Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2019

01-06-2019

Vildagliptin, an Anti-diabetic Drug of the DPP-4 Inhibitor, Induces Vasodilation via Kv Channel and SERCA Pump Activation in Aortic Smooth Muscle

Authors: Mi Seon Seo, Hongliang Li, Jin Ryeol An, In Duk Jung, Won-Kyo Jung, Kwon-Soo Ha, Eun-Taek Han, Seok-Ho Hong, Il-Whan Choi, Won Sun Park

Published in: Cardiovascular Toxicology | Issue 3/2019

Login to get access

Abstract

This study investigated vildagliptin-induced vasodilation and its related mechanisms using phenylephrine induced precontracted rabbit aortic rings. Vildagliptin induced vasodilation in a concentration-dependent manner. Pretreatment with the large-conductance Ca2+-activated K+ channel blocker paxilline, ATP-sensitive K+ channel blocker glibenclamide, and inwardly rectifying K+ channel blocker Ba2+ did not affect the vasodilatory effects of vildagliptin. However, application of the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine significantly reduced the vasodilatory effects of vildagliptin. In addition, application of either of two sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitors, thapsigargin or cyclopiazonic acid, effectively inhibited the vasodilatory effects of vildagliptin. These vasodilatory effects were not affected by pretreatment with adenylyl cyclase, protein kinase A (PKA), guanylyl cyclase, or protein kinase G (PKG) inhibitors, or by removal of the endothelium. From these results, we concluded that vildagliptin induced vasodilation via activation of Kv channels and the SERCA pump. However, other K+ channels, PKA/PKG-related signaling cascades associated with vascular dilation, and the endothelium were not involved in vildagliptin-induced vasodilation.
Literature
1.
go back to reference Ogurtsova, K., da J. D. Fernandes, Huang, Y., et al. (2017). IDF diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice, 128, 40–50.CrossRefPubMed Ogurtsova, K., da J. D. Fernandes, Huang, Y., et al. (2017). IDF diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice, 128, 40–50.CrossRefPubMed
2.
go back to reference Clemens, K. K., Shariff, S., Liu, K., et al. (2015). Trends in antihyperglycemic medication prescriptions and hypoglycemia in older adults: 2002–2013. PLoS ONE, 10, e0137596.CrossRefPubMedPubMedCentral Clemens, K. K., Shariff, S., Liu, K., et al. (2015). Trends in antihyperglycemic medication prescriptions and hypoglycemia in older adults: 2002–2013. PLoS ONE, 10, e0137596.CrossRefPubMedPubMedCentral
3.
go back to reference McIntosh, C. H., Demuth, H. U., Pospisilik, J. A., et al. (2005). Dipeptidyl peptidase IV inhibitors: How do they work as new antidiabetic agents? Regulatory Peptides, 128, 159–165.CrossRefPubMed McIntosh, C. H., Demuth, H. U., Pospisilik, J. A., et al. (2005). Dipeptidyl peptidase IV inhibitors: How do they work as new antidiabetic agents? Regulatory Peptides, 128, 159–165.CrossRefPubMed
4.
go back to reference van Poppel, P. C., Netea, M. G., Smits, P., et al. (2011). Vildagliptin improves endothelium-dependent vasodilatation in type 2 diabetes. Diabetes Care, 34, 2072–2077.CrossRefPubMedPubMedCentral van Poppel, P. C., Netea, M. G., Smits, P., et al. (2011). Vildagliptin improves endothelium-dependent vasodilatation in type 2 diabetes. Diabetes Care, 34, 2072–2077.CrossRefPubMedPubMedCentral
5.
go back to reference Nelson, M. T., & Quayle, J. M. (1995). Physiological roles and properties of potassium channels in arterial smooth muscle. American Journal of Physiology, 268(4 Pt 1), C799–C822.CrossRefPubMed Nelson, M. T., & Quayle, J. M. (1995). Physiological roles and properties of potassium channels in arterial smooth muscle. American Journal of Physiology, 268(4 Pt 1), C799–C822.CrossRefPubMed
6.
go back to reference Standen, N. B., & Quayle, J. M. (1998). K+ channel modulation in arterial smooth muscle. Acta Physiologica Scandinavica, 164, 549–557.CrossRefPubMed Standen, N. B., & Quayle, J. M. (1998). K+ channel modulation in arterial smooth muscle. Acta Physiologica Scandinavica, 164, 549–557.CrossRefPubMed
7.
go back to reference Yuan, X. J. (1995). Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes. Circulation Research, 77, 370–378.CrossRefPubMed Yuan, X. J. (1995). Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes. Circulation Research, 77, 370–378.CrossRefPubMed
8.
go back to reference Ko, E. A., Han, J., Jung, I. D., et al. (2008). Physiological roles of K+ channels in vascular smooth muscle cells. Journal of Smooth Muscle Research, 44, 65–81.CrossRefPubMed Ko, E. A., Han, J., Jung, I. D., et al. (2008). Physiological roles of K+ channels in vascular smooth muscle cells. Journal of Smooth Muscle Research, 44, 65–81.CrossRefPubMed
9.
go back to reference Ko, E. A., Park, W. S., Firth, A. L., et al. (2010). Pathophysiology of voltage-gated K+ channels in vascular smooth muscle cells: Modulation by protein kinases. Progress in Biophysics & Molecular Biology, 103, 95–101.CrossRef Ko, E. A., Park, W. S., Firth, A. L., et al. (2010). Pathophysiology of voltage-gated K+ channels in vascular smooth muscle cells: Modulation by protein kinases. Progress in Biophysics & Molecular Biology, 103, 95–101.CrossRef
10.
go back to reference Wu, K. D., Bungard, D., & Lytton, J. (2001). Regulation of SERCA Ca2+ pump expression by cytoplasmic Ca2+ in vascular smooth muscle cells. American Journal of Physiology-Cell Physiology, 280, C843–C851.CrossRefPubMed Wu, K. D., Bungard, D., & Lytton, J. (2001). Regulation of SERCA Ca2+ pump expression by cytoplasmic Ca2+ in vascular smooth muscle cells. American Journal of Physiology-Cell Physiology, 280, C843–C851.CrossRefPubMed
11.
go back to reference Stott, J. B., Povstyan, O. V., Carr, G., et al. (2015). G-protein βγ subunits are positive regulators of Kv7. 4 and native vascular Kv7 channel activity. Proceedings of the National Academy of Sciences United States of America, 112, 6497–6502.CrossRef Stott, J. B., Povstyan, O. V., Carr, G., et al. (2015). G-protein βγ subunits are positive regulators of Kv7. 4 and native vascular Kv7 channel activity. Proceedings of the National Academy of Sciences United States of America, 112, 6497–6502.CrossRef
12.
go back to reference Morrish, N. J., Wang, S. L., Stevens, L. K., et al. (2001). Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia, 44, S14–S21.CrossRef Morrish, N. J., Wang, S. L., Stevens, L. K., et al. (2001). Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia, 44, S14–S21.CrossRef
13.
go back to reference Sowers, J. R., Epstein, M., & Frohlich, E. D. (2001). Diabetes, hypertension, and cardiovascular disease: An update. Hypertension, 37, 1053–1059.CrossRefPubMed Sowers, J. R., Epstein, M., & Frohlich, E. D. (2001). Diabetes, hypertension, and cardiovascular disease: An update. Hypertension, 37, 1053–1059.CrossRefPubMed
14.
go back to reference Nissen, S. E., & Wolski, K. (2007). Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. New England Journal of Medicine, 356, 2457–2471.CrossRefPubMed Nissen, S. E., & Wolski, K. (2007). Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. New England Journal of Medicine, 356, 2457–2471.CrossRefPubMed
15.
go back to reference Hernandez, A. V., Usmani, A., Rajamanickam, A., et al. (2011). Thiazolidinediones and risk of heart failure in patients with or at high risk of type 2 diabetes mellitus: A meta-analysis and meta-regression analysis of placebo-controlled randomized clinical trials. American Journal of Cardiovascular Drugs, 11, 115–128.CrossRefPubMed Hernandez, A. V., Usmani, A., Rajamanickam, A., et al. (2011). Thiazolidinediones and risk of heart failure in patients with or at high risk of type 2 diabetes mellitus: A meta-analysis and meta-regression analysis of placebo-controlled randomized clinical trials. American Journal of Cardiovascular Drugs, 11, 115–128.CrossRefPubMed
16.
go back to reference Zimmerman, B. R. (1997). Sulfonylureas. Endocrinology and Metabolism Clinics of North America, 26, 511–522.CrossRefPubMed Zimmerman, B. R. (1997). Sulfonylureas. Endocrinology and Metabolism Clinics of North America, 26, 511–522.CrossRefPubMed
17.
go back to reference Black, C., Donnelly, P., McIntyre, L., et al. (2007). Meglitinide analogues for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews, 18, CD004654. Black, C., Donnelly, P., McIntyre, L., et al. (2007). Meglitinide analogues for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews, 18, CD004654.
18.
go back to reference McInnes, G., Evans, M., Del Prato, S., et al. (2015). Cardiovascular and heart failure safety profile of vildagliptin: A meta-analysis of 17 000 patients. Diabetes, Obesity and Metabolism, 17, 1085–1092.CrossRefPubMed McInnes, G., Evans, M., Del Prato, S., et al. (2015). Cardiovascular and heart failure safety profile of vildagliptin: A meta-analysis of 17 000 patients. Diabetes, Obesity and Metabolism, 17, 1085–1092.CrossRefPubMed
19.
go back to reference Foley, J. E., & Jordan, J. (2010). Weight neutrality with the DPP-4 inhibitor, vildagliptin: Mechanistic basis and clinical experience. Vascular Health and Risk Management, 6, 541–548.CrossRefPubMedPubMedCentral Foley, J. E., & Jordan, J. (2010). Weight neutrality with the DPP-4 inhibitor, vildagliptin: Mechanistic basis and clinical experience. Vascular Health and Risk Management, 6, 541–548.CrossRefPubMedPubMedCentral
20.
go back to reference Dejager, S., Razac, S., Foley, J. E., et al. (2007). Vildagliptin in drug-naive patients with type 2 diabetes: A 24-week, double-blind, randomized, placebo-controlled, multiple-dose study. Hormone and Metabolic Research, 39, 218–223.CrossRefPubMed Dejager, S., Razac, S., Foley, J. E., et al. (2007). Vildagliptin in drug-naive patients with type 2 diabetes: A 24-week, double-blind, randomized, placebo-controlled, multiple-dose study. Hormone and Metabolic Research, 39, 218–223.CrossRefPubMed
21.
go back to reference Mathieu, C., & Degrande, E. (2008). Vildagliptin: A new oral treatment for type 2 diabetes mellitus. Vascular Health and Risk Management, 4, 1349–1360.CrossRefPubMedPubMedCentral Mathieu, C., & Degrande, E. (2008). Vildagliptin: A new oral treatment for type 2 diabetes mellitus. Vascular Health and Risk Management, 4, 1349–1360.CrossRefPubMedPubMedCentral
22.
go back to reference Ahrén, B., Schweizer, A., Dejager, S., et al. (2009). Vildagliptin enhances islet responsiveness to both hyper-and hypoglycemia in patients with type 2 diabetes. Journal Of Clinical Endocrinology And Metabolism, 94, 1236–1243.CrossRefPubMed Ahrén, B., Schweizer, A., Dejager, S., et al. (2009). Vildagliptin enhances islet responsiveness to both hyper-and hypoglycemia in patients with type 2 diabetes. Journal Of Clinical Endocrinology And Metabolism, 94, 1236–1243.CrossRefPubMed
24.
go back to reference Xu, C., Lu, Y., Tang, G., et al. (1999). Expression of voltage-dependent K+ channel genes in mesenteric artery smooth muscle cells. American Journal of Physiology, 277(5 Pt 1), G1055–G1063.PubMed Xu, C., Lu, Y., Tang, G., et al. (1999). Expression of voltage-dependent K+ channel genes in mesenteric artery smooth muscle cells. American Journal of Physiology, 277(5 Pt 1), G1055–G1063.PubMed
25.
go back to reference Yuan, X. J., Wang, J., Juhaszova, M., et al. (1998). Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells. American Journal of Physiology, 274(4 Pt 1), L621–L635.PubMed Yuan, X. J., Wang, J., Juhaszova, M., et al. (1998). Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells. American Journal of Physiology, 274(4 Pt 1), L621–L635.PubMed
26.
go back to reference Belevych, A. E., Beck, R., Tammaro, P., et al. (2002). Developmental changes in the functional characteristics and expression of voltage-gated K+ channel currents in rat aortic myocytes. Cardiovascular Research, 54, 152–161.CrossRefPubMed Belevych, A. E., Beck, R., Tammaro, P., et al. (2002). Developmental changes in the functional characteristics and expression of voltage-gated K+ channel currents in rat aortic myocytes. Cardiovascular Research, 54, 152–161.CrossRefPubMed
27.
go back to reference Zhou, P., Fu, L., Pan, Z., et al. (2008). Testosterone deprivation by castration impairs expression of voltage-dependent potassium channels in rat aorta. European Journal of Pharmacology, 593, 87–91.CrossRefPubMed Zhou, P., Fu, L., Pan, Z., et al. (2008). Testosterone deprivation by castration impairs expression of voltage-dependent potassium channels in rat aorta. European Journal of Pharmacology, 593, 87–91.CrossRefPubMed
28.
go back to reference Lipskaia, L., Hulot, J. S., & Lompré, A. M. (2009). Role of sarco/endoplasmic reticulum calcium content and calcium ATPase activity in the control of cell growth and proliferation. Pflügers Archiv: European Journal of Physiology, 457, 673–685.CrossRefPubMed Lipskaia, L., Hulot, J. S., & Lompré, A. M. (2009). Role of sarco/endoplasmic reticulum calcium content and calcium ATPase activity in the control of cell growth and proliferation. Pflügers Archiv: European Journal of Physiology, 457, 673–685.CrossRefPubMed
29.
go back to reference Lim, J. J., Liu, Y. H., Khin, E. S., et al. (2008). Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells. American Journal Of Physiology-Cell Physiology, 295, C1261–C1270.CrossRefPubMed Lim, J. J., Liu, Y. H., Khin, E. S., et al. (2008). Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells. American Journal Of Physiology-Cell Physiology, 295, C1261–C1270.CrossRefPubMed
30.
go back to reference Lincoln, T. M., Dey, N., & Sellak, H. (1985). Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: From the regulation of tone to gene expression. Journal of Applied Physiology, 91, 1421–1430.CrossRef Lincoln, T. M., Dey, N., & Sellak, H. (1985). Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: From the regulation of tone to gene expression. Journal of Applied Physiology, 91, 1421–1430.CrossRef
31.
go back to reference Koivumäki, J. T., Takalo, J., Korhonen, T., et al. (2009). Modelling sarcoplasmic reticulum calcium ATPase and its regulation in cardiac myocytes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367, 2181–2202.CrossRef Koivumäki, J. T., Takalo, J., Korhonen, T., et al. (2009). Modelling sarcoplasmic reticulum calcium ATPase and its regulation in cardiac myocytes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367, 2181–2202.CrossRef
32.
go back to reference Lüscher, T. F., Bock, H. A., Yang, Z. H., et al. (1991). Endothelium-derived relaxing and contracting factors: Perspectives in nephrology. Kidney International, 39, 575–590.CrossRefPubMed Lüscher, T. F., Bock, H. A., Yang, Z. H., et al. (1991). Endothelium-derived relaxing and contracting factors: Perspectives in nephrology. Kidney International, 39, 575–590.CrossRefPubMed
33.
go back to reference Yetik-Anacak, G., & Catravas, J. D. (2006). Nitric oxide and the endothelium: History and impact on cardiovascular disease. Vascular Pharmacology, 45, 268–276.CrossRefPubMed Yetik-Anacak, G., & Catravas, J. D. (2006). Nitric oxide and the endothelium: History and impact on cardiovascular disease. Vascular Pharmacology, 45, 268–276.CrossRefPubMed
34.
go back to reference Croxtall, J. D., & Keam, S. J. (2008). Vildagliptin: A review of its use in the management of type 2 diabetes mellitus. Drugs, 68, 2387–2409.CrossRefPubMed Croxtall, J. D., & Keam, S. J. (2008). Vildagliptin: A review of its use in the management of type 2 diabetes mellitus. Drugs, 68, 2387–2409.CrossRefPubMed
35.
go back to reference Rosenstock, J., & Fitchet, M. (2008). Vildagliptin: Clinical trials programme in monotherapy and combination therapy for type 2 diabetes. International Journal of Clinical Practice, 159, 15–23.CrossRef Rosenstock, J., & Fitchet, M. (2008). Vildagliptin: Clinical trials programme in monotherapy and combination therapy for type 2 diabetes. International Journal of Clinical Practice, 159, 15–23.CrossRef
36.
go back to reference Baetta, R., & Corsini, A. (2001). Pharmacology of dipeptidyl peptidase-4 inhibitors: Similarities and differences. Drugs, 71, 1441–1467.CrossRef Baetta, R., & Corsini, A. (2001). Pharmacology of dipeptidyl peptidase-4 inhibitors: Similarities and differences. Drugs, 71, 1441–1467.CrossRef
37.
go back to reference He, Y. L., Wang, Y., Bullock, J. M., et al. (2007). Pharmacodynamics of vildagliptin in patients with type 2 diabetes during OGTT. Journal of Clinical Pharmacology, 47, 633–641.CrossRefPubMed He, Y. L., Wang, Y., Bullock, J. M., et al. (2007). Pharmacodynamics of vildagliptin in patients with type 2 diabetes during OGTT. Journal of Clinical Pharmacology, 47, 633–641.CrossRefPubMed
Metadata
Title
Vildagliptin, an Anti-diabetic Drug of the DPP-4 Inhibitor, Induces Vasodilation via Kv Channel and SERCA Pump Activation in Aortic Smooth Muscle
Authors
Mi Seon Seo
Hongliang Li
Jin Ryeol An
In Duk Jung
Won-Kyo Jung
Kwon-Soo Ha
Eun-Taek Han
Seok-Ho Hong
Il-Whan Choi
Won Sun Park
Publication date
01-06-2019
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 3/2019
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-018-9496-5

Other articles of this Issue 3/2019

Cardiovascular Toxicology 3/2019 Go to the issue