Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2020

01-06-2020

Late-life Cardiac Injury in Rats following Early Life Exposure to Lead: Reversal Effect of Nutrient Metal Mixture

Authors: Chand Basha Davuljigari, Rajarami Reddy Gottipolu

Published in: Cardiovascular Toxicology | Issue 3/2020

Login to get access

Abstract

Early-life exposure to lead (Pb) can lead to health effects in later life. The neurotoxic effects of Pb have been well documented but its effects on the heart are poorly elucidated. We examined the late life cardiac impairments resulting from developmental exposure to Pb. Further, we investigated the protective effect of the nutrient metal mixture containing calcium (Ca), zinc (Zn) and iron (Fe) against Pb-induced long-term effects on cardiac functions.Male albino rats were lactationally exposed to 0.2% Pb-acetate or 0.2% Pb-acetate together nutrient metal mixture as 0.02% in drinking water of the mother from PND 1 to PND 21. The results showed increased levels of serum total cholesterol (TC), triglycerides (TG), low-density lipoproteins (LDLs) and lactate dehydrogenase (LDH) activity at postnatal day (PND) 28 [young], 4 months [adult] and 18 months [old] age group rats. Most notably, exposure to Pb decreased the activities of mitochondrial superoxide dismutase (SOD), thioredoxin reductase (TrxR), aconitase (Acon), isocitrate dehydrogenase (ICDH), xanthine oxidase (XO) and total antioxidant status while the MDA levels increased in all selected age groups of rats. The histological findings showed an age-dependent response to Pb exposure evidenced by extensive degeneration and necrosis in cardiac muscle, disruption in muscle connectivity, hemorrhage, and mononuclear cell infiltration. Co-administration of nutrient metal mixture reversed the Pb-induced cardiac impairments as reflected in the recovery of the chosen sensitive markers of oxidative stress, reduced Pb levels and cardiac tissue changes. In conclusion, the data demonstrate that early-life exposure to Pb continuously influence the cardiac mitochondrial functions from early life to older age and further suggesting that adequate intake of nutrient metals may be potential therapeutic treatment for Pb intoxication.
Literature
1.
go back to reference Ettinger, A. S., Leonard, M. L., & Mason, J. (2019). CDC’s lead poisoning prevention program: A long-standing responsibility and commitment to protect children from lead exposure. Journal of Public Health Management and Practics,25, S5–S12. Ettinger, A. S., Leonard, M. L., & Mason, J. (2019). CDC’s lead poisoning prevention program: A long-standing responsibility and commitment to protect children from lead exposure. Journal of Public Health Management and Practics,25, S5–S12.
2.
go back to reference Praveen, Sharma, Chambial, Shailja, & Shukla, Kamla Kant. (2015). Lead and neurotoxicity. Indian Journal of Clinical Biochemistry,30(1), 1–2. Praveen, Sharma, Chambial, Shailja, & Shukla, Kamla Kant. (2015). Lead and neurotoxicity. Indian Journal of Clinical Biochemistry,30(1), 1–2.
3.
go back to reference Reddy, G. R., Devi, C. B., & Chetty, C. S. (2007). Developmental lead neurotoxicity: Alterations in brain cholinergic system. Neurotoxicology,28, 402–407.PubMed Reddy, G. R., Devi, C. B., & Chetty, C. S. (2007). Developmental lead neurotoxicity: Alterations in brain cholinergic system. Neurotoxicology,28, 402–407.PubMed
4.
go back to reference Shvachiy, L., Geraldes, V., Amaro-Leal, Â., & Rocha, I. (2018). Intermittent low-level lead exposure provokes anxiety, hypertension, autonomic dysfunction and neuroinflammation. Neurotoxicology,69, 307–319.PubMed Shvachiy, L., Geraldes, V., Amaro-Leal, Â., & Rocha, I. (2018). Intermittent low-level lead exposure provokes anxiety, hypertension, autonomic dysfunction and neuroinflammation. Neurotoxicology,69, 307–319.PubMed
5.
go back to reference Xu, X., Byles, J. E., Shi, Z., & Hall, J. J. (2018). Dietary patterns, dietary lead exposure and hypertension in the older Chinese population. Asia Pacific Journal of Clinical Nutrition,27(2), 451–459.PubMed Xu, X., Byles, J. E., Shi, Z., & Hall, J. J. (2018). Dietary patterns, dietary lead exposure and hypertension in the older Chinese population. Asia Pacific Journal of Clinical Nutrition,27(2), 451–459.PubMed
6.
go back to reference Vaziri, N. D., & Gonick, H. C. (2015). Cardiovascular effects of lead exposure. Indian Journal of Medical Research,128(4), 426–435. Vaziri, N. D., & Gonick, H. C. (2015). Cardiovascular effects of lead exposure. Indian Journal of Medical Research,128(4), 426–435.
7.
go back to reference Silva, M. A., de Oliveira, T. F., Almenara, C. C., Broseghini-Filho, G. B., Vassallo, D. V., Padilha, A. S., et al. (2015). Exposure to a low lead concentration impairs contractile machinery in rat cardiac muscle. Biological Trace Element Research,167(2), 280–287.PubMed Silva, M. A., de Oliveira, T. F., Almenara, C. C., Broseghini-Filho, G. B., Vassallo, D. V., Padilha, A. S., et al. (2015). Exposure to a low lead concentration impairs contractile machinery in rat cardiac muscle. Biological Trace Element Research,167(2), 280–287.PubMed
8.
go back to reference Ahmed, M. A., Khaled, M. A., & Hassanein, (2013). Cardio protective effects of Nigella sativa oil on lead induced cardio toxicity: Anti inflammatory and antioxidant mechanism. Journal of Physiol and Pathophysiol,4(5), 72–80. Ahmed, M. A., Khaled, M. A., & Hassanein, (2013). Cardio protective effects of Nigella sativa oil on lead induced cardio toxicity: Anti inflammatory and antioxidant mechanism. Journal of Physiol and Pathophysiol,4(5), 72–80.
9.
go back to reference Roshan, V. D., Assali, M., Moghaddam, A. H., Hosseinzadeh, M., & Myers, J. (2011). Exercise training and antioxidants: Effects on rat heart tissue exposed to lead acetate. International Journal of Toxicology,30(2), 190–196.PubMed Roshan, V. D., Assali, M., Moghaddam, A. H., Hosseinzadeh, M., & Myers, J. (2011). Exercise training and antioxidants: Effects on rat heart tissue exposed to lead acetate. International Journal of Toxicology,30(2), 190–196.PubMed
10.
go back to reference Basha, D. C., Basha, S. S., & Reddy, G. R. (2012). Lead-induced cardiac and hematological alterations in aging Wistar male rats: Alleviating effects of nutrient metal mixture. Biogerontology,13(4), 359–368.PubMed Basha, D. C., Basha, S. S., & Reddy, G. R. (2012). Lead-induced cardiac and hematological alterations in aging Wistar male rats: Alleviating effects of nutrient metal mixture. Biogerontology,13(4), 359–368.PubMed
11.
go back to reference Silveira, E. A., Siman, F. D., de Oliveira, F. T., Vescovi, M. V., Furieri, L. B., Lizardo, J. H., et al. (2014). Low-dose chronic lead exposure increases systolic arterial pressure and vascular reactivity of rat aortas. Free Radical Biology and Medicine,67, 366–376.PubMed Silveira, E. A., Siman, F. D., de Oliveira, F. T., Vescovi, M. V., Furieri, L. B., Lizardo, J. H., et al. (2014). Low-dose chronic lead exposure increases systolic arterial pressure and vascular reactivity of rat aortas. Free Radical Biology and Medicine,67, 366–376.PubMed
12.
go back to reference Carmignani, M., Volpe, A. R., Boscolo, P., Qiao, N., Di Gioacchino, M., Grilli, A., et al. (2000). Catcholamine and nitric oxide systems as targets of chronic lead exposure in inducing selective functional impairment. Life Sciences,68, 401–415.PubMed Carmignani, M., Volpe, A. R., Boscolo, P., Qiao, N., Di Gioacchino, M., Grilli, A., et al. (2000). Catcholamine and nitric oxide systems as targets of chronic lead exposure in inducing selective functional impairment. Life Sciences,68, 401–415.PubMed
13.
go back to reference Ferreira de Mattos, G., Costa, C., Savio, F., Alonso, M., & Nicolson, G. L. (2017). Lead poisoning: Acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels. Biophysics Reviews,9(5), 807–825. Ferreira de Mattos, G., Costa, C., Savio, F., Alonso, M., & Nicolson, G. L. (2017). Lead poisoning: Acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels. Biophysics Reviews,9(5), 807–825.
14.
go back to reference Lanphear, B. P., Rauch, S., Auinger, P., Allen, R. W., & Hornung, R. W. (2018). Low-level lead exposure and mortality in US adults: A population-based cohort study. Lancet Public Health.,S2468–2667(18), 30025–30027. Lanphear, B. P., Rauch, S., Auinger, P., Allen, R. W., & Hornung, R. W. (2018). Low-level lead exposure and mortality in US adults: A population-based cohort study. Lancet Public Health.,S2468–2667(18), 30025–30027.
15.
go back to reference Park, S. K., Schwartz, J., Weisskopf, M., Sparrow, D., Vokonas, P. S., Wright, R. O., et al. (2006). Low-level lead exposure, metabolic syndrome, and heart rate variability: The VA Normative Aging Study. Environmental Health Perspectives,114(11), 1718–1724.PubMedPubMedCentral Park, S. K., Schwartz, J., Weisskopf, M., Sparrow, D., Vokonas, P. S., Wright, R. O., et al. (2006). Low-level lead exposure, metabolic syndrome, and heart rate variability: The VA Normative Aging Study. Environmental Health Perspectives,114(11), 1718–1724.PubMedPubMedCentral
16.
go back to reference Prasanthi, R. P., Devi, C. B., Basha, D. C., Reddy, N. S., & Reddy, G. R. (2010). Calcium and zinc supplementation protects lead (Pb)-induced perturbations in antioxidant enzymes and lipid peroxidation in developing mouse brain. International Journal of Developmental Neuroscience,28(2), 161–167.PubMed Prasanthi, R. P., Devi, C. B., Basha, D. C., Reddy, N. S., & Reddy, G. R. (2010). Calcium and zinc supplementation protects lead (Pb)-induced perturbations in antioxidant enzymes and lipid peroxidation in developing mouse brain. International Journal of Developmental Neuroscience,28(2), 161–167.PubMed
17.
go back to reference Park, S. K., Hu, H., Wright, R. O., Schwartz, J., Cheng, Y., Sparrow, D., et al. (2009). Iron metabolism genes, low-level lead exposure, and QT interval. Environmental Health Perspectives,117(1), 80–85.PubMed Park, S. K., Hu, H., Wright, R. O., Schwartz, J., Cheng, Y., Sparrow, D., et al. (2009). Iron metabolism genes, low-level lead exposure, and QT interval. Environmental Health Perspectives,117(1), 80–85.PubMed
18.
go back to reference Srikanthan, T. N., & Krishnamurthi, C. R. (1955). Tetrazolium test for dehydrogenases. Journal of Scientific & Industrial Research,14, 206. Srikanthan, T. N., & Krishnamurthi, C. R. (1955). Tetrazolium test for dehydrogenases. Journal of Scientific & Industrial Research,14, 206.
19.
go back to reference Gottipolu, R. R., Wallenborn, J. G., Karoly, E. D., Schladweiler, M. C., Ledbetter, A. D., Krantz, T., et al. (2009). One-month diesel exhaust inhalation produces hypertensive gene expression pattern in healthy rats. Environmental Health Perspectives,17, 39–46. Gottipolu, R. R., Wallenborn, J. G., Karoly, E. D., Schladweiler, M. C., Ledbetter, A. D., Krantz, T., et al. (2009). One-month diesel exhaust inhalation produces hypertensive gene expression pattern in healthy rats. Environmental Health Perspectives,17, 39–46.
20.
go back to reference Manual, Worthington. (2004). Xanthine Oxidase Assay (pp. 399–401). USA: Worthington Biochemical Corporation. Manual, Worthington. (2004). Xanthine Oxidase Assay (pp. 399–401). USA: Worthington Biochemical Corporation.
21.
go back to reference Korenberg, A., & Pricer, W. E., Jr. (1951). Triphosphate pyridine nucleotide isocitric dehydrogenase in yeast. Journal of Biological Chemistry,1951(189), 123–136. Korenberg, A., & Pricer, W. E., Jr. (1951). Triphosphate pyridine nucleotide isocitric dehydrogenase in yeast. Journal of Biological Chemistry,1951(189), 123–136.
22.
go back to reference Mastanaiah, S., Chengal Raju, D., & Swami, K. S. (1978). Circadian rhythmic activity of lipase in the scorpion. Heterometrus fulvipes (C Koch). Current Science,47, 130–131. Mastanaiah, S., Chengal Raju, D., & Swami, K. S. (1978). Circadian rhythmic activity of lipase in the scorpion. Heterometrus fulvipes (C Koch). Current Science,47, 130–131.
23.
go back to reference Ohkawa, H., Ohishim, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry,95(2), 351–358.PubMed Ohkawa, H., Ohishim, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry,95(2), 351–358.PubMed
24.
go back to reference Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with Folin-phenol reagent. Journal of Biological Chemistry,193, 265–275.PubMed Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with Folin-phenol reagent. Journal of Biological Chemistry,193, 265–275.PubMed
25.
go back to reference Chen, C., Li, Q., Nie, X., Han, B., Chen, Y., Xia, F., et al. (2017). Association of lead exposure with cardiovascular risk factors and diseases in Chinese adults. Environmental Science and Pollution Research International,24(28), 22275–22283.PubMed Chen, C., Li, Q., Nie, X., Han, B., Chen, Y., Xia, F., et al. (2017). Association of lead exposure with cardiovascular risk factors and diseases in Chinese adults. Environmental Science and Pollution Research International,24(28), 22275–22283.PubMed
26.
go back to reference An, H. C., Sung, J. H., Lee, J., Sim, C. S., Kim, S. H., & Kim, Y. (2017). The association between cadmium and lead exposure and blood pressure among workers of a smelting industry: A cross-sectional study. Annals of Occupational and Environmental Medicine,29, 47.PubMedPubMedCentral An, H. C., Sung, J. H., Lee, J., Sim, C. S., Kim, S. H., & Kim, Y. (2017). The association between cadmium and lead exposure and blood pressure among workers of a smelting industry: A cross-sectional study. Annals of Occupational and Environmental Medicine,29, 47.PubMedPubMedCentral
27.
28.
go back to reference Meredith, P. A., Campbell, B. C., Moore, M. R., & Goldberg, A. (1977). The effects of industrial lead poisoning on cytochrome P450 mediated phenazone (antipyrine) hydroxylation. European Journal of Clinical Pharmacology,12(3), 235–239.PubMed Meredith, P. A., Campbell, B. C., Moore, M. R., & Goldberg, A. (1977). The effects of industrial lead poisoning on cytochrome P450 mediated phenazone (antipyrine) hydroxylation. European Journal of Clinical Pharmacology,12(3), 235–239.PubMed
29.
go back to reference Kojima, M., Masui, T., Nemoto, K., & Degawa, M. (2004). Lead nitrate-induced development of hypercholesterolemia in rats: Sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis. Toxicology Letters,154(1–2), 35–44.PubMed Kojima, M., Masui, T., Nemoto, K., & Degawa, M. (2004). Lead nitrate-induced development of hypercholesterolemia in rats: Sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis. Toxicology Letters,154(1–2), 35–44.PubMed
30.
go back to reference Ademuyiwa, O., Ugbaja, R. N., Idumebor, F., & Adebawo, O. (2005). Plasma lipid profiles and risk of cardiovascular disease in occupational lead exposure in Abeokuta, Nigeria. Lipids in Health and Diseases,4, 19. Ademuyiwa, O., Ugbaja, R. N., Idumebor, F., & Adebawo, O. (2005). Plasma lipid profiles and risk of cardiovascular disease in occupational lead exposure in Abeokuta, Nigeria. Lipids in Health and Diseases,4, 19.
31.
go back to reference Ranasinghe, P., Wathurapatha, W. S., Ishara, M. H., Jayawardana, R., Galappatthy, P., Katulanda, P., et al. (2015). Effects of Zinc supplementation on serum lipids: A systematic review and meta-analysis. Nutrition & Metabolism (London).,12, 26. Ranasinghe, P., Wathurapatha, W. S., Ishara, M. H., Jayawardana, R., Galappatthy, P., Katulanda, P., et al. (2015). Effects of Zinc supplementation on serum lipids: A systematic review and meta-analysis. Nutrition & Metabolism (London).,12, 26.
32.
go back to reference Ece, A., Yiğitoğlu, M. R., Vurgun, N., Güven, H., & Işcan, A. (1999). Serum lipid and lipoprotein profile in children with iron deficiency anemia. Pediatrics International,41(2), 168–173.PubMed Ece, A., Yiğitoğlu, M. R., Vurgun, N., Güven, H., & Işcan, A. (1999). Serum lipid and lipoprotein profile in children with iron deficiency anemia. Pediatrics International,41(2), 168–173.PubMed
33.
go back to reference McIntyre, T. M., & Hazen, S. L. (2010). Lipid oxidation and cardiovascular disease: Introduction to a review series. Circulation Research,107(10), 1167–1169.PubMed McIntyre, T. M., & Hazen, S. L. (2010). Lipid oxidation and cardiovascular disease: Introduction to a review series. Circulation Research,107(10), 1167–1169.PubMed
34.
go back to reference Dewanjee, S., Sahu, R., Karmakar, S., & Gangopadhyay, M. (2013). Toxic effects of lead exposure in Wistar rats: Involvement of oxidative stress and the beneficial role of edible jute (Corchorus olitorius) leaves. Food and Chemical Toxicology,55, 78–91.PubMed Dewanjee, S., Sahu, R., Karmakar, S., & Gangopadhyay, M. (2013). Toxic effects of lead exposure in Wistar rats: Involvement of oxidative stress and the beneficial role of edible jute (Corchorus olitorius) leaves. Food and Chemical Toxicology,55, 78–91.PubMed
35.
go back to reference Madamanchi, N. R., & Runge, M. S. (2013). Redox signaling in cardiovascular health and disease. Free Radical Biology Medicine,61, 473–501.PubMed Madamanchi, N. R., & Runge, M. S. (2013). Redox signaling in cardiovascular health and disease. Free Radical Biology Medicine,61, 473–501.PubMed
36.
go back to reference Raghuvanshi, R., Aikim, K., Pushpa, B., Aparna, M., & Misra, K. (2007). Xanthine oxidase as a marker of myocardial infarction. Indian Journal of Clinical Biochemistry,22(2), 90–92.PubMedPubMedCentral Raghuvanshi, R., Aikim, K., Pushpa, B., Aparna, M., & Misra, K. (2007). Xanthine oxidase as a marker of myocardial infarction. Indian Journal of Clinical Biochemistry,22(2), 90–92.PubMedPubMedCentral
37.
go back to reference Kilikdar, D., Mukherjee, D., Mitra, E., Ghosh, A. K., Basu, A., Chandra, A. M., et al. (2011). Protective effect of aqueous garlic extract against lead-induced hepatic injury in rats. Indian Journal of Experimental Biology,49(7), 498–510.PubMed Kilikdar, D., Mukherjee, D., Mitra, E., Ghosh, A. K., Basu, A., Chandra, A. M., et al. (2011). Protective effect of aqueous garlic extract against lead-induced hepatic injury in rats. Indian Journal of Experimental Biology,49(7), 498–510.PubMed
38.
go back to reference Arif Tasleem, J., Mudsser, A., Kehkashan, S., Arif, A., Inho, C., Qazi, M., et al. (2015). Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. International Journal of Molecular Sciences,16(12), 29592–29630. Arif Tasleem, J., Mudsser, A., Kehkashan, S., Arif, A., Inho, C., Qazi, M., et al. (2015). Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. International Journal of Molecular Sciences,16(12), 29592–29630.
39.
go back to reference Holmgren, A., & Lu, J. (2010). Thioredoxin and thioredoxin reductase: Current research with special reference to human disease. Biochemical and Biophysical Research Communications,396(1), 120–124.PubMed Holmgren, A., & Lu, J. (2010). Thioredoxin and thioredoxin reductase: Current research with special reference to human disease. Biochemical and Biophysical Research Communications,396(1), 120–124.PubMed
40.
go back to reference Horstkotte, J., Perisic, T., Schneider, M., Lange, P., Schroeder, M., Kiermayer, C., et al. (2011). Mitochondrial thioredoxin reductase is essential for early postischemic myocardial protection. Circulation,124(25), 2892–2902.PubMed Horstkotte, J., Perisic, T., Schneider, M., Lange, P., Schroeder, M., Kiermayer, C., et al. (2011). Mitochondrial thioredoxin reductase is essential for early postischemic myocardial protection. Circulation,124(25), 2892–2902.PubMed
41.
go back to reference Conterato, G. M., Quatrin, A., Somacal, S., Ruviaro, A. R., Vicentini, J., Augusti, P. R., et al. (2014). Acute exposure to low lead levels and its implications on the activity and expression of cytosolic thioredoxin reductase in the kidney. Basic & Clinical Pharmacology & Toxicology,114(6), 476–484. Conterato, G. M., Quatrin, A., Somacal, S., Ruviaro, A. R., Vicentini, J., Augusti, P. R., et al. (2014). Acute exposure to low lead levels and its implications on the activity and expression of cytosolic thioredoxin reductase in the kidney. Basic & Clinical Pharmacology & Toxicology,114(6), 476–484.
42.
go back to reference Parildar, H., Dogru-Abbasoglu, S., Mehmetçik, G., Ozdemirler, G., Koçak-Toker, N., & Uysal, M. (2008). Lipid peroxidation potential and antioxidants in the heart tissue of beta-alanine- or taurine-treated old rats. Journal of Nutritional Science and Vitaminology (Tokyo).,54(1), 61–65.PubMed Parildar, H., Dogru-Abbasoglu, S., Mehmetçik, G., Ozdemirler, G., Koçak-Toker, N., & Uysal, M. (2008). Lipid peroxidation potential and antioxidants in the heart tissue of beta-alanine- or taurine-treated old rats. Journal of Nutritional Science and Vitaminology (Tokyo).,54(1), 61–65.PubMed
43.
go back to reference Possamai, F. P., Júnior, S. Á., Parisotto, E. B., Moratelli, A. M., Inácio, D. B., Garlet, T. R., et al. (2010). Antioxidant intervention compensates oxidative stress in blood of subjects exposed to emissions from a coal electric-power plant in South Brazil. Environmental Toxicology and Pharmacology,30, 175–180.PubMed Possamai, F. P., Júnior, S. Á., Parisotto, E. B., Moratelli, A. M., Inácio, D. B., Garlet, T. R., et al. (2010). Antioxidant intervention compensates oxidative stress in blood of subjects exposed to emissions from a coal electric-power plant in South Brazil. Environmental Toxicology and Pharmacology,30, 175–180.PubMed
44.
go back to reference Rendón-Ramírez, A. L., Maldonado-Vega, M., Quintanar-Escorza, M. A., Hernández, G., Arévalo-Rivas, B. I., Zentella-Dehesa, A., et al. (2014). Effect of vitamin E and C supplementation on oxidative damage and total antioxidant capacity in lead-exposed workers. Environmental Toxicology and Pharmacology,37(1), 45–54.PubMed Rendón-Ramírez, A. L., Maldonado-Vega, M., Quintanar-Escorza, M. A., Hernández, G., Arévalo-Rivas, B. I., Zentella-Dehesa, A., et al. (2014). Effect of vitamin E and C supplementation on oxidative damage and total antioxidant capacity in lead-exposed workers. Environmental Toxicology and Pharmacology,37(1), 45–54.PubMed
45.
go back to reference Tocchi, A., Quarles, E. K., Basisty, N., Gitari, L., & Rabinovitch, P. S. (2015). Mitochondrial dysfunction in cardiac aging. Biochimica et Biophysica Acta,1847(11), 1424–1433.PubMedPubMedCentral Tocchi, A., Quarles, E. K., Basisty, N., Gitari, L., & Rabinovitch, P. S. (2015). Mitochondrial dysfunction in cardiac aging. Biochimica et Biophysica Acta,1847(11), 1424–1433.PubMedPubMedCentral
46.
go back to reference Cantu, D., Fulton, R. E., Drechsel, D. A., & Patel, M. (2011). Mitochondrial aconitase knockdown attenuates paraquat-induced dopaminergic cell death via decreased cellular metabolism and release of iron and H2O2. Journal of Neurochemistry,118(1), 79–92.PubMedPubMedCentral Cantu, D., Fulton, R. E., Drechsel, D. A., & Patel, M. (2011). Mitochondrial aconitase knockdown attenuates paraquat-induced dopaminergic cell death via decreased cellular metabolism and release of iron and H2O2. Journal of Neurochemistry,118(1), 79–92.PubMedPubMedCentral
47.
go back to reference Vasquez-Vivar, J., Kalyanaraman, B., & Kennedy, M. C. (2000). Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. Journal of Biological Chemistry,275(19), 14064–14069.PubMed Vasquez-Vivar, J., Kalyanaraman, B., & Kennedy, M. C. (2000). Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. Journal of Biological Chemistry,275(19), 14064–14069.PubMed
48.
go back to reference Yarian, S. C., Dikran, T., & Rajindar, S. S. (2006). Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from mice. Mechanisms of Ageing and Development,127(1), 79–84.PubMed Yarian, S. C., Dikran, T., & Rajindar, S. S. (2006). Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from mice. Mechanisms of Ageing and Development,127(1), 79–84.PubMed
49.
go back to reference Ahamed, M., & Siddiqui, M. K. (2007). Environmental lead toxicity and nutritional factors. Clinical Nutrition,26(4), 400–408.PubMed Ahamed, M., & Siddiqui, M. K. (2007). Environmental lead toxicity and nutritional factors. Clinical Nutrition,26(4), 400–408.PubMed
50.
go back to reference De Caterina, R., Zampolli, A., Del Turco, S., Madonna, R., & Massaro, M. (2006). Nutritional mechanisms that influence cardiovascular disease. American Journal of Clinical Nutrition,83(2), 421S–426S.PubMed De Caterina, R., Zampolli, A., Del Turco, S., Madonna, R., & Massaro, M. (2006). Nutritional mechanisms that influence cardiovascular disease. American Journal of Clinical Nutrition,83(2), 421S–426S.PubMed
51.
go back to reference Mythili, Sabesan, & Malathi, Narasimhan. (2015). Diagnostic markers of acute myocardial infarction. Biomedical Reports,3(6), 743–748.PubMedPubMedCentral Mythili, Sabesan, & Malathi, Narasimhan. (2015). Diagnostic markers of acute myocardial infarction. Biomedical Reports,3(6), 743–748.PubMedPubMedCentral
52.
go back to reference Ghosh, D., Mitra, E., Firdaus, S. B., Ghosh, K. B., Chattopadhyay, A., Pattari, K. S., et al. (2013). Melatonin protects against lead-induced cardio toxicity: Involvement of antioxidant mechanism. International Journal of Pharmacy and Pharmaceutical Sciences,5(3), 806–813. Ghosh, D., Mitra, E., Firdaus, S. B., Ghosh, K. B., Chattopadhyay, A., Pattari, K. S., et al. (2013). Melatonin protects against lead-induced cardio toxicity: Involvement of antioxidant mechanism. International Journal of Pharmacy and Pharmaceutical Sciences,5(3), 806–813.
53.
go back to reference Navas-Acien, A., Guallar, E., Silbergeld, E. K., & Rothenberg, S. J. (2007). Lead exposure and cardiovascular disease—A systematic review. Environmental Health Perspectives,115(3), 472–482.PubMed Navas-Acien, A., Guallar, E., Silbergeld, E. K., & Rothenberg, S. J. (2007). Lead exposure and cardiovascular disease—A systematic review. Environmental Health Perspectives,115(3), 472–482.PubMed
54.
go back to reference D’Souza, H. S., Menezes, G., & Venkatesh, T. (2003). Role of essential trace minerals on the absorption of heavy metals with special reference to lead. Indian Journal of Clinical Biochemistry,18(2), 154–160.PubMedPubMedCentral D’Souza, H. S., Menezes, G., & Venkatesh, T. (2003). Role of essential trace minerals on the absorption of heavy metals with special reference to lead. Indian Journal of Clinical Biochemistry,18(2), 154–160.PubMedPubMedCentral
55.
go back to reference Dorea, J. G., & Donangelo, C. M. (2006). Early (in uterus and infant) exposure to mercury and lead. Clinical Nutrition,25(3), 369–376.PubMed Dorea, J. G., & Donangelo, C. M. (2006). Early (in uterus and infant) exposure to mercury and lead. Clinical Nutrition,25(3), 369–376.PubMed
56.
go back to reference Nie, H., Sánchez, B. N., Wilker, E., Weisskopf, M. G., Schwartz, J., Sparrow, D., et al. (2009). Bone lead and endogenous exposure in an environmentally exposed elderly population: thenormative aging study. Journal of Occupational and Environmental Medicine,51(7), 848–857.PubMedPubMedCentral Nie, H., Sánchez, B. N., Wilker, E., Weisskopf, M. G., Schwartz, J., Sparrow, D., et al. (2009). Bone lead and endogenous exposure in an environmentally exposed elderly population: thenormative aging study. Journal of Occupational and Environmental Medicine,51(7), 848–857.PubMedPubMedCentral
Metadata
Title
Late-life Cardiac Injury in Rats following Early Life Exposure to Lead: Reversal Effect of Nutrient Metal Mixture
Authors
Chand Basha Davuljigari
Rajarami Reddy Gottipolu
Publication date
01-06-2020
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 3/2020
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-019-09549-2

Other articles of this Issue 3/2020

Cardiovascular Toxicology 3/2020 Go to the issue