2006). Aerobic exercise training increases brain volume in aging humans. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61(11), 1166–1170. Colcombe, S. J., Erickson, K. I., Scalf, P. E., et al. (2006). Aerobic exercise training increases brain volume in aging humans. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61(11), 1166–1170.
go back to reference Coppen, A. J., & Doogan, D. P. (1988). Serotonin and its place in the pathogenesis of depression. Journal of Clinical Psychiatry, 49(Suppl), 4–11.PubMed Coppen, A. J., & Doogan, D. P. (1988). Serotonin and its place in the pathogenesis of depression. Journal of Clinical Psychiatry, 49(Suppl), 4–11.PubMed
go back to reference Cotman, C. W., & Engesser-Cesar, C. (2002). Exercise enhances and protects brain function. Exercise and Sport Sciences Reviews, 30, 75–79.PubMed Cotman, C. W., & Engesser-Cesar, C. (2002). Exercise enhances and protects brain function. Exercise and Sport Sciences Reviews, 30, 75–79.PubMed
go back to reference Cusin, C., Fava, M., Amsterdam, J. D., et al. (2007). Early symptomatic worsening during treatment with fluoxetine in major depressive disorder: Prevalence and implications. Journal of Clinical Psychiatry, 68, 52–57.PubMedCrossRef Cusin, C., Fava, M., Amsterdam, J. D., et al. (2007). Early symptomatic worsening during treatment with fluoxetine in major depressive disorder: Prevalence and implications. Journal of Clinical Psychiatry, 68, 52–57.PubMedCrossRef
go back to reference Czeh, B., Müller-Keuker, J. I., Rygula, R., et al. (2006). Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: Hemispheric asymmetry and reversal by fluoxetine treatment. Neuropsychopharmacology, 32, 1490–1503.PubMed Czeh, B., Müller-Keuker, J. I., Rygula, R., et al. (2006). Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: Hemispheric asymmetry and reversal by fluoxetine treatment. Neuropsychopharmacology, 32, 1490–1503.PubMed
go back to reference Davis, J. M., & Bailey, S. P. (1997). Possible mechanisms of central nervous system fatigue during exercise. Medicine and Science in Sports and Exercise, 29, 45–57.PubMed Davis, J. M., & Bailey, S. P. (1997). Possible mechanisms of central nervous system fatigue during exercise. Medicine and Science in Sports and Exercise, 29, 45–57.PubMed
go back to reference Day, H. E., Greenwood, B. N., Hammack, S. E., et al. (2004). Differential expression of 5HT-1A, alpha1b adrenergic, CRF-R1, and CRF-R2 receptor mRNA in serotonergic, gamma-aminobutyric acidergic, and catecholaminergic cells of the rat dorsal raphe nucleus. Journal of Comparative Neurology, 474, 364–78.PubMed Day, H. E., Greenwood, B. N., Hammack, S. E., et al. (2004). Differential expression of 5HT-1A, alpha1b adrenergic, CRF-R1, and CRF-R2 receptor mRNA in serotonergic, gamma-aminobutyric acidergic, and catecholaminergic cells of the rat dorsal raphe nucleus. Journal of Comparative Neurology, 474, 364–78.PubMed
go back to reference Day, H. E., Wolf, E. M., Herlihy, L., Campeau, S. (2006). The effect of voluntary exercise on the acute HPA axis response to mild stress in rats. Neuroscience Meeting Planner. Atlanta, GA: Society for Neuroscience Online, Program No. 563.20. Day, H. E., Wolf, E. M., Herlihy, L., Campeau, S. (2006). The effect of voluntary exercise on the acute HPA axis response to mild stress in rats. Neuroscience Meeting Planner. Atlanta, GA: Society for Neuroscience Online, Program No. 563.20.
go back to reference Delgado, P. L., Miller, H. L., Salomon, R. M., et al. (1999). Tryptophan-depletion challenge in depressed patients treated with desipramine or fluoxetine: Implications for the role of serotonin in the mechanism of antidepressant action. Biological Psychiatry, 46, 212–220.PubMed Delgado, P. L., Miller, H. L., Salomon, R. M., et al. (1999). Tryptophan-depletion challenge in depressed patients treated with desipramine or fluoxetine: Implications for the role of serotonin in the mechanism of antidepressant action. Biological Psychiatry, 46, 212–220.PubMed
go back to reference Dietrich, A. (2006). Transient hypofrontality as a mechanism for the psychological effects of exercise. Psychiatry Research, 145, 79–83.PubMed Dietrich, A. (2006). Transient hypofrontality as a mechanism for the psychological effects of exercise. Psychiatry Research, 145, 79–83.PubMed
go back to reference Dishman, R. K. (1997). The norepinephrine hypothesis. In W. P. Morgan (Ed.), Physical activity and mental health. Washington, DC: Taylor & Francis. Dishman, R. K. (1997). The norepinephrine hypothesis. In W. P. Morgan (Ed.), Physical activity and mental health. Washington, DC: Taylor & Francis.
go back to reference Dishman, R. K., Berthoud, H.-R., Booth, F. W., et al. (2006). Neurobiology of exercise. Obesity (Silver Spring), 14, 345–356. Dishman, R. K., Berthoud, H.-R., Booth, F. W., et al. (2006). Neurobiology of exercise. Obesity (Silver Spring), 14, 345–356.
go back to reference Dishman, R. K., Renner, K. J., Youngstedt, S. D., et al. (1997a). Activity wheel running reduces escape latency and alters brain monoamine levels after footshock. Brain Research Bulletin, 42, 399–406.PubMed Dishman, R. K., Renner, K. J., Youngstedt, S. D., et al. (1997a). Activity wheel running reduces escape latency and alters brain monoamine levels after footshock. Brain Research Bulletin, 42, 399–406.PubMed
go back to reference Dishman, R. K., Warren, J. M., & Hong, S. (2000). Treadmill exercise training blunts suppression of splenic natural killer cell cytolysis after footshock. Journal of Applied Physiology, 88, 2176–2182.PubMed Dishman, R. K., Warren, J. M., & Hong, S. (2000). Treadmill exercise training blunts suppression of splenic natural killer cell cytolysis after footshock. Journal of Applied Physiology, 88, 2176–2182.PubMed
go back to reference Dishman, R. K., Warren, J. M., Youngstedt, S. D., et al. (1997b). Brain monoamines, exercise, and behavioral stress: Animal models. Medicine and Science in Sports and Exercise, 29, 63–74.PubMed Dishman, R. K., Warren, J. M., Youngstedt, S. D., et al. (1997b). Brain monoamines, exercise, and behavioral stress: Animal models. Medicine and Science in Sports and Exercise, 29, 63–74.PubMed
go back to reference Dong, H. W., Petrovich, G. D., Watts, A. G., et al. (2001). Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. Journal of Comparative Neurology, 436, 430–455.PubMed Dong, H. W., Petrovich, G. D., Watts, A. G., et al. (2001). Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. Journal of Comparative Neurology, 436, 430–455.PubMed
go back to reference Drevets, W. C. (2000). Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res., 126, 413–431.PubMed Drevets, W. C. (2000). Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res., 126, 413–431.PubMed
go back to reference Droste, S. K., Chandramohan, Y., Hill, L. E., et al. (2007). Voluntary exercise impacts on the rat hypothalamic–pituitary–adrenocortical axis mainly at the adrenal level. Neuroendocrinology, 86, 26–37.PubMed Droste, S. K., Chandramohan, Y., Hill, L. E., et al. (2007). Voluntary exercise impacts on the rat hypothalamic–pituitary–adrenocortical axis mainly at the adrenal level. Neuroendocrinology, 86, 26–37.PubMed
go back to reference Droste, S. K., Gesing, A., Ulbricht, S., et al. (2003). Effects of long-term voluntary exercise on the mouse hypothalamic–pituitary–adrenocortical axis. Endocrinology, 144, 3012–3023.PubMed Droste, S. K., Gesing, A., Ulbricht, S., et al. (2003). Effects of long-term voluntary exercise on the mouse hypothalamic–pituitary–adrenocortical axis. Endocrinology, 144, 3012–3023.PubMed
go back to reference Droste, S. K., Schweizer, M. C., Ulbricht, S., et al. (2006). Long-term voluntary exercise and the mouse hypothalamic–pituitary–adrenocortical axis: Impact of concurrent treatment with the antidepressant drug tianeptine. Journal of Neuroendocrinology, 18, 915–925.PubMed Droste, S. K., Schweizer, M. C., Ulbricht, S., et al. (2006). Long-term voluntary exercise and the mouse hypothalamic–pituitary–adrenocortical axis: Impact of concurrent treatment with the antidepressant drug tianeptine. Journal of Neuroendocrinology, 18, 915–925.PubMed
go back to reference Drugan, R. C., Ryan, S. M., Minor, T. R., et al. (1984). Librium prevents the analgesia and shuttlebox escape deficit typically observed following inescapable shock. Pharmacology Biochemistry and Behavior, 21, 749–754. Drugan, R. C., Ryan, S. M., Minor, T. R., et al. (1984). Librium prevents the analgesia and shuttlebox escape deficit typically observed following inescapable shock. Pharmacology Biochemistry and Behavior, 21, 749–754.
go back to reference Duman, R. S. (2004). Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Medicine, 5, 11–25.PubMed Duman, R. S. (2004). Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Medicine, 5, 11–25.PubMed
go back to reference Duman, R. S. (2005). Neurotrophic factors and regulation of mood: Role of exercise, diet and metabolism. Neurobiology of Aging, 26(Suppl 1), 88–93.PubMed Duman, R. S. (2005). Neurotrophic factors and regulation of mood: Role of exercise, diet and metabolism. Neurobiology of Aging, 26(Suppl 1), 88–93.PubMed
go back to reference Duman, R. S., Heninger, G. R., & Nestler, E. J. (1997). A molecular and cellular theory of depression. Archives of General Psychiatry, 54, 597–606.PubMed Duman, R. S., Heninger, G. R., & Nestler, E. J. (1997). A molecular and cellular theory of depression. Archives of General Psychiatry, 54, 597–606.PubMed
go back to reference Duman, R. S., & Monteggia, L. M. (2006). A neurotrophic model for stress-related mood disorders. Biological Psychiatry, 59, 1116–1127.PubMed Duman, R. S., & Monteggia, L. M. (2006). A neurotrophic model for stress-related mood disorders. Biological Psychiatry, 59, 1116–1127.PubMed
go back to reference Dunn, A. L., & Dishman, R. K. (1991). Exercise and the neurobiology of depression. Exercise and Sport Sciences Reviews, 19, 41–98.PubMed Dunn, A. L., & Dishman, R. K. (1991). Exercise and the neurobiology of depression. Exercise and Sport Sciences Reviews, 19, 41–98.PubMed
go back to reference Dunn, A. L., Reigle, T. G., & Youngstedt, S. D. (1996). Brain monoamines and metabolites after treadmill training and wheel running in rats. Medicine and Science in Sports and Exercise, 28, 204–209.PubMed Dunn, A. L., Reigle, T. G., & Youngstedt, S. D. (1996). Brain monoamines and metabolites after treadmill training and wheel running in rats. Medicine and Science in Sports and Exercise, 28, 204–209.PubMed
go back to reference Dunn, A. L., Trivedi, M. H., & O’Neal, H. A. (2001). Physical activity dose–response effects on outcomes of depression and anxiety. Medicine and Science in Sports and Exercise, 33(6 Suppl), S587–S597.PubMed Dunn, A. L., Trivedi, M. H., & O’Neal, H. A. (2001). Physical activity dose–response effects on outcomes of depression and anxiety. Medicine and Science in Sports and Exercise, 33(6 Suppl), S587–S597.PubMed
go back to reference Figueiredo, H. F., Bruestle, A., Bodie, B., Dolgas, C. M., & Herman, J. P. (2003). The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. European Journal of Neuroscience, 18, 2357–2364.PubMed Figueiredo, H. F., Bruestle, A., Bodie, B., Dolgas, C. M., & Herman, J. P. (2003). The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. European Journal of Neuroscience, 18, 2357–2364.PubMed
go back to reference Fleshner, M. (2000). Exercise and neuroendocrine regulation of antibody production: Protective effect of physical activity on stress-induced suppression of the specific antibody response. International Journal of Sports Medicine, 21(Suppl 1), S14–S19.PubMed Fleshner, M. (2000). Exercise and neuroendocrine regulation of antibody production: Protective effect of physical activity on stress-induced suppression of the specific antibody response. International Journal of Sports Medicine, 21(Suppl 1), S14–S19.PubMed
go back to reference Foley, T. E., Greenwood, B. N., Day, H. E., et al. (2006). Elevated central monoamine receptor mRNA in rats bred for high endurance capacity: Implications for central fatigue. Behavioural Brain Research, 174, 132–42.PubMed Foley, T. E., Greenwood, B. N., Day, H. E., et al. (2006). Elevated central monoamine receptor mRNA in rats bred for high endurance capacity: Implications for central fatigue. Behavioural Brain Research, 174, 132–42.PubMed
go back to reference Fox, K. R. (1999). The influence of physical activity on mental well-being. Public Health Nutrition, 2, 411–418.PubMed Fox, K. R. (1999). The influence of physical activity on mental well-being. Public Health Nutrition, 2, 411–418.PubMed
go back to reference Gerrits, M., Westenbroek, C., Fokkema, D. S., et al. (2003). Increased stress vulnerability after a prefrontal cortex lesion in female rats. Brain Research Bulletin, 61, 627–635.PubMed Gerrits, M., Westenbroek, C., Fokkema, D. S., et al. (2003). Increased stress vulnerability after a prefrontal cortex lesion in female rats. Brain Research Bulletin, 61, 627–635.PubMed
go back to reference Gold, P. W., & Chrousos, G. P. (1999). The endocrinology of melancholic and atypical depression: Relation to neurocircuitry and somatic consequences. Proceedings of the Association of American Physicians, 111, 22–34.PubMed Gold, P. W., & Chrousos, G. P. (1999). The endocrinology of melancholic and atypical depression: Relation to neurocircuitry and somatic consequences. Proceedings of the Association of American Physicians, 111, 22–34.PubMed
go back to reference Gomez-Merino, D., Béquet, F., Berthelot, M., et al. (2001). Site-dependent effects of an acute intensive exercise on extracellular 5-HT and 5-HIAA levels in rat brain. Neuroscience Letters, 301, 143–146.PubMed Gomez-Merino, D., Béquet, F., Berthelot, M., et al. (2001). Site-dependent effects of an acute intensive exercise on extracellular 5-HT and 5-HIAA levels in rat brain. Neuroscience Letters, 301, 143–146.PubMed
go back to reference Gomez-Pinilla, F., So, V., & Kesslak, J. P. (1998). Spatial learning and physical activity contribute to the induction of fibroblast growth factor: Neural substrates for increased cognition associated with exercise. Neuroscience, 85, 53–61.PubMed Gomez-Pinilla, F., So, V., & Kesslak, J. P. (1998). Spatial learning and physical activity contribute to the induction of fibroblast growth factor: Neural substrates for increased cognition associated with exercise. Neuroscience, 85, 53–61.PubMed
go back to reference Gorman, J. M. (1996). Comorbid depression and anxiety spectrum disorders. Depress and Anxiety, 4, 160–168. Gorman, J. M. (1996). Comorbid depression and anxiety spectrum disorders. Depress and Anxiety, 4, 160–168.
go back to reference Graeff, F. G., Guimarães, F. S., De Andrade, T. G., et al. (1996). Role of 5-HT in stress, anxiety, and depression. Pharmacology Biochemistry and Behavior, 54, 129–141. Graeff, F. G., Guimarães, F. S., De Andrade, T. G., et al. (1996). Role of 5-HT in stress, anxiety, and depression. Pharmacology Biochemistry and Behavior, 54, 129–141.
go back to reference Graeff, F. G., Silveira, M. C., Nogueira, R. L., et al. (1993). Role of the amygdala and periaqueductal gray in anxiety and panic. Behavioural Brain Research, 58, 123–131.PubMed Graeff, F. G., Silveira, M. C., Nogueira, R. L., et al. (1993). Role of the amygdala and periaqueductal gray in anxiety and panic. Behavioural Brain Research, 58, 123–131.PubMed
go back to reference Graeff, F. G., Viana, M. B., & Mora, P. O. (1997). Dual role of 5-HT in defense and anxiety. Neuroscience and Biobehavioral Reviews, 21, 791–799.PubMed Graeff, F. G., Viana, M. B., & Mora, P. O. (1997). Dual role of 5-HT in defense and anxiety. Neuroscience and Biobehavioral Reviews, 21, 791–799.PubMed
go back to reference Grahn, R., Hammack, S. E., Will, M. J., et al. (2002). Blockade of alpha1 adrenoreceptors in the dorsal raphe nucleus prevents enhanced conditioned fear and impaired escape performance following uncontrollable stressor exposure in rats. Behavioural Brain Research, 134, 387–392.PubMed Grahn, R., Hammack, S. E., Will, M. J., et al. (2002). Blockade of alpha1 adrenoreceptors in the dorsal raphe nucleus prevents enhanced conditioned fear and impaired escape performance following uncontrollable stressor exposure in rats. Behavioural Brain Research, 134, 387–392.PubMed
go back to reference Grahn, R. E., Will, M. J., Hammack, S. E., et al. (1999). Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Research, 826, 35–43.PubMed Grahn, R. E., Will, M. J., Hammack, S. E., et al. (1999). Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Research, 826, 35–43.PubMed
go back to reference Grant, M. M., & Weiss, J. M. (2001). Effects of chronic antidepressant drug administration and electroconvulsive shock on locus coeruleus electrophysiologic activity. Biological Psychiatry, 49, 117–129.PubMed Grant, M. M., & Weiss, J. M. (2001). Effects of chronic antidepressant drug administration and electroconvulsive shock on locus coeruleus electrophysiologic activity. Biological Psychiatry, 49, 117–129.PubMed
go back to reference Greenwood, B. N., Foley, T. E., Burhans, D., et al. (2005a). The consequences of uncontrollable stress are sensitive to duration of prior wheel running. Brain Research, 1033, 164–178.PubMed Greenwood, B. N., Foley, T. E., Burhans, D., et al. (2005a). The consequences of uncontrollable stress are sensitive to duration of prior wheel running. Brain Research, 1033, 164–178.PubMed
go back to reference Greenwood, B. N., Foley, T., Day, H., et al. (2005b). Wheel running alters serotonin (5-HT) transporter, 5-HT(1A), 5-HT(1B), and alpha(1b)-adrenergic receptor mRNA in the rat raphe nuclei. Biological Psychiatry, 57, 559–568.PubMed Greenwood, B. N., Foley, T., Day, H., et al. (2005b). Wheel running alters serotonin (5-HT) transporter, 5-HT(1A), 5-HT(1B), and alpha(1b)-adrenergic receptor mRNA in the rat raphe nuclei. Biological Psychiatry, 57, 559–568.PubMed
go back to reference Greenwood, B. N., Foley, T. E., Day, H. E., et al. (2003a). Freewheel running prevents learned helplessness/behavioral depression: Role of dorsal raphe serotonergic neurons. Journal of Neuroscience, 23, 2889–2898.PubMed Greenwood, B. N., Foley, T. E., Day, H. E., et al. (2003a). Freewheel running prevents learned helplessness/behavioral depression: Role of dorsal raphe serotonergic neurons. Journal of Neuroscience, 23, 2889–2898.PubMed
go back to reference Greenwood, B. N., Kennedy, S., Smith, T. P., et al. (2003b). Voluntary freewheel running selectively modulates catecholamine content in peripheral tissue and c-Fos expression in the central sympathetic circuit following exposure to uncontrollable stress in rats. Neuroscience, 120, 269–281.PubMed Greenwood, B. N., Kennedy, S., Smith, T. P., et al. (2003b). Voluntary freewheel running selectively modulates catecholamine content in peripheral tissue and c-Fos expression in the central sympathetic circuit following exposure to uncontrollable stress in rats. Neuroscience, 120, 269–281.PubMed
go back to reference Greenwood, B. N., Strong, P. V., Foley, T. E., et al. (2007a). Learned helplessness is independent of levels of brain-derived neurotrophic factor in the hippocampus. Neuroscience, 144, 1193–1208.PubMed Greenwood, B. N., Strong, P. V., Foley, T. E., et al. (2007a). Learned helplessness is independent of levels of brain-derived neurotrophic factor in the hippocampus. Neuroscience, 144, 1193–1208.PubMed
go back to reference Greenwood, B. N., Strong, P. V., Dorey, A. A., et al. (2007b). Therapeutic effects of exercise: Wheel running reverses stress-induced interference with shuttle box escape. Behavioral Neuroscience. Greenwood, B. N., Strong, P. V., Dorey, A. A., et al. (2007b). Therapeutic effects of exercise: Wheel running reverses stress-induced interference with shuttle box escape. Behavioral Neuroscience.
go back to reference Hajos, M., Richards, C. D., Székely, A. D., et al. (1998). An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat. Neuroscience, 87, 95–108.PubMed Hajos, M., Richards, C. D., Székely, A. D., et al. (1998). An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat. Neuroscience, 87, 95–108.PubMed
go back to reference Harada, T., Okagawa, S., & Kubota, K. (2004). Jogging improved performance of a behavioral branching task: Implications for prefrontal activation. Neuroscience Research, 49, 325–337.PubMed Harada, T., Okagawa, S., & Kubota, K. (2004). Jogging improved performance of a behavioral branching task: Implications for prefrontal activation. Neuroscience Research, 49, 325–337.PubMed
go back to reference Hervas, I., Queiroz, C. M., Adell, A., et al. (2000). Role of uptake inhibition and autoreceptor activation in the control of 5-HT release in the frontal cortex and dorsal hippocampus of the rat. British Journal of Pharmacology, 130, 160–166.PubMed Hervas, I., Queiroz, C. M., Adell, A., et al. (2000). Role of uptake inhibition and autoreceptor activation in the control of 5-HT release in the frontal cortex and dorsal hippocampus of the rat. British Journal of Pharmacology, 130, 160–166.PubMed
go back to reference Hillman, C. H., Belopolsky, A. V., Snook, E. M., et al. (2004). Physical activity and executive control: Implications for increased cognitive health during older adulthood. Research Quarterly for Exercise and Sport, 75, 176–185.PubMed Hillman, C. H., Belopolsky, A. V., Snook, E. M., et al. (2004). Physical activity and executive control: Implications for increased cognitive health during older adulthood. Research Quarterly for Exercise and Sport, 75, 176–185.PubMed
go back to reference Hillman, C. H., Castelli, D. M., & Buck, S. M. (2005). Aerobic fitness and neurocognitive function in healthy preadolescent children. Medicine and Science in Sports and Exercise, 37, 1967–1974.PubMed Hillman, C. H., Castelli, D. M., & Buck, S. M. (2005). Aerobic fitness and neurocognitive function in healthy preadolescent children. Medicine and Science in Sports and Exercise, 37, 1967–1974.PubMed
go back to reference Hillman, C. H., Motl, R. W., Pontifex, M. B., et al. (2006). Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychology, 25, 678–687.PubMed Hillman, C. H., Motl, R. W., Pontifex, M. B., et al. (2006). Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychology, 25, 678–687.PubMed
go back to reference Hillman, C. H., Snook, E. M., & Jerome, G. J. (2003). Acute cardiovascular exercise and executive control function. International Journal of Psychophysiology, 48, 307–314.PubMed Hillman, C. H., Snook, E. M., & Jerome, G. J. (2003). Acute cardiovascular exercise and executive control function. International Journal of Psychophysiology, 48, 307–314.PubMed
go back to reference Ide, K., Horn, A., & Secher, N. H. (1999). Cerebral metabolic response to submaximal exercise. Journal of Applied Physiology, 87, 1604–1608.PubMed Ide, K., Horn, A., & Secher, N. H. (1999). Cerebral metabolic response to submaximal exercise. Journal of Applied Physiology, 87, 1604–1608.PubMed
go back to reference Imai, H., Steindler, D. A., & Kitai, S. T. (1986). The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. Journal of Comparative Neurology, 243, 363–380.PubMed Imai, H., Steindler, D. A., & Kitai, S. T. (1986). The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. Journal of Comparative Neurology, 243, 363–380.PubMed
go back to reference Jacobs, B. L. (1991). Serotonin and behavior: Emphasis on motor control. Journal of Clinical Psychiatry, 52, 17–23.PubMed Jacobs, B. L. (1991). Serotonin and behavior: Emphasis on motor control. Journal of Clinical Psychiatry, 52, 17–23.PubMed
go back to reference Jacobs, B. L., & Azmitia, E. C. (1992). Structure and function of the brain serotonin system. Physiological Reviews, 72, 165–229.PubMed Jacobs, B. L., & Azmitia, E. C. (1992). Structure and function of the brain serotonin system. Physiological Reviews, 72, 165–229.PubMed
go back to reference Jacobs, B. L., & Fornal, C. A. (1997). Serotonin and motor activity. Current Opinion in Neurobiology, 7, 820–825.PubMed Jacobs, B. L., & Fornal, C. A. (1997). Serotonin and motor activity. Current Opinion in Neurobiology, 7, 820–825.PubMed
go back to reference Jick, H., Kaye, J. A., & Jick, S. S. (2004). Antidepressants and the risk of suicidal behaviors. JAMA, 292, 338–343.PubMed Jick, H., Kaye, J. A., & Jick, S. S. (2004). Antidepressants and the risk of suicidal behaviors. JAMA, 292, 338–343.PubMed
go back to reference Jinks, A. L., & McGregor, I. S. (1997). Modulation of anxiety-related behaviours following lesions of the prelimbic or infralimbic cortex in the rat. Brain Research, 772, 181–190.PubMed Jinks, A. L., & McGregor, I. S. (1997). Modulation of anxiety-related behaviours following lesions of the prelimbic or infralimbic cortex in the rat. Brain Research, 772, 181–190.PubMed
go back to reference Kazakov, V. N., Kravtsov, P. Ya., Krakhotkina, E. D., et al. (1993). Sources of cortical, hypothalamic and spinal serotonergic projections: Topical organization within the nucleus raphe dorsalis. Neuroscience, 56, 157–164.PubMed Kazakov, V. N., Kravtsov, P. Ya., Krakhotkina, E. D., et al. (1993). Sources of cortical, hypothalamic and spinal serotonergic projections: Topical organization within the nucleus raphe dorsalis. Neuroscience, 56, 157–164.PubMed
go back to reference Kendler, K. S., Karkowski, L. M., & Prescott, C. A. (1999). Causal relationship between stressful life events and the onset of major depression. American Journal of Psychiatry, 156, 837–841.PubMed Kendler, K. S., Karkowski, L. M., & Prescott, C. A. (1999). Causal relationship between stressful life events and the onset of major depression. American Journal of Psychiatry, 156, 837–841.PubMed
go back to reference Kennedy, S. H., Evans, K. R., Krüger, S., et al. (2001). Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. American Journal of Psychiatry, 158, 899–905.PubMed Kennedy, S. H., Evans, K. R., Krüger, S., et al. (2001). Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. American Journal of Psychiatry, 158, 899–905.PubMed
go back to reference Kennedy, S. L., Smith, T. P., & Fleshner, M. (2005). Resting cellular and physiological effects of freewheel running. Medicine and Science in Sports and Exercise, 37, 79–83.PubMed Kennedy, S. L., Smith, T. P., & Fleshner, M. (2005). Resting cellular and physiological effects of freewheel running. Medicine and Science in Sports and Exercise, 37, 79–83.PubMed
go back to reference Kimura, F., & Nakamura, S. (1987). Postnatal development of alpha-adrenoceptor-mediated autoinhibition in the locus coeruleus. Brain Research, 432, 21–26.PubMed Kimura, F., & Nakamura, S. (1987). Postnatal development of alpha-adrenoceptor-mediated autoinhibition in the locus coeruleus. Brain Research, 432, 21–26.PubMed
go back to reference Kirby, L. G., Chou-Green, J. M., Davis, K., et al. (1997). The effects of different stressors on extracellular 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Brain Research, 760, 218–230.PubMed Kirby, L. G., Chou-Green, J. M., Davis, K., et al. (1997). The effects of different stressors on extracellular 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Brain Research, 760, 218–230.PubMed
go back to reference Kramer, A. F., Colcombe, S., Erickson, K., et al. (2002). Effects of aerobic fitness training on human cortical function: A proposal. Journal of Molecular Neuroscience, 19, 227–231.PubMed Kramer, A. F., Colcombe, S., Erickson, K., et al. (2002). Effects of aerobic fitness training on human cortical function: A proposal. Journal of Molecular Neuroscience, 19, 227–231.PubMed
go back to reference Kramer, A. F., Colcombe, S., McAuley, E., et al. (2005). Fitness, aging and neurocognitive function. Neurobiology of Aging, 26(Suppl 1), 124–127.PubMed Kramer, A. F., Colcombe, S., McAuley, E., et al. (2005). Fitness, aging and neurocognitive function. Neurobiology of Aging, 26(Suppl 1), 124–127.PubMed
go back to reference Kramer, A. F., Erickson, K. I., & Colcombe, S. J. (2006). Exercise, cognition, and the aging brain. Journal of Applied Physiology, 101, 1237–1242.PubMed Kramer, A. F., Erickson, K. I., & Colcombe, S. J. (2006). Exercise, cognition, and the aging brain. Journal of Applied Physiology, 101, 1237–1242.PubMed
go back to reference Kramer, A. F., Hahn, S., Cohen, N. J., et al. (1999). Ageing, fitness and neurocognitive function. Nature, 400, 418–419.PubMed Kramer, A. F., Hahn, S., Cohen, N. J., et al. (1999). Ageing, fitness and neurocognitive function. Nature, 400, 418–419.PubMed
go back to reference Lawlor, D. A., & Hopker, S. W. (2001). The effectiveness of exercise as an intervention in the management of depression: Systematic review and meta-regression analysis of randomised controlled trials. BMJ, 322, 763–767.PubMed Lawlor, D. A., & Hopker, S. W. (2001). The effectiveness of exercise as an intervention in the management of depression: Systematic review and meta-regression analysis of randomised controlled trials. BMJ, 322, 763–767.PubMed
go back to reference Lee, H. S., Kim, M.-A., Valentino, R. J., et al. (2003). Glutamatergic afferent projections to the dorsal raphe nucleus of the rat. Brain Research, 963, 57–71.PubMed Lee, H. S., Kim, M.-A., Valentino, R. J., et al. (2003). Glutamatergic afferent projections to the dorsal raphe nucleus of the rat. Brain Research, 963, 57–71.PubMed
go back to reference Lett, B. T., Grant, V. L., Byrne, M. J., et al. (2000). Pairings of a distinctive chamber with the aftereffect of wheel running produce conditioned place preference. Appetite, 34, 87–94.PubMed Lett, B. T., Grant, V. L., Byrne, M. J., et al. (2000). Pairings of a distinctive chamber with the aftereffect of wheel running produce conditioned place preference. Appetite, 34, 87–94.PubMed
go back to reference Lo, D. C. (1995). Neurotrophic factors and synaptic plasticity. Neuron, 15, 979–981.PubMed Lo, D. C. (1995). Neurotrophic factors and synaptic plasticity. Neuron, 15, 979–981.PubMed
go back to reference Lowry, C. A. (2002). Functional subsets of serotonergic neurones: Implications for control of the hypothalamic–pituitary–adrenal axis. Journal of Neuroendocrinology, 14, 911–923.PubMed Lowry, C. A. (2002). Functional subsets of serotonergic neurones: Implications for control of the hypothalamic–pituitary–adrenal axis. Journal of Neuroendocrinology, 14, 911–923.PubMed
go back to reference Lowry, C. A., Johnson, P. L., Hay-Schmidt, A., et al. (2005). Modulation of anxiety circuits by serotonergic systems. Stress, 8, 233–246.PubMedCrossRef Lowry, C. A., Johnson, P. L., Hay-Schmidt, A., et al. (2005). Modulation of anxiety circuits by serotonergic systems. Stress, 8, 233–246.PubMedCrossRef
go back to reference Lucki, I. (1998). The spectrum of behaviors influenced by serotonin. Biological Psychiatry, 44, 151–162.PubMed Lucki, I. (1998). The spectrum of behaviors influenced by serotonin. Biological Psychiatry, 44, 151–162.PubMed
go back to reference Maier, S. F. (1984). Learned helplessness and animal models of depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 8, 435–446. Maier, S. F. (1984). Learned helplessness and animal models of depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 8, 435–446.
go back to reference Maier, S. F. (1990). Role of fear in mediating shuttle escape learning deficit produced by inescapable shock. Journal of Experimental Psychology-Animal Behavior Processes, 16, 137–149.PubMed Maier, S. F. (1990). Role of fear in mediating shuttle escape learning deficit produced by inescapable shock. Journal of Experimental Psychology-Animal Behavior Processes, 16, 137–149.PubMed
go back to reference Maier, S. F. (2001). Exposure to the stressor environment prevents the temporal dissipation of behavioral depression/learned helplessness. Biological Psychiatry, 49, 763–773.PubMed Maier, S. F. (2001). Exposure to the stressor environment prevents the temporal dissipation of behavioral depression/learned helplessness. Biological Psychiatry, 49, 763–773.PubMed
go back to reference Maier, S. F., Amat, J., Baratta, M. V., et al. (2006). Behavioral control, the medial prefrontal cortex, and resilience. Dialogues Clinical Neuroscience, 8, 397–406. Maier, S. F., Amat, J., Baratta, M. V., et al. (2006). Behavioral control, the medial prefrontal cortex, and resilience. Dialogues Clinical Neuroscience, 8, 397–406.
go back to reference Maier, S. F., Busch, C. R., Maswood, S., et al. (1995a). The dorsal raphe nucleus is a site of action mediating the behavioral effects of the benzodiazepine receptor inverse agonist DMCM. Behavioral Neuroscience, 109, 759–766.PubMed Maier, S. F., Busch, C. R., Maswood, S., et al. (1995a). The dorsal raphe nucleus is a site of action mediating the behavioral effects of the benzodiazepine receptor inverse agonist DMCM. Behavioral Neuroscience, 109, 759–766.PubMed
go back to reference Maier, S. F., Grahn, R. E., Kalman, B. A., et al. (1993). The role of the amygdala and dorsal raphe nucleus in mediating the behavioral consequences of inescapable shock. Behavioral Neuroscience, 107, 377–388.PubMed Maier, S. F., Grahn, R. E., Kalman, B. A., et al. (1993). The role of the amygdala and dorsal raphe nucleus in mediating the behavioral consequences of inescapable shock. Behavioral Neuroscience, 107, 377–388.PubMed
go back to reference Maier, S. F., Grahn, R. E., & Watkins, L. R. (1995b). 8-OH-DPAT microinjected in the region of the dorsal raphe nucleus blocks and reverses the enhancement of fear conditioning and interference with escape produced by exposure to inescapable shock. Behavioral Neuroscience, 109, 404–412.PubMed Maier, S. F., Grahn, R. E., & Watkins, L. R. (1995b). 8-OH-DPAT microinjected in the region of the dorsal raphe nucleus blocks and reverses the enhancement of fear conditioning and interference with escape produced by exposure to inescapable shock. Behavioral Neuroscience, 109, 404–412.PubMed
go back to reference Maier, S. F., Kalman, B. A., & Grahn, R. E. (1994). Chlordiazepoxide microinjected into the region of the dorsal reduced by inescapable shock whether administered before inescapable shock oraphe nucleus eliminates the interference with escape responding pro escape testing. Behavioral Neuroscience, 108, 121–130.PubMed Maier, S. F., Kalman, B. A., & Grahn, R. E. (1994). Chlordiazepoxide microinjected into the region of the dorsal reduced by inescapable shock whether administered before inescapable shock oraphe nucleus eliminates the interference with escape responding pro escape testing. Behavioral Neuroscience, 108, 121–130.PubMed
go back to reference Maier, S. F., & Seligman, M. E. P. (1976). Learned helplessness: Theory and evidence. JEP: Gen., 105, 3–46. Maier, S. F., & Seligman, M. E. P. (1976). Learned helplessness: Theory and evidence. JEP: Gen., 105, 3–46.
go back to reference Maier, S. F., Seligman, M. E. P., & Soloman, R. L. (1969). Pavlovian fear conditioning and learned helplessness. In B. A. Campbell & R. M. Church (Eds.), Punishment. NY: Appleton-Century-Crofts. Maier, S. F., Seligman, M. E. P., & Soloman, R. L. (1969). Pavlovian fear conditioning and learned helplessness. In B. A. Campbell & R. M. Church (Eds.), Punishment. NY: Appleton-Century-Crofts.
go back to reference Maier, S. F., & Watkins, L. R. (1998). Stressor controllability, anxiety, and serotonin. Cognitive Therapy and Research., 22, 595–613. Maier, S. F., & Watkins, L. R. (1998). Stressor controllability, anxiety, and serotonin. Cognitive Therapy and Research., 22, 595–613.
go back to reference Maier, S. F., & Watkins, L. R. (2005). Stressor controllability and learned helplessness: The roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neuroscience and Biobehavioral Reviews, 29, 829–841.PubMed Maier, S. F., & Watkins, L. R. (2005). Stressor controllability and learned helplessness: The roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neuroscience and Biobehavioral Reviews, 29, 829–841.PubMed
go back to reference Malberg, J. E., & Duman, R. S. (2003). Cell proliferation in adult hippocampus is decreased by inescapable stress: Reversal by fluoxetine treatment. Neuropsychopharmacology, 28, 1562–1571.PubMed Malberg, J. E., & Duman, R. S. (2003). Cell proliferation in adult hippocampus is decreased by inescapable stress: Reversal by fluoxetine treatment. Neuropsychopharmacology, 28, 1562–1571.PubMed
go back to reference Martinsen, E. W. (1990a) Benefits of exercise for the treatment of depression. Sports Medicine, 9, 380–389.PubMed Martinsen, E. W. (1990a) Benefits of exercise for the treatment of depression. Sports Medicine, 9, 380–389.PubMed
go back to reference Martinsen, E. W. (1990b). Physical fitness, anxiety and depression. British Journal of Hospital Medicine, 43, 194, 196, 199. Martinsen, E. W. (1990b). Physical fitness, anxiety and depression. British Journal of Hospital Medicine, 43, 194, 196, 199.
go back to reference Martinsen, E. W. (1994). Physical activity and depression: Clinical experience. Acta Psychiatrica Scandinavica Supplement, 377, 23–27. Martinsen, E. W. (1994). Physical activity and depression: Clinical experience. Acta Psychiatrica Scandinavica Supplement, 377, 23–27.
go back to reference Martinsen, E. W., Hoffart, A., & Solberg, O. (1989). Comparing aerobic with nonaerobic forms of exercise in the treatment of clinical depression: A randomized trial. Comprehensive Psychiatry, 30, 324–331.PubMed Martinsen, E. W., Hoffart, A., & Solberg, O. (1989). Comparing aerobic with nonaerobic forms of exercise in the treatment of clinical depression: A randomized trial. Comprehensive Psychiatry, 30, 324–331.PubMed
go back to reference Martinsen, E. W., & Morgan, W. P. (1997). Antidepressant effects of physical activity. In W. P. Morgan (Ed.), Physical activity and mental health. Washington, DC: Taylor & Francis. Martinsen, E. W., & Morgan, W. P. (1997). Antidepressant effects of physical activity. In W. P. Morgan (Ed.), Physical activity and mental health. Washington, DC: Taylor & Francis.
go back to reference Maswood, S., Barter, J. E., Watkins, L. R., et al. (1998). Exposure to inescapable but not escapable shock increases extracellular levels of 5-HT in the dorsal raphe nucleus of the rat. Brain Research, 783, 115–120.PubMed Maswood, S., Barter, J. E., Watkins, L. R., et al. (1998). Exposure to inescapable but not escapable shock increases extracellular levels of 5-HT in the dorsal raphe nucleus of the rat. Brain Research, 783, 115–120.PubMed
go back to reference Maudhuit, C., Hamon, M., & Adrien, J. (1995). Electrophysiological activity of raphe dorsalis serotoninergic neurones in a possible model of endogenous depression. Neuroreport, 6, 681–684.PubMed Maudhuit, C., Hamon, M., & Adrien, J. (1995). Electrophysiological activity of raphe dorsalis serotoninergic neurones in a possible model of endogenous depression. Neuroreport, 6, 681–684.PubMed
go back to reference Moraska, A., Deak, T., Spencer, R. L., et al. (2000). Treadmill running produces both positive and negative physiological adaptations in Sprague-Dawley rats. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 279, R1321–R1329. Moraska, A., Deak, T., Spencer, R. L., et al. (2000). Treadmill running produces both positive and negative physiological adaptations in Sprague-Dawley rats. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 279, R1321–R1329.
go back to reference Morgan, W. P. (1985). Affective beneficence of vigorous physical activity. Medicine and Science in Sports and Exercise, 17, 94–100.PubMed Morgan, W. P. (1985). Affective beneficence of vigorous physical activity. Medicine and Science in Sports and Exercise, 17, 94–100.PubMed
go back to reference Mutrie, N. (2000). The relationship between physical activity and clinically defined depression. In S. J. H. Biddle, K. R. Fox, & S. H. Boutcher (Eds.), Physical activity and psychological well-being. NY: Routledge. Mutrie, N. (2000). The relationship between physical activity and clinically defined depression. In S. J. H. Biddle, K. R. Fox, & S. H. Boutcher (Eds.), Physical activity and psychological well-being. NY: Routledge.
go back to reference Neeper, S. A., Gómez-Pinilla, F., Choi, J., et al. (1995). Exercise and brain neurotrophins. Nature, 373, 109.PubMed Neeper, S. A., Gómez-Pinilla, F., Choi, J., et al. (1995). Exercise and brain neurotrophins. Nature, 373, 109.PubMed
go back to reference Neeper, S. A., Gómez-Pinilla, F., Choi, J., et al. (1996). Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Research, 726, 49–56.PubMed Neeper, S. A., Gómez-Pinilla, F., Choi, J., et al. (1996). Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Research, 726, 49–56.PubMed
go back to reference Ninan, P. T. (1999). The functional anatomy, neurochemistry, and pharmacology of anxiety. Journal of Clinical Psychiatry, 60(Suppl 22), 12–17.PubMed Ninan, P. T. (1999). The functional anatomy, neurochemistry, and pharmacology of anxiety. Journal of Clinical Psychiatry, 60(Suppl 22), 12–17.PubMed
go back to reference North, T. C., McCullagh, P., & Tran, Z. V. (1990). Effect of exercise on depression. Exercise and Sport Sciences Reviews, 18, 379–415.PubMed North, T. C., McCullagh, P., & Tran, Z. V. (1990). Effect of exercise on depression. Exercise and Sport Sciences Reviews, 18, 379–415.PubMed
go back to reference O’Leary, O. F., Bechtholt, A. J., Crowley, J. J., et al. (2007). Depletion of serotonin and catecholamines block the acute behavioral response to different classes of antidepressant drugs in the mouse tail suspension test. Psychopharmacology (Berl), 192, 357–371. O’Leary, O. F., Bechtholt, A. J., Crowley, J. J., et al. (2007). Depletion of serotonin and catecholamines block the acute behavioral response to different classes of antidepressant drugs in the mouse tail suspension test. Psychopharmacology (Berl), 192, 357–371.
go back to reference Owens, M. J., & Nemeroff, C. B. (1994). Role of serotonin in the pathophysiology of depression: Focus on the serotonin transporter. Clinical Chemistry, 40, 288–295.PubMed Owens, M. J., & Nemeroff, C. B. (1994). Role of serotonin in the pathophysiology of depression: Focus on the serotonin transporter. Clinical Chemistry, 40, 288–295.PubMed
go back to reference Paluska, S. A., & Schwenk, T. L. (2000). Physical activity and mental health: Current concepts. Sports Medicine, 29, 167–180.PubMed Paluska, S. A., & Schwenk, T. L. (2000). Physical activity and mental health: Current concepts. Sports Medicine, 29, 167–180.PubMed
go back to reference Paxinos, G., & Watson, C. (1998). The rat brain in stereotaxic coordinates. NY: Academic Press. Paxinos, G., & Watson, C. (1998). The rat brain in stereotaxic coordinates. NY: Academic Press.
go back to reference Petty, F., Kramer, G. L., Wu, J., et al. (1997). Posttraumatic stress and depression. A neurochemical anatomy of the learned helplessness animal model. Annals of the New York Academy of Sciences, 821, 529–532.PubMed Petty, F., Kramer, G. L., Wu, J., et al. (1997). Posttraumatic stress and depression. A neurochemical anatomy of the learned helplessness animal model. Annals of the New York Academy of Sciences, 821, 529–532.PubMed
go back to reference Peyron, C., Luppi, P. H., Fort, P., et al. (1996). Lower brainstem catecholamine afferents to the rat dorsal raphe nucleus. Journal of Comparative Neurology, 364, 402–413.PubMed Peyron, C., Luppi, P. H., Fort, P., et al. (1996). Lower brainstem catecholamine afferents to the rat dorsal raphe nucleus. Journal of Comparative Neurology, 364, 402–413.PubMed
go back to reference Peyron, C., Petit, J.-M. C., Jouvet, M., & Luppi, P.-H. (1998). Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience, 82, 443–468.PubMed Peyron, C., Petit, J.-M. C., Jouvet, M., & Luppi, P.-H. (1998). Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience, 82, 443–468.PubMed
go back to reference Pollack, M. H. (2005). Comorbid anxiety and depression. Journal of Clinical Psychiatry, 66(Suppl 8), 22–29.PubMed Pollack, M. H. (2005). Comorbid anxiety and depression. Journal of Clinical Psychiatry, 66(Suppl 8), 22–29.PubMed
go back to reference Quitkin, F. M., Bowden, C., Stokes, P., et al. (1996). Can the effects of antidepressants be observed in the first two weeks of treatment? Neuropsychopharmacology, 15, 390–394.PubMed Quitkin, F. M., Bowden, C., Stokes, P., et al. (1996). Can the effects of antidepressants be observed in the first two weeks of treatment? Neuropsychopharmacology, 15, 390–394.PubMed
go back to reference Rajkowska, G. (2000). Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biological Psychiatry, 48, 766–777.PubMed Rajkowska, G. (2000). Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biological Psychiatry, 48, 766–777.PubMed
go back to reference Rajkowska, G. (2002). Cell pathology in mood disorders. Seminars in Clinical Neuropsychiatry, 7, 281–292.PubMed Rajkowska, G. (2002). Cell pathology in mood disorders. Seminars in Clinical Neuropsychiatry, 7, 281–292.PubMed
go back to reference Rangel, A., Villarroel, V., & Hernandez, L. (2003). Anxiolysis followed by anxiogenesis relates to coping and corticosterone after medial prefrontal cortical damage in rats. Brain Research, 992, 96–103.PubMed Rangel, A., Villarroel, V., & Hernandez, L. (2003). Anxiolysis followed by anxiogenesis relates to coping and corticosterone after medial prefrontal cortical damage in rats. Brain Research, 992, 96–103.PubMed
go back to reference Ressler, K. J., & Nemeroff, C. B. (2000). Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress and Anxiety, 12(Suppl 1), 2–19. Ressler, K. J., & Nemeroff, C. B. (2000). Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress and Anxiety, 12(Suppl 1), 2–19.
go back to reference Riad, M., Watkins, K. C., Doucet, E., et al. (2001). Agonist-induced internalization of serotonin-1a receptors in the dorsal raphe nucleus (autoreceptors) but not hippocampus (heteroreceptors). Journal of Neuroscience, 21, 8378–8386.PubMed Riad, M., Watkins, K. C., Doucet, E., et al. (2001). Agonist-induced internalization of serotonin-1a receptors in the dorsal raphe nucleus (autoreceptors) but not hippocampus (heteroreceptors). Journal of Neuroscience, 21, 8378–8386.PubMed
go back to reference Riad, M., Zimmer, L., Rbah, L., et al. (2004). Acute treatment with the antidepressant fluoxetine internalizes 5-HT1A autoreceptors and reduces the in vivo binding of the PET radioligand [18F]MPPF in the nucleus raphe dorsalis of rat. Journal of Neuroscience, 24, 5420–5426.PubMed Riad, M., Zimmer, L., Rbah, L., et al. (2004). Acute treatment with the antidepressant fluoxetine internalizes 5-HT1A autoreceptors and reduces the in vivo binding of the PET radioligand [18F]MPPF in the nucleus raphe dorsalis of rat. Journal of Neuroscience, 24, 5420–5426.PubMed
go back to reference Salmon, P. (2001). Effects of physical exercise on anxiety, depression, and sensitivity to stress: A unifying theory. Clinical Psychology Review, 21, 33–61.PubMed Salmon, P. (2001). Effects of physical exercise on anxiety, depression, and sensitivity to stress: A unifying theory. Clinical Psychology Review, 21, 33–61.PubMed
go back to reference Sasse, S. K., Greenwood, B. N., Masini, C. V., Nyhuis, T. J., Fleshner, M., Day, H. E. W., Campeau, S. (in press). Six weeks of voluntary wheel running facilitates hypothalamopituitary-adrenocortical axis response habituation to repeated audiogenic stress exposures in male Sprague-Dawley rats. Stress. Sasse, S. K., Greenwood, B. N., Masini, C. V., Nyhuis, T. J., Fleshner, M., Day, H. E. W., Campeau, S. (in press). Six weeks of voluntary wheel running facilitates hypothalamopituitary-adrenocortical axis response habituation to repeated audiogenic stress exposures in male Sprague-Dawley rats. Stress.
go back to reference Scully, D., Kremer, J., Meade, M. M., et al. (1998). Physical exercise and psychological well being: A critical review. British Journal of Sports Medicine, 32, 111–120.PubMed Scully, D., Kremer, J., Meade, M. M., et al. (1998). Physical exercise and psychological well being: A critical review. British Journal of Sports Medicine, 32, 111–120.PubMed
go back to reference Seligman, M. E., & Beagley, G. (1975). Learned helplessness in the rat. Journal of Comparative and Physiological Psychology, 88, 534–541.PubMed Seligman, M. E., & Beagley, G. (1975). Learned helplessness in the rat. Journal of Comparative and Physiological Psychology, 88, 534–541.PubMed
go back to reference Sherman, A. D., Sacquitne, J. L., & Petty, F. (1982). Specificity of the learned helplessness model of depression. Pharmacology Biochemistry and Behavior, 16, 449–454. Sherman, A. D., Sacquitne, J. L., & Petty, F. (1982). Specificity of the learned helplessness model of depression. Pharmacology Biochemistry and Behavior, 16, 449–454.
go back to reference Shirayama, Y., Chen, A. C.-H., Nakagawa, S., et al. (2002). Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. Journal of Neuroscience, 22, 3251–3261.PubMed Shirayama, Y., Chen, A. C.-H., Nakagawa, S., et al. (2002). Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. Journal of Neuroscience, 22, 3251–3261.PubMed
go back to reference Short, K. R., Patel, M. R., Lee, S. H., et al. (2000). Uncontrollable stress induced both anxiety and downregulation of dorsal raphe 5-HT1a receptors in rats: Both follow the same timecourse. Society for Neuroscience Abstracts, 26, 22–67. Short, K. R., Patel, M. R., Lee, S. H., et al. (2000). Uncontrollable stress induced both anxiety and downregulation of dorsal raphe 5-HT1a receptors in rats: Both follow the same timecourse. Society for Neuroscience Abstracts, 26, 22–67.
go back to reference Simson, P. E., & Weiss, J. M. (1987). Alpha-2 receptor blockade increases responsiveness of locus coeruleus neurons to excitatory stimulation. Journal of Neuroscience, 7, 1732–1740.PubMed Simson, P. E., & Weiss, J. M. (1987). Alpha-2 receptor blockade increases responsiveness of locus coeruleus neurons to excitatory stimulation. Journal of Neuroscience, 7, 1732–1740.PubMed
go back to reference Simson, P. G., Weiss, J. M., Hoffman, L. J., et al. (1986). Reversal of behavioral depression by infusion of an alpha-2 adrenergic agonist into the locus coeruleus. Neuropharmacology, 25, 385–389.PubMed Simson, P. G., Weiss, J. M., Hoffman, L. J., et al. (1986). Reversal of behavioral depression by infusion of an alpha-2 adrenergic agonist into the locus coeruleus. Neuropharmacology, 25, 385–389.PubMed
go back to reference Singh, N. A., Clements, K. M., & Fiatarone, M. A. (1997). A randomized controlled trial of progressive resistance training in depressed elders. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 52, M27–M35. Singh, N. A., Clements, K. M., & Fiatarone, M. A. (1997). A randomized controlled trial of progressive resistance training in depressed elders. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 52, M27–M35.
go back to reference Smith, M. A., Makino, S., Kvetnansky, R., et al. (1995). Effects of stress on neurotrophic factor expression in the rat brain. Annals of the New York Academy of Sciences, 771, 234–239.PubMed Smith, M. A., Makino, S., Kvetnansky, R., et al. (1995). Effects of stress on neurotrophic factor expression in the rat brain. Annals of the New York Academy of Sciences, 771, 234–239.PubMed
go back to reference Soares, J., Holmes, P. V., Renner, K. J., et al. (1999). Brain noradrenergic responses to footshock after chronic activity-wheel running. Behavioral Neuroscience, 113, 558–566.PubMed Soares, J., Holmes, P. V., Renner, K. J., et al. (1999). Brain noradrenergic responses to footshock after chronic activity-wheel running. Behavioral Neuroscience, 113, 558–566.PubMed
go back to reference Solberg, L. C., Hortaon, T. H., & Turek, F. W. (1999). Circadian rhythms and depression: Effects of exercise in an animal model. American Journal of Physiology, 276, R152–R161.PubMed Solberg, L. C., Hortaon, T. H., & Turek, F. W. (1999). Circadian rhythms and depression: Effects of exercise in an animal model. American Journal of Physiology, 276, R152–R161.PubMed
go back to reference Stamford, J. A., Davidson, C., McLaughlin, D. P., et al. (2000). Control of dorsal raphe 5-HT function by multiple 5-HT(1) autoreceptors: Parallel purposes or pointless plurality? Trends in Neurosciences, 23, 459–465.PubMed Stamford, J. A., Davidson, C., McLaughlin, D. P., et al. (2000). Control of dorsal raphe 5-HT function by multiple 5-HT(1) autoreceptors: Parallel purposes or pointless plurality? Trends in Neurosciences, 23, 459–465.PubMed
go back to reference Staub, D. R., Evans, A. K., & Lowry, C. A. (2006). Evidence supporting a role for corticotropin-releasing factor type 2 (CRF2) receptors in the regulation of subpopulations of serotonergic neurons. Brain Research, 1070, 77–89.PubMed Staub, D. R., Evans, A. K., & Lowry, C. A. (2006). Evidence supporting a role for corticotropin-releasing factor type 2 (CRF2) receptors in the regulation of subpopulations of serotonergic neurons. Brain Research, 1070, 77–89.PubMed
go back to reference Suh, M. R., Jung, H. H., Kim, S. B., et al. (2002). Effects of regular exercise on anxiety, depression, and quality of life in maintenance hemodialysis patients. Renal Failure, 24, 337–345.PubMed Suh, M. R., Jung, H. H., Kim, S. B., et al. (2002). Effects of regular exercise on anxiety, depression, and quality of life in maintenance hemodialysis patients. Renal Failure, 24, 337–345.PubMed
go back to reference Suzuki, M., Miyai, I., Ono, T., et al. (2002). Running induces prefrontal activation. An optical imaging study. Abstracts Viewer/Itinerary planner, Society for neuroscience, Washington, DC, Program No. 854.10. Suzuki, M., Miyai, I., Ono, T., et al. (2002). Running induces prefrontal activation. An optical imaging study. Abstracts Viewer/Itinerary planner, Society for neuroscience, Washington, DC, Program No. 854.10.
go back to reference Takase, L. F., Nogueira, M. I., Bland, S. T., et al. (2005). Effect of number of tailshocks on learned helplessness and activation of serotonergic and noradrenergic neurons in the rat. Behavioural Brain Research, 162, 299–306.PubMed Takase, L. F., Nogueira, M. I., Bland, S. T., et al. (2005). Effect of number of tailshocks on learned helplessness and activation of serotonergic and noradrenergic neurons in the rat. Behavioural Brain Research, 162, 299–306.PubMed
go back to reference Taki, Y., Kinomura, S., Awata, S., et al. (2005). Male elderly subthreshold depression patients have smaller volume of medial part of prefrontal cortex and precentral gyrus compared with age-matched normal subjects: A voxel-based morphometry. Journal of Affective Disorders, 88, 313–320.PubMed Taki, Y., Kinomura, S., Awata, S., et al. (2005). Male elderly subthreshold depression patients have smaller volume of medial part of prefrontal cortex and precentral gyrus compared with age-matched normal subjects: A voxel-based morphometry. Journal of Affective Disorders, 88, 313–320.PubMed
go back to reference Tavares, R. F., & Correa, F. M. (2006). Role of the medial prefrontal cortex in cardiovascular responses to acute restraint in rats. Neuroscience, 143, 231–240.PubMed Tavares, R. F., & Correa, F. M. (2006). Role of the medial prefrontal cortex in cardiovascular responses to acute restraint in rats. Neuroscience, 143, 231–240.PubMed
go back to reference Trulson, M. E., & Crisp, T. (1984). Role of norepinephrine in regulating the activity of serotonin-containing dorsal raphe neurons. Life Sciences, 35, 511–515.PubMed Trulson, M. E., & Crisp, T. (1984). Role of norepinephrine in regulating the activity of serotonin-containing dorsal raphe neurons. Life Sciences, 35, 511–515.PubMed
go back to reference Van der Borght, K., Havekes, R., Bos, T., et al. (2007). Exercise improves memory acquisition and retrieval in the Y-maze task: Relationship with hippocampal neurogenesis. Behavioral Neuroscience, 121, 324–334.PubMed Van der Borght, K., Havekes, R., Bos, T., et al. (2007). Exercise improves memory acquisition and retrieval in the Y-maze task: Relationship with hippocampal neurogenesis. Behavioral Neuroscience, 121, 324–334.PubMed
go back to reference Van Hoomissen, J. D., Holmes, P. V., Zellner, A. S., et al. (2004). Effects of beta-adrenoreceptor blockade during chronic exercise on contextual fear conditioning and mRNA for galanin and brain-derived neurotrophic factor. Behavioral Neuroscience, 118, 1378–1390.PubMed Van Hoomissen, J. D., Holmes, P. V., Zellner, A. S., et al. (2004). Effects of beta-adrenoreceptor blockade during chronic exercise on contextual fear conditioning and mRNA for galanin and brain-derived neurotrophic factor. Behavioral Neuroscience, 118, 1378–1390.PubMed
go back to reference van Praag, H. M. (2005). Can stress cause depression? World Journal of Biological Psychiatry, 6(Suppl 2), 5–22.PubMed van Praag, H. M. (2005). Can stress cause depression? World Journal of Biological Psychiatry, 6(Suppl 2), 5–22.PubMed
go back to reference van Praag, H., Christie, B. R., Sejnowski, T. J. et al. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 13427–13431.PubMed van Praag, H., Christie, B. R., Sejnowski, T. J. et al. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 13427–13431.PubMed
go back to reference Varga, V., Székely, A. D., Csillag, A., et al. (2001). Evidence for a role of GABA interneurones in the cortical modulation of midbrain 5-hydroxytryptamine neurones. Neuroscience, 106, 783–92.PubMed Varga, V., Székely, A. D., Csillag, A., et al. (2001). Evidence for a role of GABA interneurones in the cortical modulation of midbrain 5-hydroxytryptamine neurones. Neuroscience, 106, 783–92.PubMed
go back to reference Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of Neuroscience, 20, 2580–2590.PubMed Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of Neuroscience, 20, 2580–2590.PubMed
go back to reference Vertes, R. P. (2004). Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse, 51, 32–58.PubMed Vertes, R. P. (2004). Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse, 51, 32–58.PubMed
go back to reference Walker, D. L., Toufexis, D. J., & Davis, M. (2003). Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. European Journal of Pharmacology, 463, 199–216.PubMed Walker, D. L., Toufexis, D. J., & Davis, M. (2003). Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. European Journal of Pharmacology, 463, 199–216.PubMed
go back to reference Weiss, J. M., Bonsall, R. W., Demetrikopoulos, M. K., et al. (1998). Galanin: A significant role in depression? Annals of the New York Academy of Sciences, 863, 364–382.PubMed Weiss, J. M., Bonsall, R. W., Demetrikopoulos, M. K., et al. (1998). Galanin: A significant role in depression? Annals of the New York Academy of Sciences, 863, 364–382.PubMed
go back to reference Weiss, J. M., Boss-Williams, K., Moore, J., et al. (2005). Testing the hypothesis that locus coeruleus hyperactivity produces depression-related changes via galanin. Neuropeptides, 39, 281–287.PubMed Weiss, J. M., Boss-Williams, K., Moore, J., et al. (2005). Testing the hypothesis that locus coeruleus hyperactivity produces depression-related changes via galanin. Neuropeptides, 39, 281–287.PubMed
go back to reference Weiss, J. M., Demetrikoppoulos, M. K., West, C. H. K., et al. (1996). Hypothesis linking the noradrenergic and dopaminergic systems in depression. Depression, 3, 225–245. Weiss, J. M., Demetrikoppoulos, M. K., West, C. H. K., et al. (1996). Hypothesis linking the noradrenergic and dopaminergic systems in depression. Depression, 3, 225–245.
go back to reference Weiss, J. M., Goodman, P. A., Losito, B. G., et al. (1981). Behavioral depression produced by an uncontrollable stressor: Relationship to norepinephrine, dopamine, and serotonin levels in various regions of the rat brain. Brain Research Reviews, 3, 167–205. Weiss, J. M., Goodman, P. A., Losito, B. G., et al. (1981). Behavioral depression produced by an uncontrollable stressor: Relationship to norepinephrine, dopamine, and serotonin levels in various regions of the rat brain. Brain Research Reviews, 3, 167–205.
go back to reference Weiss, J. M., & Kilts, C. D. (1998). Animal models of depression and schizophrenia. In C. B. Nemeroff & A. F. Schatzberg (Eds.), The American psychiatric press textbook of psychopharmacology (2nd ed., pp. 89–131). Washington, DC: American Psychiatric Press Inc. Weiss, J. M., & Kilts, C. D. (1998). Animal models of depression and schizophrenia. In C. B. Nemeroff & A. F. Schatzberg (Eds.), The American psychiatric press textbook of psychopharmacology (2nd ed., pp. 89–131). Washington, DC: American Psychiatric Press Inc.
go back to reference Weiss, J. M., & Simson, P. G. (1985). Neurochemical basis of stress-induced depression. Psychopharmacology Bulletin, 21, 447–457.PubMed Weiss, J. M., & Simson, P. G. (1985). Neurochemical basis of stress-induced depression. Psychopharmacology Bulletin, 21, 447–457.PubMed
go back to reference Weiss, J. M., & Simson, P. G. (1986). Depression in an animal model: Focus on the locus ceruleus. Ciba Foundation Symposia, 123, 191–215.PubMed Weiss, J. M., & Simson, P. G. (1986). Depression in an animal model: Focus on the locus ceruleus. Ciba Foundation Symposia, 123, 191–215.PubMed
go back to reference Werme, M., Messer, C., Olso, L., et al. (2002). Delta FosB Regulates Wheel Running. Journal of Neuroscience, 22, 8133–8138.PubMed Werme, M., Messer, C., Olso, L., et al. (2002). Delta FosB Regulates Wheel Running. Journal of Neuroscience, 22, 8133–8138.PubMed
go back to reference Williams, J. L., & Maier, S. F. (1977). Transituational immunization and therapy of learned helplessness in the rat. Journal of Experimental Psychology-Animal Behavior Processes, 3, 240–253. Williams, J. L., & Maier, S. F. (1977). Transituational immunization and therapy of learned helplessness in the rat. Journal of Experimental Psychology-Animal Behavior Processes, 3, 240–253.
go back to reference Willner, P. (1986). Validation criteria for animal models of human mental disorders: Learned helplessness as a paradigm case. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 10, 677–690. Willner, P. (1986). Validation criteria for animal models of human mental disorders: Learned helplessness as a paradigm case. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 10, 677–690.
go back to reference Zheng, H., Liu, Y., Li, W., et al. (2006). Beneficial effects of exercise and its molecular mechanisms on depression in rats. Behavioural Brain Research, 168, 47–55.PubMed Zheng, H., Liu, Y., Li, W., et al. (2006). Beneficial effects of exercise and its molecular mechanisms on depression in rats. Behavioural Brain Research, 168, 47–55.PubMed
go back to reference Zhu, M. Y., Klimek, V., Dilley, G. E., et al. (1999). Elevated levels of tyrosine hydroxylase in the locus coeruleus in major depression. Biological Psychiatry, 46, 1275–1286.PubMed Zhu, M. Y., Klimek, V., Dilley, G. E., et al. (1999). Elevated levels of tyrosine hydroxylase in the locus coeruleus in major depression. Biological Psychiatry, 46, 1275–1286.PubMed
go back to reference Zienowicz, M., Wislowska-Stanek, A., Lehner, M., et al. (2006). Fluoxetine-induced anxiety and nervousness. Pharmacology Report, 58, 115–119. Zienowicz, M., Wislowska-Stanek, A., Lehner, M., et al. (2006). Fluoxetine-induced anxiety and nervousness. Pharmacology Report, 58, 115–119.
Metadata
Title
Exercise, Learned Helplessness, and the Stress-Resistant Brain
Authors
Benjamin N. Greenwood
Monika Fleshner
Publication date
01-06-2008
Publisher
Humana Press Inc
Published in
NeuroMolecular Medicine / Issue 2/2008
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-008-8029-y

Other articles of this Issue 2/2008

NeuroMolecular Medicine 2/2008 Go to the issue