Skip to main content
Top
Published in: Cardiovascular Toxicology 1/2019

01-02-2019

Endothelial Cells: From Dysfunction Mechanism to Pharmacological Effect in Cardiovascular Disease

Authors: Habib Haybar, Saeid Shahrabi, Hadi Rezaeeyan, Reza Shirzad, Najmaldin Saki

Published in: Cardiovascular Toxicology | Issue 1/2019

Login to get access

Abstract

Endothelial cells (ECs) are the innermost layer of blood vessels that play important roles in homeostasis and vascular function. However, recent evidence suggests that the onset of inflammation and the production of reactive oxygen species impair the function of ECs and are a main factor in the development of cardiovascular disease (CVD). In this study, we investigated the effects of inflammatory markers, oxidative stress, and treatment on ECs in CVD patients. This review article is based on the material obtained from PubMed up to 2018. The key search terms used were “Cardiovascular Disease,” “Endothelial Cell Dysfunction,” “Inflammation,” “Treatment,” and “Oxidative Stress.” The generation of reactive oxygen species (ROS) as well as reduced nitric oxide (NO) production by ECs impairs the function of blood vessels. Therefore, treatment of CVD patients leads to the expression of transcription factors activating anti-oxidant mechanisms and NO production. In contrast, NO production by inflammatory agents can cause ECs repair due to differentiation of endothelial progenitor cells (EPCs). Therefore, identifying the molecular pathways leading to the differentiation of EPCs through mediation of factors induced by inflammatory factors can be effective in regenerative medicine for ECs repair.
Literature
1.
go back to reference Mannella, P., Simoncini, T., Caretto, M., & Genazzani, A. (2018). Dehydroepiandrosterone and cardiovascular disease. Dehydroepiandrosterone, 108, 333.CrossRef Mannella, P., Simoncini, T., Caretto, M., & Genazzani, A. (2018). Dehydroepiandrosterone and cardiovascular disease. Dehydroepiandrosterone, 108, 333.CrossRef
2.
go back to reference Haybar, H., Jalali, M., & Zayeri, Z. (2018). What genetic tell us about cardiovascular disease in diabetic patients. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders), 18(2), 147–152.CrossRef Haybar, H., Jalali, M., & Zayeri, Z. (2018). What genetic tell us about cardiovascular disease in diabetic patients. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders), 18(2), 147–152.CrossRef
3.
go back to reference Bauer, A. J., & Martin, K. A. (2017). Coordinating regulation of gene expression in cardiovascular disease: Interactions between chromatin modifiers and transcription factors. Frontiers in Cardiovascular Medicine, 4, 19.CrossRefPubMedPubMedCentral Bauer, A. J., & Martin, K. A. (2017). Coordinating regulation of gene expression in cardiovascular disease: Interactions between chromatin modifiers and transcription factors. Frontiers in Cardiovascular Medicine, 4, 19.CrossRefPubMedPubMedCentral
4.
go back to reference Goveia, J., Stapor, P., & Carmeliet, P. (2014). Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease. EMBO Molecular Medicine, 6(9), 1105–1120.CrossRefPubMedPubMedCentral Goveia, J., Stapor, P., & Carmeliet, P. (2014). Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease. EMBO Molecular Medicine, 6(9), 1105–1120.CrossRefPubMedPubMedCentral
5.
go back to reference Siti, H. N., Kamisah, Y., & Kamsiah, J. (2015). The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascular Pharmacology, 71, 40–56.CrossRefPubMed Siti, H. N., Kamisah, Y., & Kamsiah, J. (2015). The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascular Pharmacology, 71, 40–56.CrossRefPubMed
6.
go back to reference Mo, J., Yang, R., Li, F., Zhang, X., He, B., Zhang, Y., et al. (2018). Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation. Phytomedicine, 42, 66–74.CrossRefPubMed Mo, J., Yang, R., Li, F., Zhang, X., He, B., Zhang, Y., et al. (2018). Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation. Phytomedicine, 42, 66–74.CrossRefPubMed
8.
go back to reference Davignon, J., & Ganz, P. (2004). Role of endothelial dysfunction in atherosclerosis. Circulation, 109(23 suppl 1):III-I27–III-32. Davignon, J., & Ganz, P. (2004). Role of endothelial dysfunction in atherosclerosis. Circulation, 109(23 suppl 1):III-I27–III-32.
9.
go back to reference Aird, W. C. (2007). Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circulation Research, 100(2), 174–190.CrossRefPubMed Aird, W. C. (2007). Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circulation Research, 100(2), 174–190.CrossRefPubMed
10.
go back to reference Djohan, A. H., Sia, C.-H., Lee, P. S., & Poh, K.-K. (2018). Endothelial progenitor cells in heart failure: An authentic expectation for potential future use and a lack of universal definition. Journal of Cardiovascular Translational Research, 11(5), 393–402.CrossRefPubMed Djohan, A. H., Sia, C.-H., Lee, P. S., & Poh, K.-K. (2018). Endothelial progenitor cells in heart failure: An authentic expectation for potential future use and a lack of universal definition. Journal of Cardiovascular Translational Research, 11(5), 393–402.CrossRefPubMed
11.
12.
go back to reference Edwards, N., Langford-Smith, A. W., Wilkinson, F. L., & Alexander, M. Y. (2018). Endothelial progenitor cells: New targets for therapeutics for inflammatory conditions with high cardiovascular risk. Frontiers in Medicine, 5, 200.CrossRefPubMedPubMedCentral Edwards, N., Langford-Smith, A. W., Wilkinson, F. L., & Alexander, M. Y. (2018). Endothelial progenitor cells: New targets for therapeutics for inflammatory conditions with high cardiovascular risk. Frontiers in Medicine, 5, 200.CrossRefPubMedPubMedCentral
13.
go back to reference Baghai, T. C., Varallo-Bedarida, G., Born, C., Häfner, S., Schüle, C., Eser, D., et al. (2018). Classical risk factors and inflammatory biomarkers: One of the missing biological links between cardiovascular disease and major depressive disorder. International Journal of Molecular Sciences, 19(6), 1740.CrossRefPubMedCentral Baghai, T. C., Varallo-Bedarida, G., Born, C., Häfner, S., Schüle, C., Eser, D., et al. (2018). Classical risk factors and inflammatory biomarkers: One of the missing biological links between cardiovascular disease and major depressive disorder. International Journal of Molecular Sciences, 19(6), 1740.CrossRefPubMedCentral
14.
go back to reference Miller, L. E. (2018). Methylsulfonylmethane decreases inflammatory response to tumor necrosis factor-α in cardiac cells. American Journal of Cardiovascular Disease, 8(3), 31.PubMedPubMedCentral Miller, L. E. (2018). Methylsulfonylmethane decreases inflammatory response to tumor necrosis factor-α in cardiac cells. American Journal of Cardiovascular Disease, 8(3), 31.PubMedPubMedCentral
15.
go back to reference Trial, J., Cieslik, K. A., & Entman, M. L. (2016). Phosphocholine-containing ligands direct CRP induction of M2 macrophage polarization independent of T cell polarization: Implication for chronic inflammatory states. Immunity, Inflammation and Disease, 4(3), 274–288.CrossRefPubMedPubMedCentral Trial, J., Cieslik, K. A., & Entman, M. L. (2016). Phosphocholine-containing ligands direct CRP induction of M2 macrophage polarization independent of T cell polarization: Implication for chronic inflammatory states. Immunity, Inflammation and Disease, 4(3), 274–288.CrossRefPubMedPubMedCentral
16.
go back to reference Yin, J., Xia, W., Zhang, Y., Ding, G., Chen, L., Yang, G., et al. (2018). Role of dihydroartemisinin in regulating prostaglandin E2 synthesis cascade and inflammation in endothelial cells. Heart and Vessels, 33(11), 1411–1422.CrossRefPubMed Yin, J., Xia, W., Zhang, Y., Ding, G., Chen, L., Yang, G., et al. (2018). Role of dihydroartemisinin in regulating prostaglandin E2 synthesis cascade and inflammation in endothelial cells. Heart and Vessels, 33(11), 1411–1422.CrossRefPubMed
17.
go back to reference Gomez, I., Foudi, N., Longrois, D., & Norel, X. (2013). The role of prostaglandin E2 in human vascular inflammation. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), 89(2–3), 55–63.CrossRef Gomez, I., Foudi, N., Longrois, D., & Norel, X. (2013). The role of prostaglandin E2 in human vascular inflammation. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), 89(2–3), 55–63.CrossRef
18.
go back to reference Han, L., Dai, L., Zhao, Y.-F., Li, H.-Y., Liu, O., Lan, F., et al. (2018). CD40L promotes development of acute aortic dissection via induction of inflammation and impairment of endothelial cell function. Aging (Albany NY), 10(3), 371.CrossRef Han, L., Dai, L., Zhao, Y.-F., Li, H.-Y., Liu, O., Lan, F., et al. (2018). CD40L promotes development of acute aortic dissection via induction of inflammation and impairment of endothelial cell function. Aging (Albany NY), 10(3), 371.CrossRef
19.
go back to reference Haybar, H., & Zayeri, Z. D. (2017). The value of using polymorphisms in anti-platelet therapy. Frontiers in Biology, 12(5), 349–356.CrossRef Haybar, H., & Zayeri, Z. D. (2017). The value of using polymorphisms in anti-platelet therapy. Frontiers in Biology, 12(5), 349–356.CrossRef
20.
go back to reference Zeiher, A. M. (2002). CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species. Circulation, 106(8), 981–986CrossRefPubMed Zeiher, A. M. (2002). CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species. Circulation, 106(8), 981–986CrossRefPubMed
21.
go back to reference Popa, M., Tahir, S., Elrod, J., Kim, S. H., Leuschner, F., Kessler, T., et al. (2018). Role of CD40 and ADAMTS13 in von Willebrand factor-mediated endothelial cell–platelet–monocyte interaction. Proceedings of the National Academy of Sciences of the United States of America, 115, E5556–E5565.CrossRefPubMedPubMedCentral Popa, M., Tahir, S., Elrod, J., Kim, S. H., Leuschner, F., Kessler, T., et al. (2018). Role of CD40 and ADAMTS13 in von Willebrand factor-mediated endothelial cell–platelet–monocyte interaction. Proceedings of the National Academy of Sciences of the United States of America, 115, E5556–E5565.CrossRefPubMedPubMedCentral
22.
go back to reference Wu, T., Peng, Y., Yan, S., Li, N., Chen, Y., & Lan, T. (2018). Andrographolide ameliorates atherosclerosis by suppressing pro-inflammation and ROS generation-mediated foam cell formation. Inflammation, 41(5), 1681–1689.CrossRefPubMed Wu, T., Peng, Y., Yan, S., Li, N., Chen, Y., & Lan, T. (2018). Andrographolide ameliorates atherosclerosis by suppressing pro-inflammation and ROS generation-mediated foam cell formation. Inflammation, 41(5), 1681–1689.CrossRefPubMed
23.
go back to reference Zheng, L., Wu, T., Zeng, C., Li, X., Li, X., Wen, D., et al. (2016). SAP deficiency mitigated atherosclerotic lesions in ApoE−/− mice. Atherosclerosis, 244, 179–187.CrossRefPubMed Zheng, L., Wu, T., Zeng, C., Li, X., Li, X., Wen, D., et al. (2016). SAP deficiency mitigated atherosclerotic lesions in ApoE−/− mice. Atherosclerosis, 244, 179–187.CrossRefPubMed
25.
go back to reference Horio, E., Kadomatsu, T., Miyata, K., Arai, Y., Hosokawa, K., Doi, Y., et al. (2014). Role of endothelial cell-derived Angptl2 in vascular inflammation leading to endothelial dysfunction and atherosclerosis progression significance. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(4), 790–800.CrossRefPubMed Horio, E., Kadomatsu, T., Miyata, K., Arai, Y., Hosokawa, K., Doi, Y., et al. (2014). Role of endothelial cell-derived Angptl2 in vascular inflammation leading to endothelial dysfunction and atherosclerosis progression significance. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(4), 790–800.CrossRefPubMed
26.
go back to reference Cui, X.-B., Luan, J.-N., Dong, K., Chen, S., Wang, Y., Watford, W. T., et al. (2018). RGC-32 (response gene to complement 32) deficiency protects endothelial cells from inflammation and attenuates atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(4), e36–e47.CrossRefPubMedPubMedCentral Cui, X.-B., Luan, J.-N., Dong, K., Chen, S., Wang, Y., Watford, W. T., et al. (2018). RGC-32 (response gene to complement 32) deficiency protects endothelial cells from inflammation and attenuates atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(4), e36–e47.CrossRefPubMedPubMedCentral
27.
go back to reference Gong, D.-M., Zhang, Y.-L., Chen, D.-Y., Hong, L.-J., Han, F., Liu, Q.-B., et al. (2018). Endothelial GPR124 exaggerates the pathogenesis of atherosclerosis by activating inflammation. Cellular Physiology and Biochemistry, 45(2), 547–557.CrossRefPubMed Gong, D.-M., Zhang, Y.-L., Chen, D.-Y., Hong, L.-J., Han, F., Liu, Q.-B., et al. (2018). Endothelial GPR124 exaggerates the pathogenesis of atherosclerosis by activating inflammation. Cellular Physiology and Biochemistry, 45(2), 547–557.CrossRefPubMed
28.
go back to reference Hernanz, R., Martinez-Revelles, S., Palacios, R., Martin, A., Cachofeiro, V., Aguado, A., et al. (2015). Toll-like receptor 4 contributes to vascular remodelling and endothelial dysfunction in angiotensin II-induced hypertension. British Journal of Pharmacology, 172(12), 3159–3176.CrossRefPubMedPubMedCentral Hernanz, R., Martinez-Revelles, S., Palacios, R., Martin, A., Cachofeiro, V., Aguado, A., et al. (2015). Toll-like receptor 4 contributes to vascular remodelling and endothelial dysfunction in angiotensin II-induced hypertension. British Journal of Pharmacology, 172(12), 3159–3176.CrossRefPubMedPubMedCentral
29.
go back to reference Varejckova, M., Gallardo-Vara, E., Vicen, M., Vitverova, B., Fikrova, P., Dolezelova, E., et al. (2017). Soluble endoglin modulates the pro-inflammatory mediators NF-κB and IL-6 in cultured human endothelial cells. Life Sciences, 175, 52–60.CrossRefPubMed Varejckova, M., Gallardo-Vara, E., Vicen, M., Vitverova, B., Fikrova, P., Dolezelova, E., et al. (2017). Soluble endoglin modulates the pro-inflammatory mediators NF-κB and IL-6 in cultured human endothelial cells. Life Sciences, 175, 52–60.CrossRefPubMed
30.
go back to reference Pawlak, K., Mysliwiec, M., & Pawlak, D. (2015). Endocan—The new endothelial activation marker independently associated with soluble endothelial adhesion molecules in uraemic patients with cardiovascular disease. Clinical Biochemistry, 48(6), 425–430.CrossRefPubMed Pawlak, K., Mysliwiec, M., & Pawlak, D. (2015). Endocan—The new endothelial activation marker independently associated with soluble endothelial adhesion molecules in uraemic patients with cardiovascular disease. Clinical Biochemistry, 48(6), 425–430.CrossRefPubMed
32.
go back to reference Taleb, A., Ahmad, K. A., Ihsan, A. U., Qu, J., Lin, N., Hezam, K., et al. (2018). Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomedicine & Pharmacotherapy, 102, 689–698.CrossRef Taleb, A., Ahmad, K. A., Ihsan, A. U., Qu, J., Lin, N., Hezam, K., et al. (2018). Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomedicine & Pharmacotherapy, 102, 689–698.CrossRef
33.
go back to reference Hu, M., Xing, C., & Song, L. (2017). Arsenite induces vascular endothelial cell dysfunction by activating IRE1a/XBP1s/HIF1a-dependent ANGII signaling. Toxicological Sciences, 160(2), 315–328.CrossRefPubMed Hu, M., Xing, C., & Song, L. (2017). Arsenite induces vascular endothelial cell dysfunction by activating IRE1a/XBP1s/HIF1a-dependent ANGII signaling. Toxicological Sciences, 160(2), 315–328.CrossRefPubMed
34.
go back to reference Huang, M., Wei, R., Wang, Y., Su, T., Li, P., & Chen, X. (2018). The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission. Redox Biology, 16, 303–313.CrossRefPubMedPubMedCentral Huang, M., Wei, R., Wang, Y., Su, T., Li, P., & Chen, X. (2018). The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission. Redox Biology, 16, 303–313.CrossRefPubMedPubMedCentral
35.
go back to reference Kamiński, T. W., Pawlak, K., Karbowska, M., Myśliwiec, M., & Pawlak, D. (2017). Indoxyl sulfate—The uremic toxin linking hemostatic system disturbances with the prevalence of cardiovascular disease in patients with chronic kidney disease. BMC Nephrology, 18(1), 35.CrossRefPubMedPubMedCentral Kamiński, T. W., Pawlak, K., Karbowska, M., Myśliwiec, M., & Pawlak, D. (2017). Indoxyl sulfate—The uremic toxin linking hemostatic system disturbances with the prevalence of cardiovascular disease in patients with chronic kidney disease. BMC Nephrology, 18(1), 35.CrossRefPubMedPubMedCentral
36.
go back to reference Chaisakul, J., Rusmili, M. R. A., Hodgson, W. C., Hatthachote, P., Suwan, K., Inchan, A., et al. (2017). A pharmacological examination of the cardiovascular effects of Malayan krait (Bungarus candidus) venoms. Toxins, 9(4), 122.CrossRefPubMedCentral Chaisakul, J., Rusmili, M. R. A., Hodgson, W. C., Hatthachote, P., Suwan, K., Inchan, A., et al. (2017). A pharmacological examination of the cardiovascular effects of Malayan krait (Bungarus candidus) venoms. Toxins, 9(4), 122.CrossRefPubMedCentral
37.
go back to reference Chuaiphichai, S., Starr, A., Nandi, M., Channon, K. M., & McNeill, E. (2016). Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension. Vascular Pharmacology, 77, 69–79.CrossRefPubMedPubMedCentral Chuaiphichai, S., Starr, A., Nandi, M., Channon, K. M., & McNeill, E. (2016). Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension. Vascular Pharmacology, 77, 69–79.CrossRefPubMedPubMedCentral
38.
go back to reference Lu, Q., Sakhatskyy, P., Grinnell, K., Newton, J., Ortiz, M., Wang, Y., et al. (2011). Cigarette smoke causes lung vascular barrier dysfunction via oxidative stress-mediated inhibition of RhoA and focal adhesion kinase. American Journal of Physiology-Lung Cellular and Molecular Physiology, 301(6), L847–L857.CrossRefPubMedPubMedCentral Lu, Q., Sakhatskyy, P., Grinnell, K., Newton, J., Ortiz, M., Wang, Y., et al. (2011). Cigarette smoke causes lung vascular barrier dysfunction via oxidative stress-mediated inhibition of RhoA and focal adhesion kinase. American Journal of Physiology-Lung Cellular and Molecular Physiology, 301(6), L847–L857.CrossRefPubMedPubMedCentral
39.
go back to reference Tsai, K. L., Hung, C. H., Chan, S. H., Hsieh, P. L., Ou, H. C., Cheng, Y. H., et al. (2018). Chlorogenic acid protects against oxLDL-induced oxidative damage and mitochondrial dysfunction by modulating SIRT1 in endothelial cells. Molecular Nutrition & Food Research, 62(11), 1700928.CrossRef Tsai, K. L., Hung, C. H., Chan, S. H., Hsieh, P. L., Ou, H. C., Cheng, Y. H., et al. (2018). Chlorogenic acid protects against oxLDL-induced oxidative damage and mitochondrial dysfunction by modulating SIRT1 in endothelial cells. Molecular Nutrition & Food Research, 62(11), 1700928.CrossRef
40.
go back to reference Tsai, K.-L., Hung, C.-H., Chan, S.-H., Shih, J.-Y., Cheng, Y.-H., Tsai, Y.-J., et al. (2016). Baicalein protects against oxLDL-caused oxidative stress and inflammation by modulation of AMPK-alpha. Oncotarget, 7(45), 72458.CrossRefPubMedPubMedCentral Tsai, K.-L., Hung, C.-H., Chan, S.-H., Shih, J.-Y., Cheng, Y.-H., Tsai, Y.-J., et al. (2016). Baicalein protects against oxLDL-caused oxidative stress and inflammation by modulation of AMPK-alpha. Oncotarget, 7(45), 72458.CrossRefPubMedPubMedCentral
41.
go back to reference Du Plooy, C. S., Mels, C. M. C., Huisman, H. W., & Kruger, R. (2017). The association of endothelin-1 with markers of oxidative stress in a biethnic South African cohort: The SABPA study. Hypertension Research, 40(2), 189.CrossRefPubMed Du Plooy, C. S., Mels, C. M. C., Huisman, H. W., & Kruger, R. (2017). The association of endothelin-1 with markers of oxidative stress in a biethnic South African cohort: The SABPA study. Hypertension Research, 40(2), 189.CrossRefPubMed
42.
go back to reference Cominacini, L., Pasini, A. F., Garbin, U., Pastorino, A., Rigoni, A., Nava, C., et al. (2003). The platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells. Journal of the American College of Cardiology, 41(3), 499–507.CrossRefPubMed Cominacini, L., Pasini, A. F., Garbin, U., Pastorino, A., Rigoni, A., Nava, C., et al. (2003). The platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells. Journal of the American College of Cardiology, 41(3), 499–507.CrossRefPubMed
43.
go back to reference Luo, W., Wang, Y., Yang, H., Dai, C., Hong, H., Li, J., et al. (2018). Heme oxygenase-1 ameliorates oxidative stress-induced endothelial senescence via regulating endothelial nitric oxide synthase activation and coupling. Aging, 10(7), 1722–1744.CrossRefPubMedPubMedCentral Luo, W., Wang, Y., Yang, H., Dai, C., Hong, H., Li, J., et al. (2018). Heme oxygenase-1 ameliorates oxidative stress-induced endothelial senescence via regulating endothelial nitric oxide synthase activation and coupling. Aging, 10(7), 1722–1744.CrossRefPubMedPubMedCentral
44.
go back to reference Heine, C. L., Kolesnik, B., Schmidt, R., Werner, E. R., Mayer, B., & Gorren, A. C. (2014). Interaction between neuronal nitric-oxide synthase and tetrahydrobiopterin revisited: Studies on the nature and mechanism of tight pterin binding. Biochemistry, 53(8), 1284–1295.CrossRefPubMed Heine, C. L., Kolesnik, B., Schmidt, R., Werner, E. R., Mayer, B., & Gorren, A. C. (2014). Interaction between neuronal nitric-oxide synthase and tetrahydrobiopterin revisited: Studies on the nature and mechanism of tight pterin binding. Biochemistry, 53(8), 1284–1295.CrossRefPubMed
45.
go back to reference Kuzuya, M., Ramos, M. A., Kanda, S., Koike, T., Asai, T., Maeda, K., et al. (2001). VEGF protects against oxidized LDL toxicity to endothelial cells by an intracellular glutathione-dependent mechanism through the KDR receptor. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(5), 765–770.CrossRefPubMed Kuzuya, M., Ramos, M. A., Kanda, S., Koike, T., Asai, T., Maeda, K., et al. (2001). VEGF protects against oxidized LDL toxicity to endothelial cells by an intracellular glutathione-dependent mechanism through the KDR receptor. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(5), 765–770.CrossRefPubMed
46.
go back to reference Minhajat, R., Nilasari, D., & Bakri, S. (2015). The role of endothelial progenitor cell in cardiovascular disease risk factors. Acta Medica Indonesiana, 47(4), 340–347.PubMed Minhajat, R., Nilasari, D., & Bakri, S. (2015). The role of endothelial progenitor cell in cardiovascular disease risk factors. Acta Medica Indonesiana, 47(4), 340–347.PubMed
47.
go back to reference Xu, J., Liu, X., Jiang, Y., Chu, L., Hao, H., Liua, Z., et al. (2008). MAPK/ERK signalling mediates VEGF-induced bone marrow stem cell differentiation into endothelial cell. Journal of Cellular and Molecular Medicine, 12(6a), 2395–2406.CrossRefPubMedPubMedCentral Xu, J., Liu, X., Jiang, Y., Chu, L., Hao, H., Liua, Z., et al. (2008). MAPK/ERK signalling mediates VEGF-induced bone marrow stem cell differentiation into endothelial cell. Journal of Cellular and Molecular Medicine, 12(6a), 2395–2406.CrossRefPubMedPubMedCentral
48.
go back to reference Wang, S., Miao, J., Qu, M., Yang, G.-Y., & Shen, L. (2017). Adiponectin modulates the function of endothelial progenitor cells via AMPK/eNOS signaling pathway. Biochemical and Biophysical Research Communications, 493(1), 64–70.CrossRefPubMed Wang, S., Miao, J., Qu, M., Yang, G.-Y., & Shen, L. (2017). Adiponectin modulates the function of endothelial progenitor cells via AMPK/eNOS signaling pathway. Biochemical and Biophysical Research Communications, 493(1), 64–70.CrossRefPubMed
49.
go back to reference Huynh, D. N., Bessi, V. L., Ménard, L., Piquereau, J., Proulx, C., Febbraio, M., et al. (2017). Adiponectin has a pivotal role in the cardioprotective effect of CP-3 (iv), a selective CD36 azapeptide ligand, after transient coronary artery occlusion in mice. The FASEB Journal, 32(2), 807–818.CrossRef Huynh, D. N., Bessi, V. L., Ménard, L., Piquereau, J., Proulx, C., Febbraio, M., et al. (2017). Adiponectin has a pivotal role in the cardioprotective effect of CP-3 (iv), a selective CD36 azapeptide ligand, after transient coronary artery occlusion in mice. The FASEB Journal, 32(2), 807–818.CrossRef
50.
go back to reference Kotla, S., & Rao, G. N. (2015). Reactive oxygen species (ROS) Mediate p300-dependent STAT1 protein interaction with peroxisome proliferator-activated receptor (PPAR)-γ in CD36 protein expression and foam cell formation. Journal of Biological Chemistry, 290(51), 30306–30320.CrossRefPubMedPubMedCentral Kotla, S., & Rao, G. N. (2015). Reactive oxygen species (ROS) Mediate p300-dependent STAT1 protein interaction with peroxisome proliferator-activated receptor (PPAR)-γ in CD36 protein expression and foam cell formation. Journal of Biological Chemistry, 290(51), 30306–30320.CrossRefPubMedPubMedCentral
52.
go back to reference Sun, H.-J., Xu, D.-Y., Sun, Y.-X., Xue, T., Zhang, C.-X., Zhang, Z.-X., et al. (2017). CO-releasing molecules-2 attenuates ox-LDL-induced injury in HUVECs by ameliorating mitochondrial function and inhibiting Wnt/β-catenin pathway. Biochemical and Biophysical Research Communications, 490(3), 629–635.CrossRefPubMed Sun, H.-J., Xu, D.-Y., Sun, Y.-X., Xue, T., Zhang, C.-X., Zhang, Z.-X., et al. (2017). CO-releasing molecules-2 attenuates ox-LDL-induced injury in HUVECs by ameliorating mitochondrial function and inhibiting Wnt/β-catenin pathway. Biochemical and Biophysical Research Communications, 490(3), 629–635.CrossRefPubMed
53.
go back to reference Zhang, G.-Q., Tao, Y.-K., Bai, Y.-P., Yan, S.-T., & Zhao, S.-P. (2018). Inhibitory effects of simvastatin on oxidized low-density lipoprotein-induced endoplasmic reticulum stress and apoptosis in vascular endothelial cells. Chinese Medical Journal, 131(8), 950.CrossRefPubMedPubMedCentral Zhang, G.-Q., Tao, Y.-K., Bai, Y.-P., Yan, S.-T., & Zhao, S.-P. (2018). Inhibitory effects of simvastatin on oxidized low-density lipoprotein-induced endoplasmic reticulum stress and apoptosis in vascular endothelial cells. Chinese Medical Journal, 131(8), 950.CrossRefPubMedPubMedCentral
55.
go back to reference Ceolotto, G., Giannella, A., Albiero, M., Kuppusamy, M., Radu, C., Simioni, P., et al. (2017). miR-30c-5p regulates macrophage-mediated inflammation and pro-atherosclerosis pathways. Cardiovascular Research, 113(13), 1627–1638.CrossRefPubMed Ceolotto, G., Giannella, A., Albiero, M., Kuppusamy, M., Radu, C., Simioni, P., et al. (2017). miR-30c-5p regulates macrophage-mediated inflammation and pro-atherosclerosis pathways. Cardiovascular Research, 113(13), 1627–1638.CrossRefPubMed
56.
go back to reference Yang, S., Mi, X., Chen, Y., Feng, C., Hou, Z., Hui, R., et al. (2018). MicroRNA-216a induces endothelial senescence and inflammation via Smad3/IκBα pathway. Journal of Cellular and Molecular Medicine, 22(5), 2739–2749.CrossRefPubMedPubMedCentral Yang, S., Mi, X., Chen, Y., Feng, C., Hou, Z., Hui, R., et al. (2018). MicroRNA-216a induces endothelial senescence and inflammation via Smad3/IκBα pathway. Journal of Cellular and Molecular Medicine, 22(5), 2739–2749.CrossRefPubMedPubMedCentral
57.
go back to reference Chen, T., Gao, F., Feng, S., Yang, T., & Chen, M. (2015). MicroRNA-370 inhibits the progression of non-small cell lung cancer by downregulating oncogene TRAF4. Oncology Reports, 34(1), 461–468.CrossRefPubMed Chen, T., Gao, F., Feng, S., Yang, T., & Chen, M. (2015). MicroRNA-370 inhibits the progression of non-small cell lung cancer by downregulating oncogene TRAF4. Oncology Reports, 34(1), 461–468.CrossRefPubMed
58.
go back to reference Tang, F., Yang, T.-L., Zhang, Z., Li, X.-G., Zhong, Q.-Q., Zhao, T.-T., et al. (2017). MicroRNA-21 suppresses ox-LDL-induced human aortic endothelial cells injuries in atherosclerosis through enhancement of autophagic flux: Involvement in promotion of lysosomal function. Experimental Cell Research, 359(2), 374–383.CrossRefPubMed Tang, F., Yang, T.-L., Zhang, Z., Li, X.-G., Zhong, Q.-Q., Zhao, T.-T., et al. (2017). MicroRNA-21 suppresses ox-LDL-induced human aortic endothelial cells injuries in atherosclerosis through enhancement of autophagic flux: Involvement in promotion of lysosomal function. Experimental Cell Research, 359(2), 374–383.CrossRefPubMed
60.
go back to reference Chen, Z., Wang, K., Huang, J., Zheng, G., Lv, Y., Luo, N., et al. (2018). Upregulated serum MiR-146b serves as a biomarker for acute ischemic stroke. Cellular Physiology and Biochemistry, 45(1), 397–405.CrossRefPubMed Chen, Z., Wang, K., Huang, J., Zheng, G., Lv, Y., Luo, N., et al. (2018). Upregulated serum MiR-146b serves as a biomarker for acute ischemic stroke. Cellular Physiology and Biochemistry, 45(1), 397–405.CrossRefPubMed
61.
go back to reference Li, C., Li, S., Zhang, F., Wu, M., Liang, H., Song, J., et al. (2018). Endothelial microparticles-mediated transfer of microRNA-19b promotes atherosclerosis via activating perivascular adipose tissue inflammation in apoE−/− mice. Biochemical and Biophysical Research Communications, 495(2), 1922–1929.CrossRefPubMed Li, C., Li, S., Zhang, F., Wu, M., Liang, H., Song, J., et al. (2018). Endothelial microparticles-mediated transfer of microRNA-19b promotes atherosclerosis via activating perivascular adipose tissue inflammation in apoE−/− mice. Biochemical and Biophysical Research Communications, 495(2), 1922–1929.CrossRefPubMed
62.
go back to reference Liu, H., Wu, H., Wang, W., Zhao, Z., Liu, X., & Wang, L. (2017). Regulation of miR-92a on vascular endothelial aging via mediating Nrf2-KEAP1-ARE signal pathway. European Review for Medical and Pharmacological Sciences, 21(11), 2734–2742.PubMed Liu, H., Wu, H., Wang, W., Zhao, Z., Liu, X., & Wang, L. (2017). Regulation of miR-92a on vascular endothelial aging via mediating Nrf2-KEAP1-ARE signal pathway. European Review for Medical and Pharmacological Sciences, 21(11), 2734–2742.PubMed
63.
go back to reference Liu, G., Li, Y., & Gao, X. (2016). microRNA-181a is upregulated in human atherosclerosis plaques and involves in the oxidative stress-induced endothelial cell dysfunction through direct targeting Bcl-2. European Review for Medical and Pharmacological Sciences, 20(14), 3092–3100.PubMed Liu, G., Li, Y., & Gao, X. (2016). microRNA-181a is upregulated in human atherosclerosis plaques and involves in the oxidative stress-induced endothelial cell dysfunction through direct targeting Bcl-2. European Review for Medical and Pharmacological Sciences, 20(14), 3092–3100.PubMed
64.
go back to reference Wang, L., Yuan, Y., Li, J., Ren, H., Cai, Q., Chen, X., et al. (2015). MicroRNA-1 aggravates cardiac oxidative stress by post-transcriptional modification of the antioxidant network. Cell Stress and Chaperones, 20(3), 411–420.CrossRefPubMedPubMedCentral Wang, L., Yuan, Y., Li, J., Ren, H., Cai, Q., Chen, X., et al. (2015). MicroRNA-1 aggravates cardiac oxidative stress by post-transcriptional modification of the antioxidant network. Cell Stress and Chaperones, 20(3), 411–420.CrossRefPubMedPubMedCentral
65.
go back to reference Tabuchi, T., Satoh, M., Itoh, T., & Nakamura, M. (2012). MicroRNA-34a regulates the longevity-associated protein SIRT1 in coronary artery disease: Effect of statins on SIRT1 and microRNA-34a expression. Clinical Science, 123(3), 161–171.CrossRefPubMed Tabuchi, T., Satoh, M., Itoh, T., & Nakamura, M. (2012). MicroRNA-34a regulates the longevity-associated protein SIRT1 in coronary artery disease: Effect of statins on SIRT1 and microRNA-34a expression. Clinical Science, 123(3), 161–171.CrossRefPubMed
66.
go back to reference Li, Y., Wang, K., Feng, Y., Fan, C., Wang, F., Yan, J., et al. (2014). Novel role of silent information regulator 1 in acute endothelial cell oxidative stress injury. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(11), 2246–2256.CrossRef Li, Y., Wang, K., Feng, Y., Fan, C., Wang, F., Yan, J., et al. (2014). Novel role of silent information regulator 1 in acute endothelial cell oxidative stress injury. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(11), 2246–2256.CrossRef
67.
go back to reference Guan, X., Wang, L., Liu, Z., Guo, X., Jiang, Y., Lu, Y., et al. (2016). miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. Journal of Molecular and Cellular Cardiology, 99, 207–217.CrossRefPubMed Guan, X., Wang, L., Liu, Z., Guo, X., Jiang, Y., Lu, Y., et al. (2016). miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. Journal of Molecular and Cellular Cardiology, 99, 207–217.CrossRefPubMed
68.
go back to reference Jensen, H. A., & Mehta, J. L. (2016). Endothelial cell dysfunction as a novel therapeutic target in atherosclerosis. Expert Review of Cardiovascular Therapy, 14(9), 1021–1033.CrossRefPubMed Jensen, H. A., & Mehta, J. L. (2016). Endothelial cell dysfunction as a novel therapeutic target in atherosclerosis. Expert Review of Cardiovascular Therapy, 14(9), 1021–1033.CrossRefPubMed
69.
go back to reference Niture, S. K., Khatri, R., & Jaiswal, A. K. (2014). Regulation of Nrf2—An update. Free Radical Biology and Medicine, 66, 36–44.CrossRefPubMed Niture, S. K., Khatri, R., & Jaiswal, A. K. (2014). Regulation of Nrf2—An update. Free Radical Biology and Medicine, 66, 36–44.CrossRefPubMed
70.
go back to reference Mao, H., Tao, T., Wang, X., Liu, M., Song, D., Liu, X., et al. (2018). Zedoarondiol attenuates endothelial cells injury induced by oxidized low-density lipoprotein via Nrf2 activation. Cellular Physiology and Biochemistry, 48(4), 1468–1479.CrossRefPubMed Mao, H., Tao, T., Wang, X., Liu, M., Song, D., Liu, X., et al. (2018). Zedoarondiol attenuates endothelial cells injury induced by oxidized low-density lipoprotein via Nrf2 activation. Cellular Physiology and Biochemistry, 48(4), 1468–1479.CrossRefPubMed
71.
go back to reference Lin, X.-P., Cui, H.-J., Yang, A.-L., Luo, J.-K., & Tang, T. (2018). Astragaloside IV improves vasodilatation function by regulating the PI3K/Akt/eNOS signaling pathway in rat aorta endothelial cells. Journal of Vascular Research, 55, 169–176.CrossRefPubMed Lin, X.-P., Cui, H.-J., Yang, A.-L., Luo, J.-K., & Tang, T. (2018). Astragaloside IV improves vasodilatation function by regulating the PI3K/Akt/eNOS signaling pathway in rat aorta endothelial cells. Journal of Vascular Research, 55, 169–176.CrossRefPubMed
72.
go back to reference Yang, L., Liu, J., & Qi, G. (2017). Mechanism of the effect of saikosaponin on atherosclerosis in vitro is based on the MAPK signaling pathway. Molecular Medicine Reports, 16(6), 8868–8874.CrossRefPubMedPubMedCentral Yang, L., Liu, J., & Qi, G. (2017). Mechanism of the effect of saikosaponin on atherosclerosis in vitro is based on the MAPK signaling pathway. Molecular Medicine Reports, 16(6), 8868–8874.CrossRefPubMedPubMedCentral
73.
go back to reference Kang, S. J., Lee, Y. J., Kang, S. G., Cho, S., Yoon, W., Lim, J. H., et al. (2017). Caspase-4 is essential for saikosaponin a-induced apoptosis acting upstream of caspase-2 and γ-H2AX in colon cancer cells. Oncotarget, 8(59), 100433.CrossRefPubMedPubMedCentral Kang, S. J., Lee, Y. J., Kang, S. G., Cho, S., Yoon, W., Lim, J. H., et al. (2017). Caspase-4 is essential for saikosaponin a-induced apoptosis acting upstream of caspase-2 and γ-H2AX in colon cancer cells. Oncotarget, 8(59), 100433.CrossRefPubMedPubMedCentral
74.
go back to reference Lou, L., Zhou, J., Liu, Y., Wei, Y., Zhao, J., Deng, J., et al. (2016). Chlorogenic acid induces apoptosis to inhibit inflammatory proliferation of IL-6-induced fibroblast-like synoviocytes through modulating the activation of JAK/STAT and NF-κB signaling pathways. Experimental and Therapeutic Medicine, 11(5), 2054–2060.CrossRefPubMedPubMedCentral Lou, L., Zhou, J., Liu, Y., Wei, Y., Zhao, J., Deng, J., et al. (2016). Chlorogenic acid induces apoptosis to inhibit inflammatory proliferation of IL-6-induced fibroblast-like synoviocytes through modulating the activation of JAK/STAT and NF-κB signaling pathways. Experimental and Therapeutic Medicine, 11(5), 2054–2060.CrossRefPubMedPubMedCentral
75.
go back to reference Huang, D.-Y., Li, H.-X., Zhang, L.-N., Lv, Y.-H., Cui, H.-D., & Zheng, J.-H. (2010). Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications, 400(1), 151–156.CrossRefPubMed Huang, D.-Y., Li, H.-X., Zhang, L.-N., Lv, Y.-H., Cui, H.-D., & Zheng, J.-H. (2010). Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications, 400(1), 151–156.CrossRefPubMed
76.
go back to reference Parmar, K. M., Nambudiri, V., Dai, G., Larman, H. B., Gimbrone, M. A., & García-Cardeña, G. (2005). Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. Journal of Biological Chemistry, 280(29), 26714–26719.CrossRefPubMed Parmar, K. M., Nambudiri, V., Dai, G., Larman, H. B., Gimbrone, M. A., & García-Cardeña, G. (2005). Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. Journal of Biological Chemistry, 280(29), 26714–26719.CrossRefPubMed
77.
go back to reference Lapchak, P. A. (2007). The phenylpropanoid micronutrient chlorogenic acid improves clinical rating scores in rabbits following multiple infarct ischemic strokes: Synergism with tissue plasminogen activator. Experimental Neurology, 205(2), 407–413.CrossRefPubMed Lapchak, P. A. (2007). The phenylpropanoid micronutrient chlorogenic acid improves clinical rating scores in rabbits following multiple infarct ischemic strokes: Synergism with tissue plasminogen activator. Experimental Neurology, 205(2), 407–413.CrossRefPubMed
78.
go back to reference Ju, W.-Z., Zhao, Y., Liu, F., Wu, T., Zhang, J., Liu, S.-J., et al. (2015). Clinical tolerability and pharmacokinetics of Erigerontis hydroxybenzene injection: Results of a randomized phase I study in healthy Chinese volunteers. Phytomedicine, 22(2), 319–325.CrossRefPubMed Ju, W.-Z., Zhao, Y., Liu, F., Wu, T., Zhang, J., Liu, S.-J., et al. (2015). Clinical tolerability and pharmacokinetics of Erigerontis hydroxybenzene injection: Results of a randomized phase I study in healthy Chinese volunteers. Phytomedicine, 22(2), 319–325.CrossRefPubMed
79.
go back to reference Xing, S.-S., Li, J., Chen, L., Yang, Y.-F., He, P.-L., Li, J., et al. (2018). Salidroside attenuates endothelial cellular senescence via decreasing the expression of inflammatory cytokines and increasing the expression of SIRT3. Mechanisms of Ageing and Development, 175, 1–6.CrossRefPubMed Xing, S.-S., Li, J., Chen, L., Yang, Y.-F., He, P.-L., Li, J., et al. (2018). Salidroside attenuates endothelial cellular senescence via decreasing the expression of inflammatory cytokines and increasing the expression of SIRT3. Mechanisms of Ageing and Development, 175, 1–6.CrossRefPubMed
80.
go back to reference Li, H., Sze, S., Tong, Y., & Ng, T. (2009). Production of Th1-and Th2-dependent cytokines induced by the Chinese medicine herb, Rhodiola algida, on human peripheral blood monocytes. Journal of Ethnopharmacology, 123(2), 257–266.CrossRefPubMed Li, H., Sze, S., Tong, Y., & Ng, T. (2009). Production of Th1-and Th2-dependent cytokines induced by the Chinese medicine herb, Rhodiola algida, on human peripheral blood monocytes. Journal of Ethnopharmacology, 123(2), 257–266.CrossRefPubMed
81.
go back to reference Wang, M., Jin, X., Ren, X., Zhu, Y., Liu, Z., & Gao, X. (2015). Comparative in vitro dissolution of two commercially available Er-Zhi-Wan herbal medicinal products. Indian Journal of Pharmaceutical Sciences, 77(4), 391.CrossRefPubMedPubMedCentral Wang, M., Jin, X., Ren, X., Zhu, Y., Liu, Z., & Gao, X. (2015). Comparative in vitro dissolution of two commercially available Er-Zhi-Wan herbal medicinal products. Indian Journal of Pharmaceutical Sciences, 77(4), 391.CrossRefPubMedPubMedCentral
82.
go back to reference Jing, C., Guo, M., Bao, X., Li, T., Lin, J., Lu, X., et al. (2017). Pitavastatin up-regulates enos production by suppressing mir-155 expression in lipopolysaccharide-stimulated human umbilical vein endothelial cells. Cardiovascular Therapeutics, 35(5), e12282.CrossRef Jing, C., Guo, M., Bao, X., Li, T., Lin, J., Lu, X., et al. (2017). Pitavastatin up-regulates enos production by suppressing mir-155 expression in lipopolysaccharide-stimulated human umbilical vein endothelial cells. Cardiovascular Therapeutics, 35(5), e12282.CrossRef
83.
go back to reference Tsujimoto, A., Takemura, G., Mikami, A., Aoyama, T., Ohno, T., Maruyama, R., et al. (2006). A therapeutic dose of the lipophilic statin pitavastatin enhances oxidant-induced apoptosis in human vascular smooth muscle cells. Journal of Cardiovascular Pharmacology, 48(4), 160–165.CrossRefPubMed Tsujimoto, A., Takemura, G., Mikami, A., Aoyama, T., Ohno, T., Maruyama, R., et al. (2006). A therapeutic dose of the lipophilic statin pitavastatin enhances oxidant-induced apoptosis in human vascular smooth muscle cells. Journal of Cardiovascular Pharmacology, 48(4), 160–165.CrossRefPubMed
84.
go back to reference Jiang, P., Mukthavavam, R., Chao, Y., Bharati, I. S., Fogal, V., Pastorino, S., et al. (2014). Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. Journal of Translational Medicine, 12(1), 13.CrossRefPubMedPubMedCentral Jiang, P., Mukthavavam, R., Chao, Y., Bharati, I. S., Fogal, V., Pastorino, S., et al. (2014). Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. Journal of Translational Medicine, 12(1), 13.CrossRefPubMedPubMedCentral
85.
go back to reference Zhang, J.-J., Zhang, Y.-Z., Peng, J.-J., Li, N.-S., Xiong, X.-M., Ma, Q.-L., et al. (2018). Atorvastatin exerts inhibitory effect on endothelial senescence in hyperlipidemic rats through a mechanism involving down-regulation of miR-21-5p/203a-3p. Mechanisms of Ageing and Development, 169, 10–18.CrossRefPubMed Zhang, J.-J., Zhang, Y.-Z., Peng, J.-J., Li, N.-S., Xiong, X.-M., Ma, Q.-L., et al. (2018). Atorvastatin exerts inhibitory effect on endothelial senescence in hyperlipidemic rats through a mechanism involving down-regulation of miR-21-5p/203a-3p. Mechanisms of Ageing and Development, 169, 10–18.CrossRefPubMed
86.
go back to reference Woodcock, J., & Khan, M. A. (2014). FDA analysis of atorvastatin products refutes report of methyl ester impurities. Therapeutic Innovation & Regulatory Science, 48(5), 554–556.CrossRef Woodcock, J., & Khan, M. A. (2014). FDA analysis of atorvastatin products refutes report of methyl ester impurities. Therapeutic Innovation & Regulatory Science, 48(5), 554–556.CrossRef
87.
go back to reference Alvarez, E., Rodiño-Janeiro, B. K., Ucieda-Somoza, R., & González-Juanatey, J. R. (2010). Pravastatin counteracts angiotensin II-induced upregulation and activation of NADPH oxidase at plasma membrane of human endothelial cells. Journal of Cardiovascular Pharmacology, 55(2), 203–212.CrossRefPubMed Alvarez, E., Rodiño-Janeiro, B. K., Ucieda-Somoza, R., & González-Juanatey, J. R. (2010). Pravastatin counteracts angiotensin II-induced upregulation and activation of NADPH oxidase at plasma membrane of human endothelial cells. Journal of Cardiovascular Pharmacology, 55(2), 203–212.CrossRefPubMed
88.
go back to reference Nemoto, S., Taguchi, K., Matsumoto, T., Kamata, K., & Kobayashi, T. (2012). Pravastatin normalizes ET-1-induced contraction in the aorta of type 2 diabetic OLETF rats by suppressing the KSR1/ERK complex. American Journal of Physiology-Heart and Circulatory Physiology, 303(7), H893–H902.CrossRefPubMed Nemoto, S., Taguchi, K., Matsumoto, T., Kamata, K., & Kobayashi, T. (2012). Pravastatin normalizes ET-1-induced contraction in the aorta of type 2 diabetic OLETF rats by suppressing the KSR1/ERK complex. American Journal of Physiology-Heart and Circulatory Physiology, 303(7), H893–H902.CrossRefPubMed
90.
go back to reference Li, R., Xiang, C., Zhang, X., Guo, A., & Ye, M. (2010). Chemical analysis of the Chinese herbal medicine turmeric (Curcuma longa L.). Current Pharmaceutical Analysis, 6(4), 256–268.CrossRef Li, R., Xiang, C., Zhang, X., Guo, A., & Ye, M. (2010). Chemical analysis of the Chinese herbal medicine turmeric (Curcuma longa L.). Current Pharmaceutical Analysis, 6(4), 256–268.CrossRef
91.
go back to reference Zhao, J., Yang, P., Li, F., Tao, L., Ding, H., Rui, Y., et al. (2012). Therapeutic effects of astragaloside IV on myocardial injuries: Multi-target identification and network analysis. PLoS ONE, 7(9), e44938.CrossRefPubMedPubMedCentral Zhao, J., Yang, P., Li, F., Tao, L., Ding, H., Rui, Y., et al. (2012). Therapeutic effects of astragaloside IV on myocardial injuries: Multi-target identification and network analysis. PLoS ONE, 7(9), e44938.CrossRefPubMedPubMedCentral
92.
go back to reference Singh, H., Shelat, A. A., Singh, A., Boulos, N., Williams, R. T., & Guy, R. K. (2014). A screening-based approach to circumvent tumor microenvironment-driven intrinsic resistance to BCR-ABL + inhibitors in Ph + acute lymphoblastic leukemia. Journal of Biomolecular Screening, 19(1), 158–167.CrossRefPubMed Singh, H., Shelat, A. A., Singh, A., Boulos, N., Williams, R. T., & Guy, R. K. (2014). A screening-based approach to circumvent tumor microenvironment-driven intrinsic resistance to BCR-ABL + inhibitors in Ph + acute lymphoblastic leukemia. Journal of Biomolecular Screening, 19(1), 158–167.CrossRefPubMed
93.
go back to reference Wang, J., Qi, H., Zhang, X., Si, W., Xu, F., Hou, T., et al. (2018). Saikosaponin D from Radix Bupleuri suppresses triple-negative breast cancer cell growth by targeting β-catenin signaling. Biomedicine & Pharmacotherapy, 108, 724–733.CrossRef Wang, J., Qi, H., Zhang, X., Si, W., Xu, F., Hou, T., et al. (2018). Saikosaponin D from Radix Bupleuri suppresses triple-negative breast cancer cell growth by targeting β-catenin signaling. Biomedicine & Pharmacotherapy, 108, 724–733.CrossRef
94.
go back to reference Pereira, C. A., Carneiro, F. S., Matsumoto, T., & Tostes, R. C. (2018). Bonus effects of anti-diabetic drugs: Possible beneficial effects on endothelial dysfunction, vascular inflammation and atherosclerosis. Basic & Clinical Pharmacology & Toxicology. https://doi.org/10.1111/bcpt.13054 CrossRef Pereira, C. A., Carneiro, F. S., Matsumoto, T., & Tostes, R. C. (2018). Bonus effects of anti-diabetic drugs: Possible beneficial effects on endothelial dysfunction, vascular inflammation and atherosclerosis. Basic & Clinical Pharmacology & Toxicology. https://​doi.​org/​10.​1111/​bcpt.​13054 CrossRef
95.
go back to reference Zhu, Z., Fu, C., Li, X., Song, Y., Li, C., Zou, M., et al. (2011). Prostaglandin E2 promotes endothelial differentiation from bone marrow-derived cells through AMPK activation. PLoS ONE, 6(8), e23554.CrossRefPubMedPubMedCentral Zhu, Z., Fu, C., Li, X., Song, Y., Li, C., Zou, M., et al. (2011). Prostaglandin E2 promotes endothelial differentiation from bone marrow-derived cells through AMPK activation. PLoS ONE, 6(8), e23554.CrossRefPubMedPubMedCentral
96.
go back to reference Alexandru, N., Andrei, E., Dragan, E., & Georgescu, A. (2015). Interaction of platelets with endothelial progenitor cells in the experimental atherosclerosis: Role of transplanted endothelial progenitor cells and platelet microparticles. Biology of the Cell, 107(6), 189–204.CrossRefPubMed Alexandru, N., Andrei, E., Dragan, E., & Georgescu, A. (2015). Interaction of platelets with endothelial progenitor cells in the experimental atherosclerosis: Role of transplanted endothelial progenitor cells and platelet microparticles. Biology of the Cell, 107(6), 189–204.CrossRefPubMed
97.
go back to reference Alexandru, N., Popov, D., Dragan, E., Andrei, E., & Georgescu, A. (2013). Circulating endothelial progenitor cell and platelet microparticle impact on platelet activation in hypertension associated with hypercholesterolemia. PLoS ONE, 8(1), e52058.CrossRefPubMedPubMedCentral Alexandru, N., Popov, D., Dragan, E., Andrei, E., & Georgescu, A. (2013). Circulating endothelial progenitor cell and platelet microparticle impact on platelet activation in hypertension associated with hypercholesterolemia. PLoS ONE, 8(1), e52058.CrossRefPubMedPubMedCentral
Metadata
Title
Endothelial Cells: From Dysfunction Mechanism to Pharmacological Effect in Cardiovascular Disease
Authors
Habib Haybar
Saeid Shahrabi
Hadi Rezaeeyan
Reza Shirzad
Najmaldin Saki
Publication date
01-02-2019
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 1/2019
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-018-9493-8

Other articles of this Issue 1/2019

Cardiovascular Toxicology 1/2019 Go to the issue