Skip to main content
Top
Published in: Cardiovascular Toxicology 4/2019

01-08-2019

SSeCKS/Gravin/AKAP12 Inhibits PKCζ-Mediated Reduction of ERK5 Transactivation to Prevent Endotoxin-Induced Vascular dysfunction

Authors: Zilin Li, Jing Hu, Jian Guo, Li Fan, Shaowei Wang, Ning Dou, Jian Zuo, Shiqiang Yu

Published in: Cardiovascular Toxicology | Issue 4/2019

Login to get access

Abstract

SSeCKS/Gravin/AKAP12 is a protein kinase C (PKC) substrate that inhibits the activity of PKC through binding with it. SSeCKS is expressed in vascular endothelial cells (ECs). The atypical PKC isoform ζ (PKCζ) is a pathologic mediator of endothelial dysfunction. However, the functional significance of SSeCKS/PKCζ dimerization in the vascular endothelium remains poorly understood. Given this background, we investigated the effects of SSeCKS on endothelial dysfunction and elucidated the possible mechanism involved. Vascular endothelial dysfunction and inflammatory changes were induced by treatment with bacterial endotoxin lipopolysaccharide (LPS, a vascular endothelial toxicity inducer). LPS can increase the level of SSeCKS. However, we also found that depletion of SSeCKS aggravated the LPS-induced vascular endothelial dysfunction, upregulated pro-inflammatory proteins and phosphorylation level of PKCζ, increased ROS formation, decreased extracellular-signal-regulated kinase 5 (ERK5) transcriptional activity, and reduced eNOS expression. Further examination revealed that depletion of SSeCKS increased PKCζ/ERK5 dimerization. These findings provide preliminary evidence that the expression of SSeCKS induced by LPS, as a negative feedback mechanism, has the potential to improve endothelium-dependent relaxation in vascular disease conditions by inhibiting PKCζ-mediated reduction of ERK5 transactivation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lin, X., Nelson, P., & Gelman, I. H. (2000). SSeCKS, a major protein kinase C substrate with tumor suppressor activity, regulates G(1)-->S progression by controlling the expression and cellular compartmentalization of cyclin D. Molecular and Cellular Biology, 20, 7259–7272.CrossRefPubMedPubMedCentral Lin, X., Nelson, P., & Gelman, I. H. (2000). SSeCKS, a major protein kinase C substrate with tumor suppressor activity, regulates G(1)-->S progression by controlling the expression and cellular compartmentalization of cyclin D. Molecular and Cellular Biology, 20, 7259–7272.CrossRefPubMedPubMedCentral
2.
go back to reference Guo, L. W., Gao, L., Rothschild, J., Su, B., & Gelman, I. H. (2011). Control of protein kinase C activity, phorbol ester-induced cytoskeletal remodeling, and cell survival signals by the scaffolding protein SSeCKS/GRAVIN/AKAP12. Journal of Biological Chemistry, 286, 38356–38366.CrossRefPubMed Guo, L. W., Gao, L., Rothschild, J., Su, B., & Gelman, I. H. (2011). Control of protein kinase C activity, phorbol ester-induced cytoskeletal remodeling, and cell survival signals by the scaffolding protein SSeCKS/GRAVIN/AKAP12. Journal of Biological Chemistry, 286, 38356–38366.CrossRefPubMed
3.
go back to reference Weissmuller, T., Glover, L. E., Fennimore, B., Curtis, V. F., MacManus, C. F., Ehrentraut, S. F., et al. (2014). HIF-dependent regulation of AKAP12 (gravin) in the control of human vascular endothelial function. FASEB Journal, 28, 256–264.CrossRefPubMedPubMedCentral Weissmuller, T., Glover, L. E., Fennimore, B., Curtis, V. F., MacManus, C. F., Ehrentraut, S. F., et al. (2014). HIF-dependent regulation of AKAP12 (gravin) in the control of human vascular endothelial function. FASEB Journal, 28, 256–264.CrossRefPubMedPubMedCentral
4.
go back to reference Yan, M., Zhao, J., Zhu, S., Shao, X., Zhang, L., Gao, H., et al. (2014). Expression of SRC suppressed C kinase substrate in rat neural tissues during inflammation. Neurochemical Research, 39, 748–757.CrossRefPubMed Yan, M., Zhao, J., Zhu, S., Shao, X., Zhang, L., Gao, H., et al. (2014). Expression of SRC suppressed C kinase substrate in rat neural tissues during inflammation. Neurochemical Research, 39, 748–757.CrossRefPubMed
5.
go back to reference Cheng, C., Liu, H., Ge, H., Qian, J., Qin, J., Sun, L., et al. (2007). Lipopolysaccharide induces expression of SSeCKS in rat lung microvascular endothelial cell. Molecular and Cellular Biochemistry, 305, 1–8.CrossRefPubMed Cheng, C., Liu, H., Ge, H., Qian, J., Qin, J., Sun, L., et al. (2007). Lipopolysaccharide induces expression of SSeCKS in rat lung microvascular endothelial cell. Molecular and Cellular Biochemistry, 305, 1–8.CrossRefPubMed
6.
go back to reference Yang, Z., Breider, M. A., Carroll, R. C., Miller, M. S., & Bochsler, P. N. (1996). Soluble CD14 and lipopolysaccharide-binding protein from bovine serum enable bacterial lipopolysaccharide-mediated cytotoxicity and activation of bovine vascular endothelial cells in vitro. Journal of Leukocyte Biology, 59, 241–247.CrossRefPubMed Yang, Z., Breider, M. A., Carroll, R. C., Miller, M. S., & Bochsler, P. N. (1996). Soluble CD14 and lipopolysaccharide-binding protein from bovine serum enable bacterial lipopolysaccharide-mediated cytotoxicity and activation of bovine vascular endothelial cells in vitro. Journal of Leukocyte Biology, 59, 241–247.CrossRefPubMed
7.
go back to reference Akakura, S., Nochajski, P., Gao, L., Sotomayor, P., Matsui, S., & Gelman, I. H. (2010). Rb-dependent cellular senescence, multinucleation and susceptibility to oncogenic transformation through PKC scaffolding by SSeCKS/AKAP12. Cell Cycle, 9, 4656–4665.CrossRefPubMedPubMedCentral Akakura, S., Nochajski, P., Gao, L., Sotomayor, P., Matsui, S., & Gelman, I. H. (2010). Rb-dependent cellular senescence, multinucleation and susceptibility to oncogenic transformation through PKC scaffolding by SSeCKS/AKAP12. Cell Cycle, 9, 4656–4665.CrossRefPubMedPubMedCentral
8.
go back to reference Song, H. B., Jun, H. O., Kim, J. H., Yu, Y. S., Kim, K. W., & Kim, J. H. (2014). Suppression of protein kinase C-zeta attenuates vascular leakage via prevention of tight junction protein decrease in diabetic retinopathy. Biochemical and Biophysical Research Communications, 444, 63–68.CrossRefPubMed Song, H. B., Jun, H. O., Kim, J. H., Yu, Y. S., Kim, K. W., & Kim, J. H. (2014). Suppression of protein kinase C-zeta attenuates vascular leakage via prevention of tight junction protein decrease in diabetic retinopathy. Biochemical and Biophysical Research Communications, 444, 63–68.CrossRefPubMed
9.
go back to reference Li, Z. L., Liu, J. C., Liu, S. B., Li, X. Q., Yi, D. H., & Zhao, M. G. (2012). Improvement of vascular function by acute and chronic treatment with the GPR30 agonist G1 in experimental diabetes mellitus. PLoS ONE, 7, e38787.CrossRefPubMedPubMedCentral Li, Z. L., Liu, J. C., Liu, S. B., Li, X. Q., Yi, D. H., & Zhao, M. G. (2012). Improvement of vascular function by acute and chronic treatment with the GPR30 agonist G1 in experimental diabetes mellitus. PLoS ONE, 7, e38787.CrossRefPubMedPubMedCentral
10.
go back to reference Hecquet, C. M., Ahmmed, G. U., & Malik, A. B. (2010). TRPM2 channel regulates endothelial barrier function. Advances in Experimental Medicine and Biology, 661, 155–167.CrossRefPubMed Hecquet, C. M., Ahmmed, G. U., & Malik, A. B. (2010). TRPM2 channel regulates endothelial barrier function. Advances in Experimental Medicine and Biology, 661, 155–167.CrossRefPubMed
11.
go back to reference Sturza, A., Leisegang, M. S., Babelova, A., Schroder, K., Benkhoff, S., Loot, A. E., et al. (2013). Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta. Hypertension, 62, 140–146.CrossRefPubMed Sturza, A., Leisegang, M. S., Babelova, A., Schroder, K., Benkhoff, S., Loot, A. E., et al. (2013). Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta. Hypertension, 62, 140–146.CrossRefPubMed
12.
go back to reference Lund, D. D., Brooks, R. M., Faraci, F. M., & Heistad, D. D. (2007). Role of angiotensin II in endothelial dysfunction induced by lipopolysaccharide in mice. American Journal of Physiology Heart Circulatory Physiology, 293, H3726–H3731.CrossRefPubMed Lund, D. D., Brooks, R. M., Faraci, F. M., & Heistad, D. D. (2007). Role of angiotensin II in endothelial dysfunction induced by lipopolysaccharide in mice. American Journal of Physiology Heart Circulatory Physiology, 293, H3726–H3731.CrossRefPubMed
13.
go back to reference Witzenbichler, B., Westermann, D., Knueppel, S., Schultheiss, H. P., & Tschope, C. (2005). Protective role of angiopoietin-1 in endotoxic shock. Circulation, 111, 97–105.CrossRefPubMed Witzenbichler, B., Westermann, D., Knueppel, S., Schultheiss, H. P., & Tschope, C. (2005). Protective role of angiopoietin-1 in endotoxic shock. Circulation, 111, 97–105.CrossRefPubMed
14.
go back to reference Lu, J. L., Schmiege, L. M. 3rd, Kuo, L., & Liao, J. C. (1996). Downregulation of endothelial constitutive nitric oxide synthase expression by lipopolysaccharide. Biochemical and Biophysical Research Communications, 225, 1–5.CrossRefPubMed Lu, J. L., Schmiege, L. M. 3rd, Kuo, L., & Liao, J. C. (1996). Downregulation of endothelial constitutive nitric oxide synthase expression by lipopolysaccharide. Biochemical and Biophysical Research Communications, 225, 1–5.CrossRefPubMed
15.
go back to reference Yazji, I., Sodhi, C. P., Lee, E. K., Good, M., Egan, C. E., Afrazi, A., et al. (2013). Endothelial TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via eNOS-NO-nitrite signaling. Proceedings of the National Academy of Sciences USA, 110, 9451–9456.CrossRef Yazji, I., Sodhi, C. P., Lee, E. K., Good, M., Egan, C. E., Afrazi, A., et al. (2013). Endothelial TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via eNOS-NO-nitrite signaling. Proceedings of the National Academy of Sciences USA, 110, 9451–9456.CrossRef
16.
go back to reference Jonigk, D., Al-Omari, M., Maegel, L., Muller, M., Izykowski, N., Hong, J., et al. (2013). Anti-inflammatory and immunomodulatory properties of alpha1-antitrypsin without inhibition of elastase. Proceedings of the National Academy of Sciences USA, 110, 15007–15012.CrossRef Jonigk, D., Al-Omari, M., Maegel, L., Muller, M., Izykowski, N., Hong, J., et al. (2013). Anti-inflammatory and immunomodulatory properties of alpha1-antitrypsin without inhibition of elastase. Proceedings of the National Academy of Sciences USA, 110, 15007–15012.CrossRef
17.
go back to reference Westerterp, M., Berbee, J. F., Pires, N. M., van Mierlo, G. J., Kleemann, R., Romijn, J. A., et al. (2007). Apolipoprotein C-I is crucially involved in lipopolysaccharide-induced atherosclerosis development in apolipoprotein E-knockout mice. Circulation, 116, 2173–2181.CrossRefPubMed Westerterp, M., Berbee, J. F., Pires, N. M., van Mierlo, G. J., Kleemann, R., Romijn, J. A., et al. (2007). Apolipoprotein C-I is crucially involved in lipopolysaccharide-induced atherosclerosis development in apolipoprotein E-knockout mice. Circulation, 116, 2173–2181.CrossRefPubMed
18.
go back to reference Liang, C. F., Liu, J. T., Wang, Y., Xu, A., & Vanhoutte, P. M. (2013). Toll-like receptor 4 mutation protects obese mice against endothelial dysfunction by decreasing NADPH oxidase isoforms 1 and 4. Arteriosclerosis Thrombosis and Vascular Biology, 33, 777–784.CrossRef Liang, C. F., Liu, J. T., Wang, Y., Xu, A., & Vanhoutte, P. M. (2013). Toll-like receptor 4 mutation protects obese mice against endothelial dysfunction by decreasing NADPH oxidase isoforms 1 and 4. Arteriosclerosis Thrombosis and Vascular Biology, 33, 777–784.CrossRef
20.
go back to reference Park, J. H., Jeong, Y. J., Won, H. K., Choi, S. Y., Park, J. H., & Oh, S. M. (2014). Activation of TOPK by lipopolysaccharide promotes induction of inducible nitric oxide synthase through NF-kappaB activity in leukemia cells. Cellular Signalling, 26, 849–856.CrossRefPubMed Park, J. H., Jeong, Y. J., Won, H. K., Choi, S. Y., Park, J. H., & Oh, S. M. (2014). Activation of TOPK by lipopolysaccharide promotes induction of inducible nitric oxide synthase through NF-kappaB activity in leukemia cells. Cellular Signalling, 26, 849–856.CrossRefPubMed
21.
go back to reference Capiralla, H., Vingtdeux, V., Venkatesh, J., Dreses-Werringloer, U., Zhao, H., Davies, P., et al. (2012). Identification of potent small-molecule inhibitors of STAT3 with anti-inflammatory properties in RAW 264.7 macrophages. FEBS Journal, 279, 3791–3799.CrossRefPubMed Capiralla, H., Vingtdeux, V., Venkatesh, J., Dreses-Werringloer, U., Zhao, H., Davies, P., et al. (2012). Identification of potent small-molecule inhibitors of STAT3 with anti-inflammatory properties in RAW 264.7 macrophages. FEBS Journal, 279, 3791–3799.CrossRefPubMed
22.
go back to reference Nigro, P., Abe, J., Woo, C. H., Satoh, K., McClain, C., O’Dell, M. R., et al. (2010). PKCzeta decreases eNOS protein stability via inhibitory phosphorylation of ERK5. Blood, 116, 1971–1979.CrossRefPubMedPubMedCentral Nigro, P., Abe, J., Woo, C. H., Satoh, K., McClain, C., O’Dell, M. R., et al. (2010). PKCzeta decreases eNOS protein stability via inhibitory phosphorylation of ERK5. Blood, 116, 1971–1979.CrossRefPubMedPubMedCentral
23.
go back to reference Nithianandarajah-Jones, G. N., Wilm, B., Goldring, C. E., Muller, J., & Cross, M. J. (2012). ERK5: structure, regulation and function. Cellular Signalling, 24, 2187–2196.CrossRefPubMed Nithianandarajah-Jones, G. N., Wilm, B., Goldring, C. E., Muller, J., & Cross, M. J. (2012). ERK5: structure, regulation and function. Cellular Signalling, 24, 2187–2196.CrossRefPubMed
24.
go back to reference Dong, F., Gutkind, J. S., & Larner, A. C. (2001). Granulocyte colony-stimulating factor induces ERK5 activation, which is differentially regulated by protein-tyrosine kinases and protein kinase C. Regulation of cell proliferation and survival. Journal of Biological Chemistry, 276, 10811–10816.CrossRefPubMed Dong, F., Gutkind, J. S., & Larner, A. C. (2001). Granulocyte colony-stimulating factor induces ERK5 activation, which is differentially regulated by protein-tyrosine kinases and protein kinase C. Regulation of cell proliferation and survival. Journal of Biological Chemistry, 276, 10811–10816.CrossRefPubMed
25.
go back to reference Sohn, S. J., Sarvis, B. K., Cado, D., & Winoto, A. (2002). ERK5 MAPK regulates embryonic angiogenesis and acts as a hypoxia-sensitive repressor of vascular endothelial growth factor expression. Journal of Biological Chemistry, 277, 43344–43351.CrossRefPubMed Sohn, S. J., Sarvis, B. K., Cado, D., & Winoto, A. (2002). ERK5 MAPK regulates embryonic angiogenesis and acts as a hypoxia-sensitive repressor of vascular endothelial growth factor expression. Journal of Biological Chemistry, 277, 43344–43351.CrossRefPubMed
26.
go back to reference Regan, C. P., Li, W., Boucher, D. M., Spatz, S., Su, M. S., & Kuida, K. (2002). Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proceedings of the National Academy of Sciences USA, 99, 9248–9253.CrossRef Regan, C. P., Li, W., Boucher, D. M., Spatz, S., Su, M. S., & Kuida, K. (2002). Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proceedings of the National Academy of Sciences USA, 99, 9248–9253.CrossRef
27.
go back to reference Parmar, K. M., Larman, H. B., Dai, G., Zhang, Y., Wang, E. T., Moorthy, S. N., et al. (2006). Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. Journal of Clinical Investigation, 116, 49–58.CrossRefPubMed Parmar, K. M., Larman, H. B., Dai, G., Zhang, Y., Wang, E. T., Moorthy, S. N., et al. (2006). Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. Journal of Clinical Investigation, 116, 49–58.CrossRefPubMed
28.
go back to reference Dekker, R. J., van Soest, S., Fontijn, R. D., Salamanca, S., de Groot, P. G., VanBavel, E., et al. (2002). Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood, 100, 1689–1698.CrossRefPubMed Dekker, R. J., van Soest, S., Fontijn, R. D., Salamanca, S., de Groot, P. G., VanBavel, E., et al. (2002). Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood, 100, 1689–1698.CrossRefPubMed
29.
go back to reference SenBanerjee, S., Lin, Z., Atkins, G. B., Greif, D. M., Rao, R. M., Kumar, A., et al. (2004). KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. Journal of Experimental Medicine, 199, 1305–1315.CrossRefPubMed SenBanerjee, S., Lin, Z., Atkins, G. B., Greif, D. M., Rao, R. M., Kumar, A., et al. (2004). KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. Journal of Experimental Medicine, 199, 1305–1315.CrossRefPubMed
30.
go back to reference Wu, K., Tian, S., Zhou, H., & Wu, Y. (2013). Statins protect human endothelial cells from TNF-induced inflammation via ERK5 activation. Biochemical Pharmacology, 85, 1753–1760.CrossRefPubMed Wu, K., Tian, S., Zhou, H., & Wu, Y. (2013). Statins protect human endothelial cells from TNF-induced inflammation via ERK5 activation. Biochemical Pharmacology, 85, 1753–1760.CrossRefPubMed
31.
go back to reference Chen, L., Liu, J. C., Zhang, X. N., Guo, Y. Y., Xu, Z. H., Cao, W., et al. (2008). Down-regulation of NR2B receptors partially contributes to analgesic effects of Gentiopicroside in persistent inflammatory pain. Neuropharmacology, 54, 1175–1181.CrossRefPubMed Chen, L., Liu, J. C., Zhang, X. N., Guo, Y. Y., Xu, Z. H., Cao, W., et al. (2008). Down-regulation of NR2B receptors partially contributes to analgesic effects of Gentiopicroside in persistent inflammatory pain. Neuropharmacology, 54, 1175–1181.CrossRefPubMed
32.
go back to reference Reinhart-King, C. A., Fujiwara, K., & Berk, B. C. (2008). Physiologic stress-mediated signaling in the endothelium. Methods in Enzymology, 443, 25–44.CrossRefPubMed Reinhart-King, C. A., Fujiwara, K., & Berk, B. C. (2008). Physiologic stress-mediated signaling in the endothelium. Methods in Enzymology, 443, 25–44.CrossRefPubMed
33.
go back to reference Bagi, Z., Frangos, J. A., Yeh, J. C., White, C. R., Kaley, G., & Koller, A. (2005). PECAM-1 mediates NO-dependent dilation of arterioles to high temporal gradients of shear stress. Arteriosclerosis Thrombosis and Vascular Biology, 25, 1590–1595.CrossRef Bagi, Z., Frangos, J. A., Yeh, J. C., White, C. R., Kaley, G., & Koller, A. (2005). PECAM-1 mediates NO-dependent dilation of arterioles to high temporal gradients of shear stress. Arteriosclerosis Thrombosis and Vascular Biology, 25, 1590–1595.CrossRef
34.
go back to reference Kumagai, R., Lu, X., & Kassab, G. S. (2009). Role of glycocalyx in flow-induced production of nitric oxide and reactive oxygen species. Free Radical Biology and Medicine, 47, 600–607.CrossRefPubMed Kumagai, R., Lu, X., & Kassab, G. S. (2009). Role of glycocalyx in flow-induced production of nitric oxide and reactive oxygen species. Free Radical Biology and Medicine, 47, 600–607.CrossRefPubMed
35.
go back to reference Hou, S., Ding, H., Lv, Q., Yin, X., Song, J., Landen, N. X., et al. (2014). Therapeutic effect of intravenous infusion of perfluorocarbon emulsion on LPS-induced acute lung injury in rats. PLoS ONE, 9, e87826.CrossRefPubMedPubMedCentral Hou, S., Ding, H., Lv, Q., Yin, X., Song, J., Landen, N. X., et al. (2014). Therapeutic effect of intravenous infusion of perfluorocarbon emulsion on LPS-induced acute lung injury in rats. PLoS ONE, 9, e87826.CrossRefPubMedPubMedCentral
36.
go back to reference Yang, N., Liu, Y. Y., Pan, C. S., Sun, K., Wei, X. H., Mao, X. W., et al. (2014). Pre-treatment with andrographolide pills attenuates lipopolysaccharide-induced pulmonary microcirculatory disturbance and acute lung injury in rats. Microcirculation, 21, 703–716CrossRef Yang, N., Liu, Y. Y., Pan, C. S., Sun, K., Wei, X. H., Mao, X. W., et al. (2014). Pre-treatment with andrographolide pills attenuates lipopolysaccharide-induced pulmonary microcirculatory disturbance and acute lung injury in rats. Microcirculation, 21, 703–716CrossRef
37.
go back to reference Lee, K. S., Kim, J., Kwak, S. N., Lee, K. S., Lee, D. K., Ha, K. S., et al. (2014). Functional role of NF-kappaB in expression of human endothelial nitric oxide synthase. Biochemical and Biophysical Research Communications, 448, 101–107.CrossRefPubMed Lee, K. S., Kim, J., Kwak, S. N., Lee, K. S., Lee, D. K., Ha, K. S., et al. (2014). Functional role of NF-kappaB in expression of human endothelial nitric oxide synthase. Biochemical and Biophysical Research Communications, 448, 101–107.CrossRefPubMed
38.
go back to reference Woo, C. H., Shishido, T., McClain, C., Lim, J. H., Li, J. D., Yang, J., et al. (2008). Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced antiinflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circulation Research, 102, 538–545.CrossRefPubMed Woo, C. H., Shishido, T., McClain, C., Lim, J. H., Li, J. D., Yang, J., et al. (2008). Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced antiinflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circulation Research, 102, 538–545.CrossRefPubMed
39.
go back to reference Surapisitchat, J., Hoefen, R. J., Pi, X., Yoshizumi, M., Yan, C., & Berk, B. C. (2001). Fluid shear stress inhibits TNF-alpha activation of JNK but not ERK1/2 or p38 in human umbilical vein endothelial cells: Inhibitory crosstalk among MAPK family members. Proceedings of the National Academy of Sciences USA, 98, 6476–6481.CrossRef Surapisitchat, J., Hoefen, R. J., Pi, X., Yoshizumi, M., Yan, C., & Berk, B. C. (2001). Fluid shear stress inhibits TNF-alpha activation of JNK but not ERK1/2 or p38 in human umbilical vein endothelial cells: Inhibitory crosstalk among MAPK family members. Proceedings of the National Academy of Sciences USA, 98, 6476–6481.CrossRef
40.
go back to reference Collins, A. R., Meehan, W. P., Kintscher, U., Jackson, S., Wakino, S., Noh, G., et al. (2001). Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arteriosclerosis Thrombosis and Vascular Biology, 21, 365–371.CrossRef Collins, A. R., Meehan, W. P., Kintscher, U., Jackson, S., Wakino, S., Noh, G., et al. (2001). Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arteriosclerosis Thrombosis and Vascular Biology, 21, 365–371.CrossRef
41.
go back to reference Akaike, M., Che, W., Marmarosh, N. L., Ohta, S., Osawa, M., Ding, B., et al. (2004). The hinge-helix 1 region of peroxisome proliferator-activated receptor gamma1 (PPARgamma1) mediates interaction with extracellular signal-regulated kinase 5 and PPARgamma1 transcriptional activation: involvement in flow-induced PPARgamma activation in endothelial cells. Molecular and Cellular Biology, 24, 8691–8704.CrossRefPubMedPubMedCentral Akaike, M., Che, W., Marmarosh, N. L., Ohta, S., Osawa, M., Ding, B., et al. (2004). The hinge-helix 1 region of peroxisome proliferator-activated receptor gamma1 (PPARgamma1) mediates interaction with extracellular signal-regulated kinase 5 and PPARgamma1 transcriptional activation: involvement in flow-induced PPARgamma activation in endothelial cells. Molecular and Cellular Biology, 24, 8691–8704.CrossRefPubMedPubMedCentral
42.
go back to reference Leverence, J. T., Medhora, M., Konduri, G. G., & Sampath, V. (2011). Lipopolysaccharide-induced cytokine expression in alveolar epithelial cells: role of PKCzeta-mediated p47phox phosphorylation. Chemico Biological Interactions, 189, 72–81.CrossRefPubMed Leverence, J. T., Medhora, M., Konduri, G. G., & Sampath, V. (2011). Lipopolysaccharide-induced cytokine expression in alveolar epithelial cells: role of PKCzeta-mediated p47phox phosphorylation. Chemico Biological Interactions, 189, 72–81.CrossRefPubMed
Metadata
Title
SSeCKS/Gravin/AKAP12 Inhibits PKCζ-Mediated Reduction of ERK5 Transactivation to Prevent Endotoxin-Induced Vascular dysfunction
Authors
Zilin Li
Jing Hu
Jian Guo
Li Fan
Shaowei Wang
Ning Dou
Jian Zuo
Shiqiang Yu
Publication date
01-08-2019
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 4/2019
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-018-09502-9

Other articles of this Issue 4/2019

Cardiovascular Toxicology 4/2019 Go to the issue