Skip to main content
Top
Published in: Cardiovascular Toxicology 4/2020

01-08-2020 | Myocardial Infarction

Exendin-4 Ameliorates Cardiac Remodeling in Experimentally Induced Myocardial Infarction in Rats by Inhibiting PARP1/NF-κB Axis in A SIRT1-Dependent Mechanism

Authors: Refaat A. Eid, Samah A. Alharbi, Attalla Farag El-kott, Samy M. Eleawa, Mohamed Samir Ahmed Zaki, Fahmy El-Sayed, Muhammad Alaa Eldeen, Hussain Aldera, Abd Al-Rahman Salem Al-Shudiefat

Published in: Cardiovascular Toxicology | Issue 4/2020

Login to get access

Abstract

Sirt1 is a potent inhibitor of both poly(ADP-ribose) polymerases1 (PARP1) and NF-kB. This study investigated the cardioprotective effect of exendin-4 on cardiac function and remodeling in rats after an expreimentally-induced myocardial infarction (MI) and explored if this protection involves SIRT1/PARP1 axis. Rats were divided into five groups (n = 10/each): sham, sham + exendin-4 (25 nmol/kg/day i.p.), MI (induced by LAD occlusion), MI + exendin-4, and sham + exendin-4 + EX527 (5 mg/2×/week) (a SIRT1 inhibitor). All treatments were given for 6 weeks post the induction of MI. In sham-operated and MI-induced rats, exendin-4 significantly upregulated Bcl-2 levels, enhanced activity, mRNA, and levels of SIRT1, inhibited activity, mRNA, and levels of PARP1, and reduced ROS generation and PARP1 acetylation. In MI-treated rats, these effects were associated with improved cardiac architectures and LV function, reduced collagen deposition, and reduced mRNA and total levels of TNF-α and IL-6, as well as, the activation of NF-κB p65. In addition, exendin-4 inhibited the interaction of PARP1 with p300, TGF-β1, Smad3, and NF-κB p65 and signficantly reduced mRNA and protein levels of collagen I/III and protein levels of MMP2/9. In conclusion, exendin-4 is a potent cardioprotective agent that prevents post-MI inflammation and cardiac remodeling by activating SIRT1-induced inhibition of PARP1.
Literature
1.
go back to reference Suthahar, N., Meijers, W. C., Silljé, H. H., & de Boer, R. A. (2017). From inflammation to fibrosis—Molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Current Heart Failure Reports,14, 235–250.PubMedPubMedCentralCrossRef Suthahar, N., Meijers, W. C., Silljé, H. H., & de Boer, R. A. (2017). From inflammation to fibrosis—Molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Current Heart Failure Reports,14, 235–250.PubMedPubMedCentralCrossRef
2.
go back to reference Schirone, L., Forte, M., Palmerio, S., Yee, D., Nocella, C., Angelini, F., et al. (2017). A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxidative Medicine and Cellular Longevity,2017, 3920195.PubMedPubMedCentralCrossRef Schirone, L., Forte, M., Palmerio, S., Yee, D., Nocella, C., Angelini, F., et al. (2017). A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxidative Medicine and Cellular Longevity,2017, 3920195.PubMedPubMedCentralCrossRef
3.
go back to reference Hill, J. A., & Olson, E. N. (2008). Cardiac plasticity. New England Journal of Medicine,358, 1370–1380.CrossRef Hill, J. A., & Olson, E. N. (2008). Cardiac plasticity. New England Journal of Medicine,358, 1370–1380.CrossRef
4.
go back to reference Ohtani, T., Mohammed, S. F., Yamamoto, K., Dunlay, S. M., Weston, S. A., Sakata, Y., et al. (2012). Diastolic stiffness as assessed by diastolic wall strain is associated with adverse remodelling and poor outcomes in heart failure with preserved ejection fraction. European Heart Journal,33, 1742–1749.PubMedPubMedCentralCrossRef Ohtani, T., Mohammed, S. F., Yamamoto, K., Dunlay, S. M., Weston, S. A., Sakata, Y., et al. (2012). Diastolic stiffness as assessed by diastolic wall strain is associated with adverse remodelling and poor outcomes in heart failure with preserved ejection fraction. European Heart Journal,33, 1742–1749.PubMedPubMedCentralCrossRef
6.
go back to reference Pacher, P., Liaudet, L., Bai, P., Virag, L., Mabley, J., Hasko, G., et al. (2002). Activation of poly (ADP-ribose) polymerase contributes to development of doxorubicin-induced heart failure. Journal of Pharmacology and Experimental Therapeutics,300, 862–867.CrossRef Pacher, P., Liaudet, L., Bai, P., Virag, L., Mabley, J., Hasko, G., et al. (2002). Activation of poly (ADP-ribose) polymerase contributes to development of doxorubicin-induced heart failure. Journal of Pharmacology and Experimental Therapeutics,300, 862–867.CrossRef
7.
go back to reference Szabo, C. (2005). Pharmacological inhibition of poly (ADP-ribose) polymerase in cardiovascular disorders: Future directions. Current Vascular Pharmacology,3, 301–303.PubMedCrossRef Szabo, C. (2005). Pharmacological inhibition of poly (ADP-ribose) polymerase in cardiovascular disorders: Future directions. Current Vascular Pharmacology,3, 301–303.PubMedCrossRef
8.
go back to reference Wang, J., Hao, L., Wang, Y., Qin, W., Wang, X., Zhao, T., et al. (2015). Inhibition of poly (ADP-ribose) polymerase and inducible nitric oxide synthase protects against ischemic myocardial damage by reduction of apoptosis. Molecular Medicine Reports,11, 1768–1776.PubMedCrossRef Wang, J., Hao, L., Wang, Y., Qin, W., Wang, X., Zhao, T., et al. (2015). Inhibition of poly (ADP-ribose) polymerase and inducible nitric oxide synthase protects against ischemic myocardial damage by reduction of apoptosis. Molecular Medicine Reports,11, 1768–1776.PubMedCrossRef
9.
go back to reference Sun, S., Hu, Y., Zheng, Q., Guo, Z., Sun, D., Chen, S., et al. (2019). Poly (ADP-ribose) polymerase 1 induces cardiac fibrosis by mediating mammalian target of rapamycin activity. Journal of Cellular Biochemistry,120, 4813–4826.PubMedCrossRef Sun, S., Hu, Y., Zheng, Q., Guo, Z., Sun, D., Chen, S., et al. (2019). Poly (ADP-ribose) polymerase 1 induces cardiac fibrosis by mediating mammalian target of rapamycin activity. Journal of Cellular Biochemistry,120, 4813–4826.PubMedCrossRef
10.
go back to reference Ling, X. X., Liu, J. X., Lin, Y., Du, Y. J., Chen, S. Q., Chen, J. L., et al. (2016). Poly(ADP-ribosyl)ation of apoptosis antagonizing transcription factor involved in hydroquinone-induced DNA damage response. Biomedical and Environmental Sciences,29, 80–84.PubMed Ling, X. X., Liu, J. X., Lin, Y., Du, Y. J., Chen, S. Q., Chen, J. L., et al. (2016). Poly(ADP-ribosyl)ation of apoptosis antagonizing transcription factor involved in hydroquinone-induced DNA damage response. Biomedical and Environmental Sciences,29, 80–84.PubMed
11.
go back to reference d’Amours, D., Desnoyers, S., d’Silva, I., & Poirier, G. G. (1999). Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochemical Journal,342, 249.PubMedCentralCrossRef d’Amours, D., Desnoyers, S., d’Silva, I., & Poirier, G. G. (1999). Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochemical Journal,342, 249.PubMedCentralCrossRef
12.
go back to reference Rajamohan, S. B., Pillai, V. B., Gupta, M., Sundaresan, N. R., Birukov, K. G., Samant, S., et al. (2009). SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly (ADP-ribose) polymerase 1. Molecular and Cellular Biology,29, 4116–4129.PubMedPubMedCentralCrossRef Rajamohan, S. B., Pillai, V. B., Gupta, M., Sundaresan, N. R., Birukov, K. G., Samant, S., et al. (2009). SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly (ADP-ribose) polymerase 1. Molecular and Cellular Biology,29, 4116–4129.PubMedPubMedCentralCrossRef
13.
go back to reference Szabo, C., Zingarelli, B., O'Connor, M., & Salzman, A. L. (1996). DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proceedings of the National Academy of Sciences,93, 1753–1758.CrossRef Szabo, C., Zingarelli, B., O'Connor, M., & Salzman, A. L. (1996). DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proceedings of the National Academy of Sciences,93, 1753–1758.CrossRef
14.
go back to reference Hassa, P., & Hottiger, M. (2002). The functional role of poly (ADP-ribose) polymerase 1 as novel coactivator of NF-κB in inflammatory disorders. Cellular and Molecular Life Sciences,59, 1534–1553.PubMedCrossRef Hassa, P., & Hottiger, M. (2002). The functional role of poly (ADP-ribose) polymerase 1 as novel coactivator of NF-κB in inflammatory disorders. Cellular and Molecular Life Sciences,59, 1534–1553.PubMedCrossRef
15.
go back to reference Yao, L., Huang, K., Huang, D., Wang, J., Guo, H., & Liao, Y. (2008). Acute myocardial infarction induced increases in plasma tumor necrosis factor-α and interleukin-10 are associated with the activation of poly (ADP-ribose) polymerase of circulating mononuclear cell. International Journal of Cardiology,123, 366–368.PubMedCrossRef Yao, L., Huang, K., Huang, D., Wang, J., Guo, H., & Liao, Y. (2008). Acute myocardial infarction induced increases in plasma tumor necrosis factor-α and interleukin-10 are associated with the activation of poly (ADP-ribose) polymerase of circulating mononuclear cell. International Journal of Cardiology,123, 366–368.PubMedCrossRef
16.
go back to reference Halmosi, R., Deres, L., Gal, R., Eros, K., Sumegi, B., & Toth, K. (2016). PARP inhibition and postinfarction myocardial remodeling. International Journal of Cardiology,217, S52–S59.PubMedCrossRef Halmosi, R., Deres, L., Gal, R., Eros, K., Sumegi, B., & Toth, K. (2016). PARP inhibition and postinfarction myocardial remodeling. International Journal of Cardiology,217, S52–S59.PubMedCrossRef
17.
go back to reference Jia, G., Zao, M., & Liu, X. (2017). Protective effect of diethylcarbamazine inhibits NF-κB activation in isoproterenol-induced acute myocardial infarction rat model through the PARP pathway. Molecular Medicine Reports,16, 1596–1602.PubMedCrossRef Jia, G., Zao, M., & Liu, X. (2017). Protective effect of diethylcarbamazine inhibits NF-κB activation in isoproterenol-induced acute myocardial infarction rat model through the PARP pathway. Molecular Medicine Reports,16, 1596–1602.PubMedCrossRef
18.
go back to reference Hans, C. P., Zerfaoui, M., Naura, A. S., Catling, A., & Boulares, A. H. (2008). Differential effects of PARP inhibition on vascular cell survival and ACAT-1 expression favouring atherosclerotic plaque stability. Cardiovascular Research,78, 429–439.PubMedCrossRef Hans, C. P., Zerfaoui, M., Naura, A. S., Catling, A., & Boulares, A. H. (2008). Differential effects of PARP inhibition on vascular cell survival and ACAT-1 expression favouring atherosclerotic plaque stability. Cardiovascular Research,78, 429–439.PubMedCrossRef
19.
go back to reference Eid, R. A., Zaki, M. S. A., Al-Shraim, M., Eleawa, S. M., El-kott, A. F., Al-Hashem, F. H., et al. (2018). Subacute ghrelin administration inhibits apoptosis and improves ultrastructural abnormalities in remote myocardium post-myocardial infarction. Biomedicine & Pharmacotherapy,101, 920–928.CrossRef Eid, R. A., Zaki, M. S. A., Al-Shraim, M., Eleawa, S. M., El-kott, A. F., Al-Hashem, F. H., et al. (2018). Subacute ghrelin administration inhibits apoptosis and improves ultrastructural abnormalities in remote myocardium post-myocardial infarction. Biomedicine & Pharmacotherapy,101, 920–928.CrossRef
20.
go back to reference Drucker, D. J. (2016). The cardiovascular biology of glucagon-like peptide-1. Cell Metabolism,24, 15–30.PubMedCrossRef Drucker, D. J. (2016). The cardiovascular biology of glucagon-like peptide-1. Cell Metabolism,24, 15–30.PubMedCrossRef
21.
go back to reference Timmers, L., Henriques, J. P., de Kleijn, D. P., DeVries, J. H., Kemperman, H., Steendijk, P., et al. (2009). Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. Journal of the American College of Cardiology,53, 501–510.PubMedCrossRef Timmers, L., Henriques, J. P., de Kleijn, D. P., DeVries, J. H., Kemperman, H., Steendijk, P., et al. (2009). Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. Journal of the American College of Cardiology,53, 501–510.PubMedCrossRef
22.
go back to reference Woo, J. S., Kim, W., Ha, S. J., Kim, J. B., Kim, S.-J., Kim, W.-S., et al. (2013). Cardioprotective effects of exenatide in patients with ST-segment–elevation myocardial infarction undergoing primary percutaneous coronary intervention: Results of exenatide myocardial protection in revascularization study. Arteriosclerosis, Thrombosis, and Vascular Biology,33, 2252–2260.PubMedCrossRef Woo, J. S., Kim, W., Ha, S. J., Kim, J. B., Kim, S.-J., Kim, W.-S., et al. (2013). Cardioprotective effects of exenatide in patients with ST-segment–elevation myocardial infarction undergoing primary percutaneous coronary intervention: Results of exenatide myocardial protection in revascularization study. Arteriosclerosis, Thrombosis, and Vascular Biology,33, 2252–2260.PubMedCrossRef
23.
go back to reference Noyan-Ashraf, M. H., Shikatani, E. A., Schuiki, I., Mukovozov, I., Wu, J., Li, R.-K., et al. (2013). A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity. Circulation,127, 74–85.PubMedCrossRef Noyan-Ashraf, M. H., Shikatani, E. A., Schuiki, I., Mukovozov, I., Wu, J., Li, R.-K., et al. (2013). A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity. Circulation,127, 74–85.PubMedCrossRef
24.
go back to reference Aravindhan, K., Bao, W., Harpel, M. R., Willette, R. N., Lepore, J. J., & Jucker, B. M. (2015). Cardioprotection resulting from glucagon-like peptide-1 administration involves shifting metabolic substrate utilization to increase energy efficiency in the rat heart. PLoS ONE,10, e0130894.PubMedPubMedCentralCrossRef Aravindhan, K., Bao, W., Harpel, M. R., Willette, R. N., Lepore, J. J., & Jucker, B. M. (2015). Cardioprotection resulting from glucagon-like peptide-1 administration involves shifting metabolic substrate utilization to increase energy efficiency in the rat heart. PLoS ONE,10, e0130894.PubMedPubMedCentralCrossRef
25.
go back to reference Li, J., Zheng, J., Wang, S., Lau, H. K., Fathi, A., & Wang, Q. (2017). Cardiovascular benefits of native GLP-1 and its metabolites: An indicator for GLP-1-therapy strategies. Frontiers in Physiology,8, 15.PubMedPubMedCentral Li, J., Zheng, J., Wang, S., Lau, H. K., Fathi, A., & Wang, Q. (2017). Cardiovascular benefits of native GLP-1 and its metabolites: An indicator for GLP-1-therapy strategies. Frontiers in Physiology,8, 15.PubMedPubMedCentral
26.
go back to reference Robinson, E., Cassidy, R. S., Tate, M., Zhao, Y., Lockhart, S., Calderwood, D., et al. (2015). Exendin-4 protects against post-myocardial infarction remodelling via specific actions on inflammation and the extracellular matrix. Basic Research in Cardiology,110, 20.PubMedPubMedCentralCrossRef Robinson, E., Cassidy, R. S., Tate, M., Zhao, Y., Lockhart, S., Calderwood, D., et al. (2015). Exendin-4 protects against post-myocardial infarction remodelling via specific actions on inflammation and the extracellular matrix. Basic Research in Cardiology,110, 20.PubMedPubMedCentralCrossRef
27.
go back to reference Tate, M., Robinson, E., Green, B. D., McDermott, B. J., & Grieve, D. J. (2016). Exendin-4 attenuates adverse cardiac remodelling in streptozocin-induced diabetes via specific actions on infiltrating macrophages. Basic Research in Cardiology,111, 1.PubMedCrossRef Tate, M., Robinson, E., Green, B. D., McDermott, B. J., & Grieve, D. J. (2016). Exendin-4 attenuates adverse cardiac remodelling in streptozocin-induced diabetes via specific actions on infiltrating macrophages. Basic Research in Cardiology,111, 1.PubMedCrossRef
28.
go back to reference Hsu, C.-P., Zhai, P., Yamamoto, T., Maejima, Y., Matsushima, S., Hariharan, N., et al. (2010). Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation,122, 2170–2182.PubMedPubMedCentralCrossRef Hsu, C.-P., Zhai, P., Yamamoto, T., Maejima, Y., Matsushima, S., Hariharan, N., et al. (2010). Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation,122, 2170–2182.PubMedPubMedCentralCrossRef
29.
go back to reference Mao, S., Chen, P., Li, T., Guo, L., & Zhang, M. (2018). Tongguan capsule mitigates post-myocardial infarction remodeling by promoting autophagy and inhibiting apoptosis: Role of Sirt1. Frontiers in Physiology,9, 589.PubMedPubMedCentralCrossRef Mao, S., Chen, P., Li, T., Guo, L., & Zhang, M. (2018). Tongguan capsule mitigates post-myocardial infarction remodeling by promoting autophagy and inhibiting apoptosis: Role of Sirt1. Frontiers in Physiology,9, 589.PubMedPubMedCentralCrossRef
30.
go back to reference Minematsu, T., Huang, L., Ibuki, A., Nakagami, G., Akase, T., Sugama, J., et al. (2012). Altered expression of matrix metalloproteinases and their tissue inhibitors in matured rat adipocytes in vitro. Biological Research for Nursing,14, 242–249.PubMedCrossRef Minematsu, T., Huang, L., Ibuki, A., Nakagami, G., Akase, T., Sugama, J., et al. (2012). Altered expression of matrix metalloproteinases and their tissue inhibitors in matured rat adipocytes in vitro. Biological Research for Nursing,14, 242–249.PubMedCrossRef
31.
go back to reference Bai, J., Zhang, N., Hua, Y., Wang, B., Ling, L., Ferro, A., et al. (2013). Metformin inhibits angiotensin II-induced differentiation of cardiac fibroblasts into myofibroblasts. PLoS ONE,8, e72120.PubMedPubMedCentralCrossRef Bai, J., Zhang, N., Hua, Y., Wang, B., Ling, L., Ferro, A., et al. (2013). Metformin inhibits angiotensin II-induced differentiation of cardiac fibroblasts into myofibroblasts. PLoS ONE,8, e72120.PubMedPubMedCentralCrossRef
32.
go back to reference Sun, L., Liu, C., Xu, X., Ying, Z., Maiseyeu, A., Wang, A., et al. (2013). Ambient fine particulate matter and ozone exposures induce inflammation in epicardial and perirenal adipose tissues in rats fed a high fructose diet. Particle and Fibre Toxicology,10, 43.PubMedPubMedCentralCrossRef Sun, L., Liu, C., Xu, X., Ying, Z., Maiseyeu, A., Wang, A., et al. (2013). Ambient fine particulate matter and ozone exposures induce inflammation in epicardial and perirenal adipose tissues in rats fed a high fructose diet. Particle and Fibre Toxicology,10, 43.PubMedPubMedCentralCrossRef
33.
go back to reference Seo, S., Lee, M.-S., Chang, E., Shin, Y., Oh, S., Kim, I.-H., et al. (2015). Rutin increases muscle mitochondrial biogenesis with AMPK activation in high-fat diet-induced obese rats. Nutrients,7, 8152–8169.PubMedPubMedCentralCrossRef Seo, S., Lee, M.-S., Chang, E., Shin, Y., Oh, S., Kim, I.-H., et al. (2015). Rutin increases muscle mitochondrial biogenesis with AMPK activation in high-fat diet-induced obese rats. Nutrients,7, 8152–8169.PubMedPubMedCentralCrossRef
34.
go back to reference Yan, N., Liu, Y., Liu, S., Cao, S., Wang, F., Wang, Z., et al. (2016). Fluoride-induced neuron apoptosis and expressions of inflammatory factors by activating microglia in rat brain. Molecular Neurobiology,53, 4449–4460.PubMedCrossRef Yan, N., Liu, Y., Liu, S., Cao, S., Wang, F., Wang, Z., et al. (2016). Fluoride-induced neuron apoptosis and expressions of inflammatory factors by activating microglia in rat brain. Molecular Neurobiology,53, 4449–4460.PubMedCrossRef
35.
go back to reference Fusegawa, Y., Hashizume, H., Okumura, T., Deguchi, Y., Shina, Y., Ikari, Y., et al. (2006). Hypertensive patients with carotid artery plaque exhibit increased platelet aggregability. Thrombosis Research,117, 615–622.PubMedCrossRef Fusegawa, Y., Hashizume, H., Okumura, T., Deguchi, Y., Shina, Y., Ikari, Y., et al. (2006). Hypertensive patients with carotid artery plaque exhibit increased platelet aggregability. Thrombosis Research,117, 615–622.PubMedCrossRef
36.
go back to reference Zhao, H., Zhang, J., & Hong, G. (2018). Minocycline improves cardiac function after myocardial infarction in rats by inhibiting activation of PARP-1. Biomedicine & Pharmacotherapy,97, 1119–1124.CrossRef Zhao, H., Zhang, J., & Hong, G. (2018). Minocycline improves cardiac function after myocardial infarction in rats by inhibiting activation of PARP-1. Biomedicine & Pharmacotherapy,97, 1119–1124.CrossRef
37.
go back to reference Harvey, A. P., & Grieve, D. J. (2014). Reactive oxygen species (ROS) signaling in cardiac remodeling and failure. In I. Laher (Ed.), Systems biology of free radicals and antioxidants (pp. 951–992). Berlin: Springer.CrossRef Harvey, A. P., & Grieve, D. J. (2014). Reactive oxygen species (ROS) signaling in cardiac remodeling and failure. In I. Laher (Ed.), Systems biology of free radicals and antioxidants (pp. 951–992). Berlin: Springer.CrossRef
38.
go back to reference Bai, S., He, C., Zhang, K., Ding, X., Zeng, Q., Wang, J., et al. (2019). Effects of dietary inclusion of Radix Bupleuri and Radix Astragali extracts on the performance, intestinal inflammatory cytokines expression, and hepatic antioxidant capacity in broilers exposed to high temperature. Animal Feed Science and Technology,259, 114288.CrossRef Bai, S., He, C., Zhang, K., Ding, X., Zeng, Q., Wang, J., et al. (2019). Effects of dietary inclusion of Radix Bupleuri and Radix Astragali extracts on the performance, intestinal inflammatory cytokines expression, and hepatic antioxidant capacity in broilers exposed to high temperature. Animal Feed Science and Technology,259, 114288.CrossRef
39.
go back to reference Shou, Y., Li, N., Li, L., Borowitz, J. L., & Isom, G. E. (2002). NF-κB-mediated up-regulation of Bcl-XS and Bax contributes to cytochrome c release in cyanide-induced apoptosis. Journal of Neurochemistry,81, 842–852.PubMedCrossRef Shou, Y., Li, N., Li, L., Borowitz, J. L., & Isom, G. E. (2002). NF-κB-mediated up-regulation of Bcl-XS and Bax contributes to cytochrome c release in cyanide-induced apoptosis. Journal of Neurochemistry,81, 842–852.PubMedCrossRef
40.
go back to reference Gupta, S., Afaq, F., & Mukhtar, H. (2002). Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene,21, 3727.PubMedCrossRef Gupta, S., Afaq, F., & Mukhtar, H. (2002). Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene,21, 3727.PubMedCrossRef
41.
go back to reference Matsuzawa, A., Nishitoh, H., Tobiume, K., Takeda, K., & Ichijo, H. (2002). Physiological roles of ASK1-mediated signal transduction in oxidative stress-and endoplasmic reticulum stress-induced apoptosis: Advanced findings from ASK1 knockout mice. Antioxidants and Redox Signaling,4, 415–425.PubMedCrossRef Matsuzawa, A., Nishitoh, H., Tobiume, K., Takeda, K., & Ichijo, H. (2002). Physiological roles of ASK1-mediated signal transduction in oxidative stress-and endoplasmic reticulum stress-induced apoptosis: Advanced findings from ASK1 knockout mice. Antioxidants and Redox Signaling,4, 415–425.PubMedCrossRef
42.
go back to reference Vaziri, H., Dessain, S. K., Eaton, E. N., Imai, S.-I., Frye, R. A., Pandita, T. K., et al. (2001). hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell,107, 149–159.PubMedCrossRef Vaziri, H., Dessain, S. K., Eaton, E. N., Imai, S.-I., Frye, R. A., Pandita, T. K., et al. (2001). hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell,107, 149–159.PubMedCrossRef
43.
go back to reference Chong, A.-Y., & Lip, G. Y. (2002). Hormone replacement therapy and cardiovascular risk. Treatments in Endocrinology,1, 95–103.PubMedCrossRef Chong, A.-Y., & Lip, G. Y. (2002). Hormone replacement therapy and cardiovascular risk. Treatments in Endocrinology,1, 95–103.PubMedCrossRef
44.
go back to reference Kim, H. J., Joe, Y., Yu, J. K., Chen, Y., Jeong, S. O., Mani, N., et al. (2015). Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1 pathway. Biochimica et Biophysica Acta,1852, 1550–1559.PubMedCrossRef Kim, H. J., Joe, Y., Yu, J. K., Chen, Y., Jeong, S. O., Mani, N., et al. (2015). Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1 pathway. Biochimica et Biophysica Acta,1852, 1550–1559.PubMedCrossRef
45.
go back to reference Di, W., Lv, J., Jiang, S., Lu, C., Yang, Z., Ma, Z., et al. (2018). PGC-1: The energetic regulator in cardiac metabolism. Current Issues in Molecular Biology,28, 29–46.PubMedCrossRef Di, W., Lv, J., Jiang, S., Lu, C., Yang, Z., Ma, Z., et al. (2018). PGC-1: The energetic regulator in cardiac metabolism. Current Issues in Molecular Biology,28, 29–46.PubMedCrossRef
46.
go back to reference Fredj, S., Bescond, J., Louault, C., Delwail, A., & LecronPotreau, J. C. D. (2005). Role of interleukin-6 in cardiomyocyte/cardiac fibroblast interactions during myocyte hypertrophy and fibroblast proliferation. Journal of Cellular Physiology,204, 428–436.PubMedCrossRef Fredj, S., Bescond, J., Louault, C., Delwail, A., & LecronPotreau, J. C. D. (2005). Role of interleukin-6 in cardiomyocyte/cardiac fibroblast interactions during myocyte hypertrophy and fibroblast proliferation. Journal of Cellular Physiology,204, 428–436.PubMedCrossRef
47.
go back to reference Pellman, J., Zhang, J., & Sheikh, F. (2016). Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems. Journal of Molecular and Cellular Cardiology,94, 22–31.PubMedPubMedCentralCrossRef Pellman, J., Zhang, J., & Sheikh, F. (2016). Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems. Journal of Molecular and Cellular Cardiology,94, 22–31.PubMedPubMedCentralCrossRef
48.
go back to reference Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research,74, 184–195.PubMedCrossRef Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research,74, 184–195.PubMedCrossRef
49.
go back to reference Gong, D., Shi, W., Yi, S.-J., Chen, H., Groffen, J., & Heisterkamp, N. (2012). TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunology,13, 31.PubMedPubMedCentralCrossRef Gong, D., Shi, W., Yi, S.-J., Chen, H., Groffen, J., & Heisterkamp, N. (2012). TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunology,13, 31.PubMedPubMedCentralCrossRef
50.
go back to reference DeLeon-Pennell, K. Y., Meschiari, C. A., Jung, M., & Lindsey, M. L. (2017). Matrix metalloproteinases in myocardial infarction and heart failure. Progress in Molecular Biology and Translational Science,147, 75–100.PubMedPubMedCentralCrossRef DeLeon-Pennell, K. Y., Meschiari, C. A., Jung, M., & Lindsey, M. L. (2017). Matrix metalloproteinases in myocardial infarction and heart failure. Progress in Molecular Biology and Translational Science,147, 75–100.PubMedPubMedCentralCrossRef
51.
go back to reference Kawano, S., Kubota, T., Monden, Y., Tsutsumi, T., Inoue, T., Kawamura, N., et al. (2006). Blockade of NF-κB improves cardiac function and survival after myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology,291, H1337–H1344.PubMedCrossRef Kawano, S., Kubota, T., Monden, Y., Tsutsumi, T., Inoue, T., Kawamura, N., et al. (2006). Blockade of NF-κB improves cardiac function and survival after myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology,291, H1337–H1344.PubMedCrossRef
52.
go back to reference Guo, C., Huang, T., Chen, A., Chen, X., Wang, L., Shen, F., et al. (2016). Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages. Brazilian Journal of Medical and Biological Research,49(12), e5826.PubMedPubMedCentralCrossRef Guo, C., Huang, T., Chen, A., Chen, X., Wang, L., Shen, F., et al. (2016). Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages. Brazilian Journal of Medical and Biological Research,49(12), e5826.PubMedPubMedCentralCrossRef
53.
go back to reference Iwaya, C., Nomiyama, T., Komatsu, S., Kawanami, T., Tsutsumi, Y., Hamaguchi, Y., et al. (2017). Exendin-4, a glucagonlike peptide-1 receptor agonist, attenuates breast cancer growth by inhibiting NF-κ B activation. Endocrinology,158, 4218–4232.PubMedCrossRef Iwaya, C., Nomiyama, T., Komatsu, S., Kawanami, T., Tsutsumi, Y., Hamaguchi, Y., et al. (2017). Exendin-4, a glucagonlike peptide-1 receptor agonist, attenuates breast cancer growth by inhibiting NF-κ B activation. Endocrinology,158, 4218–4232.PubMedCrossRef
54.
go back to reference De Flora, A., Zocchi, E., Guida, L., Franco, L., & Bruzzone, S. (2004). Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system. Annals of the New York Academy of Sciences,1028, 176–191.PubMed De Flora, A., Zocchi, E., Guida, L., Franco, L., & Bruzzone, S. (2004). Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system. Annals of the New York Academy of Sciences,1028, 176–191.PubMed
55.
go back to reference Kauppinen, T. M., Gan, L., & Swanson, R. A. (2013). Poly(ADP-ribose) polymerase-1-induced NAD+ depletion promotes nuclear factor-κB transcriptional activity by preventing p65 de-acetylation. Biochimica et Biophysica Acta,1833, 1985–1991.PubMedPubMedCentralCrossRef Kauppinen, T. M., Gan, L., & Swanson, R. A. (2013). Poly(ADP-ribose) polymerase-1-induced NAD+ depletion promotes nuclear factor-κB transcriptional activity by preventing p65 de-acetylation. Biochimica et Biophysica Acta,1833, 1985–1991.PubMedPubMedCentralCrossRef
Metadata
Title
Exendin-4 Ameliorates Cardiac Remodeling in Experimentally Induced Myocardial Infarction in Rats by Inhibiting PARP1/NF-κB Axis in A SIRT1-Dependent Mechanism
Authors
Refaat A. Eid
Samah A. Alharbi
Attalla Farag El-kott
Samy M. Eleawa
Mohamed Samir Ahmed Zaki
Fahmy El-Sayed
Muhammad Alaa Eldeen
Hussain Aldera
Abd Al-Rahman Salem Al-Shudiefat
Publication date
01-08-2020
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 4/2020
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-020-09567-5

Other articles of this Issue 4/2020

Cardiovascular Toxicology 4/2020 Go to the issue