Skip to main content
Top
Published in: Cardiovascular Toxicology 1/2018

01-02-2018

Exercise and Doxorubicin Treatment Modulate Cardiac Mitochondrial Quality Control Signaling

Authors: I. Marques-Aleixo, E. Santos-Alves, J. R. Torrella, P. J. Oliveira, J. Magalhães, A. Ascensão

Published in: Cardiovascular Toxicology | Issue 1/2018

Login to get access

Abstract

The cross-tolerance effect of exercise against heart mitochondrial-mediated quality control, remodeling and death-related mechanisms associated with sub-chronic Doxorubicin (DOX) treatment is yet unknown. We therefore analyzed the effects of two distinct chronic exercise models (endurance treadmill training—TM and voluntary free wheel activity—FW) performed during the course of the sub-chronic DOX treatment on mitochondrial susceptibility to permeability transition pore (mPTP), apoptotic and autophagic signaling and mitochondrial dynamics. Male Sprague–Dawley rats were divided into six groups (n = 6 per group): saline sedentary (SAL + SED), SAL + TM (12-weeks treadmill), SAL + FW (12-weeks voluntary free-wheel), DOX + SED [7-weeks sub-chronic DOX treatment (2 mg kg−1 week−1)], DOX + TM and DOX + FW. Apoptotic signaling and mPTP regulation were followed by measuring caspase 3, 8 and 9 activities, Bax, Bcl2, CypD, ANT, and cophilin expression. Mitochondrial dynamics (Mfn1, Mfn2, OPA1 and DRP1) and auto(mito)phagy (LC3, Beclin1, Pink1, Parkin and p62)-related proteins were semi-quantified. DOX treatment results in augmented mPTP susceptibility and apoptotic signaling (caspases 3, 8 and 9 and Bax/Bcl2 ratio). Moreover, DOX decreased the expression of fusion-related proteins (Mfn1, Mfn2, OPA1), increased DRP1 and the activation of auto(mito)phagy signaling. TM and FW prevented DOX-increased mPTP susceptibility and apoptotic signaling, alterations in mitochondrial dynamics and inhibits DOX-induced increases in auto(mito)phagy signaling. Collectively, our results suggest that both used chronic exercise models performed before and during the course of sub-chronic DOX treatment limit cardiac mitochondrial-driven apoptotic signaling and regulate alterations in mitochondrial dynamics and auto(mito)phagy in DOX-treated animals.
Literature
1.
go back to reference Andreyev, A. Y., Fahy, B., & Fiskum, G. (1998). Cytochrome c release from brain mitochondria is independent of the mitochondrial permeability transition. FEBS Letters, 439, 373–376.CrossRefPubMed Andreyev, A. Y., Fahy, B., & Fiskum, G. (1998). Cytochrome c release from brain mitochondria is independent of the mitochondrial permeability transition. FEBS Letters, 439, 373–376.CrossRefPubMed
2.
go back to reference Ascensao, A., Ferreira, R., & Magalhaes, J. (2007). Exercise-induced cardioprotection–biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. International Journal of Cardiology, 117, 16–30.CrossRefPubMed Ascensao, A., Ferreira, R., & Magalhaes, J. (2007). Exercise-induced cardioprotection–biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. International Journal of Cardiology, 117, 16–30.CrossRefPubMed
3.
go back to reference Ascensao, A., Ferreira, R., Oliveira, P. J., & Magalhaes, J. (2006). Effects of endurance training and acute Doxorubicin treatment on rat heart mitochondrial alterations induced by in vitro anoxia-reoxygenation. Cardiovascular Toxicology, 6, 159–172.CrossRefPubMed Ascensao, A., Ferreira, R., Oliveira, P. J., & Magalhaes, J. (2006). Effects of endurance training and acute Doxorubicin treatment on rat heart mitochondrial alterations induced by in vitro anoxia-reoxygenation. Cardiovascular Toxicology, 6, 159–172.CrossRefPubMed
4.
go back to reference Ascensao, A., Lumini-Oliveira, J., Machado, N. G., Ferreira, R. M., Goncalves, I. O., Moreira, A. C., et al. (2011). Acute exercise protects against calcium-induced cardiac mitochondrial permeability transition pore opening in doxorubicin-treated rats. Clinical science (Lond), 120, 37–49.CrossRef Ascensao, A., Lumini-Oliveira, J., Machado, N. G., Ferreira, R. M., Goncalves, I. O., Moreira, A. C., et al. (2011). Acute exercise protects against calcium-induced cardiac mitochondrial permeability transition pore opening in doxorubicin-treated rats. Clinical science (Lond), 120, 37–49.CrossRef
5.
go back to reference Ascensao, A., Lumini-Oliveira, J., Oliveira, P. J., & Magalhaes, J. (2011). Mitochondria as a target for exercise-induced cardioprotection. Current Drug Targets, 12, 860–871.CrossRefPubMed Ascensao, A., Lumini-Oliveira, J., Oliveira, P. J., & Magalhaes, J. (2011). Mitochondria as a target for exercise-induced cardioprotection. Current Drug Targets, 12, 860–871.CrossRefPubMed
6.
go back to reference Ascensao, A., Magalhaes, J., Soares, J., Ferreira, R., Neuparth, M., Marques, F., et al. (2005). Endurance training attenuates doxorubicin-induced cardiac oxidative damage in mice. International Journal of Cardiology, 100, 451–460.CrossRefPubMed Ascensao, A., Magalhaes, J., Soares, J., Ferreira, R., Neuparth, M., Marques, F., et al. (2005). Endurance training attenuates doxorubicin-induced cardiac oxidative damage in mice. International Journal of Cardiology, 100, 451–460.CrossRefPubMed
7.
go back to reference Ascensao, A., Magalhaes, J., Soares, J. M., Ferreira, R., Neuparth, M. J., Marques, F., et al. (2005). Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis. American Journal of Physiology Heart and Circulatory Physiology, 289, H722–H731.CrossRefPubMed Ascensao, A., Magalhaes, J., Soares, J. M., Ferreira, R., Neuparth, M. J., Marques, F., et al. (2005). Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis. American Journal of Physiology Heart and Circulatory Physiology, 289, H722–H731.CrossRefPubMed
8.
go back to reference Ascensao, A., Oliveira, P. J., & Magalhaes, J. (2012). Exercise as a beneficial adjunct therapy during Doxorubicin treatment–role of mitochondria in cardioprotection. International Journal of Cardiology, 156, 4–10.CrossRefPubMed Ascensao, A., Oliveira, P. J., & Magalhaes, J. (2012). Exercise as a beneficial adjunct therapy during Doxorubicin treatment–role of mitochondria in cardioprotection. International Journal of Cardiology, 156, 4–10.CrossRefPubMed
9.
go back to reference Baines, C. P., Kaiser, R. A., Sheiko, T., Craigen, W. J., & Molkentin, J. D. (2007). Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nature Cell Biology, 9, 550–555.CrossRefPubMedPubMedCentral Baines, C. P., Kaiser, R. A., Sheiko, T., Craigen, W. J., & Molkentin, J. D. (2007). Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nature Cell Biology, 9, 550–555.CrossRefPubMedPubMedCentral
11.
go back to reference Bhattacharya, S. K., Thakar, J. H., Johnson, P. L., & Shanklin, D. R. (1991). Isolation of skeletal muscle mitochondria from hamsters using an ionic medium containing ethylenediaminetetraacetic acid and nagarse. Analytical Biochemistry, 192, 344–349.CrossRefPubMed Bhattacharya, S. K., Thakar, J. H., Johnson, P. L., & Shanklin, D. R. (1991). Isolation of skeletal muscle mitochondria from hamsters using an ionic medium containing ethylenediaminetetraacetic acid and nagarse. Analytical Biochemistry, 192, 344–349.CrossRefPubMed
12.
go back to reference Broekemeier, K. M., Dempsey, M. E., & Pfeiffer, D. R. (1989). Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. Journal of Biological Chemistry, 264, 7826–7830.PubMed Broekemeier, K. M., Dempsey, M. E., & Pfeiffer, D. R. (1989). Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. Journal of Biological Chemistry, 264, 7826–7830.PubMed
14.
go back to reference Carreira, R. S., Lee, Y., Ghochani, M., Gustafsson, A. B., & Gottlieb, R. A. (2010). Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells. Autophagy, 6, 462–472.CrossRefPubMedPubMedCentral Carreira, R. S., Lee, Y., Ghochani, M., Gustafsson, A. B., & Gottlieb, R. A. (2010). Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells. Autophagy, 6, 462–472.CrossRefPubMedPubMedCentral
15.
go back to reference Carvalho, F. S., Burgeiro, A., Garcia, R., Moreno, A. J., Carvalho, R. A., & Oliveira, P. J. (2014). Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. Medicinal Research Reviews, 34, 106–135.CrossRefPubMed Carvalho, F. S., Burgeiro, A., Garcia, R., Moreno, A. J., Carvalho, R. A., & Oliveira, P. J. (2014). Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. Medicinal Research Reviews, 34, 106–135.CrossRefPubMed
16.
go back to reference Chan, D. C. (2006). Mitochondria: Dynamic organelles in disease, aging, and development. Cell, 125, 1241–1252.CrossRefPubMed Chan, D. C. (2006). Mitochondria: Dynamic organelles in disease, aging, and development. Cell, 125, 1241–1252.CrossRefPubMed
17.
go back to reference Chan, D. C. (2006). Mitochondrial fusion and fission in mammals. Annual Review of Cell and Developmental Biology, 22, 79–99.CrossRefPubMed Chan, D. C. (2006). Mitochondrial fusion and fission in mammals. Annual Review of Cell and Developmental Biology, 22, 79–99.CrossRefPubMed
18.
go back to reference Cheng, E. H., Sheiko, T. V., Fisher, J. K., Craigen, W. J., & Korsmeyer, S. J. (2003). VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science, 301, 513–517.CrossRefPubMed Cheng, E. H., Sheiko, T. V., Fisher, J. K., Craigen, W. J., & Korsmeyer, S. J. (2003). VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science, 301, 513–517.CrossRefPubMed
19.
go back to reference Childs, A. C., Phaneuf, S. L., Dirks, A. J., Phillips, T., & Leeuwenburgh, C. (2002). Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2: Bax ratio. Cancer Research, 62, 4592–4598.PubMed Childs, A. C., Phaneuf, S. L., Dirks, A. J., Phillips, T., & Leeuwenburgh, C. (2002). Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2: Bax ratio. Cancer Research, 62, 4592–4598.PubMed
20.
go back to reference Clark, I. E., Dodson, M. W., Jiang, C., Cao, J. H., Huh, J. R., Seol, J. H., et al. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 441, 1162–1166.CrossRefPubMed Clark, I. E., Dodson, M. W., Jiang, C., Cao, J. H., Huh, J. R., Seol, J. H., et al. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 441, 1162–1166.CrossRefPubMed
21.
go back to reference Dimitrakis, P., Romay-Ogando, M. I., Timolati, F., Suter, T. M., & Zuppinger, C. (2012). Effects of doxorubicin cancer therapy on autophagy and the ubiquitin-proteasome system in long-term cultured adult rat cardiomyocytes. Cell and Tissue Research, 350, 361–372.CrossRefPubMed Dimitrakis, P., Romay-Ogando, M. I., Timolati, F., Suter, T. M., & Zuppinger, C. (2012). Effects of doxorubicin cancer therapy on autophagy and the ubiquitin-proteasome system in long-term cultured adult rat cardiomyocytes. Cell and Tissue Research, 350, 361–372.CrossRefPubMed
22.
go back to reference Dolinsky, V. W., Rogan, K. J., Sung, M. M., Zordoky, B. N., Haykowsky, M. J., Young, M. E., et al. (2013). Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice. American journal of physiology. Endocrinology and metabolism, 305, E243–E253.CrossRefPubMedPubMedCentral Dolinsky, V. W., Rogan, K. J., Sung, M. M., Zordoky, B. N., Haykowsky, M. J., Young, M. E., et al. (2013). Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice. American journal of physiology. Endocrinology and metabolism, 305, E243–E253.CrossRefPubMedPubMedCentral
23.
go back to reference Fontaine, E., Eriksson, O., Ichas, F., & Bernardi, P. (1998). Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation By electron flow through the respiratory chain complex I. Journal of Biological Chemistry, 273, 12662–12668.CrossRefPubMed Fontaine, E., Eriksson, O., Ichas, F., & Bernardi, P. (1998). Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation By electron flow through the respiratory chain complex I. Journal of Biological Chemistry, 273, 12662–12668.CrossRefPubMed
24.
go back to reference Frank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F., et al. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Developmental Cell, 1, 515–525.CrossRefPubMed Frank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F., et al. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Developmental Cell, 1, 515–525.CrossRefPubMed
25.
go back to reference Gharanei, M., Hussain, A., Janneh, O., & Maddock, H. (2013). Attenuation of doxorubicin-induced cardiotoxicity by mdivi-1: A mitochondrial division/mitophagy inhibitor. PLoS ONE, 8, e77713.CrossRefPubMedPubMedCentral Gharanei, M., Hussain, A., Janneh, O., & Maddock, H. (2013). Attenuation of doxorubicin-induced cardiotoxicity by mdivi-1: A mitochondrial division/mitophagy inhibitor. PLoS ONE, 8, e77713.CrossRefPubMedPubMedCentral
26.
go back to reference Gomes, L. C., & Scorrano, L. (2008). High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochimica et Biophysica Acta, 1777, 860–866.CrossRefPubMed Gomes, L. C., & Scorrano, L. (2008). High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochimica et Biophysica Acta, 1777, 860–866.CrossRefPubMed
27.
go back to reference Gornall, A. G., Bardawill, C. J., & David, M. M. (1949). Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry, 177, 751–766.PubMed Gornall, A. G., Bardawill, C. J., & David, M. M. (1949). Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry, 177, 751–766.PubMed
28.
go back to reference Gottlieb, R. A., & Carreira, R. S. (2010). Autophagy in health and disease. 5. Mitophagy as a way of life. American Journal of Physiology. Cell Physiology, 299, C203–C210.CrossRefPubMedPubMedCentral Gottlieb, R. A., & Carreira, R. S. (2010). Autophagy in health and disease. 5. Mitophagy as a way of life. American Journal of Physiology. Cell Physiology, 299, C203–C210.CrossRefPubMedPubMedCentral
29.
go back to reference Green, P. S., & Leeuwenburgh, C. (2002). Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochimica et Biophysica Acta, 1588, 94–101.CrossRefPubMed Green, P. S., & Leeuwenburgh, C. (2002). Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochimica et Biophysica Acta, 1588, 94–101.CrossRefPubMed
30.
go back to reference Gustafsson, A. B., & Gottlieb, R. A. (2008). Heart mitochondria: Gates of life and death. Cardiovascular Research, 77, 334–343.CrossRefPubMed Gustafsson, A. B., & Gottlieb, R. A. (2008). Heart mitochondria: Gates of life and death. Cardiovascular Research, 77, 334–343.CrossRefPubMed
31.
go back to reference Hoshino, A., Mita, Y., Okawa, Y., Ariyoshi, M., Iwai-Kanai, E., Ueyama, T., et al. (2013). Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nature Communications, 4, 2308.CrossRefPubMed Hoshino, A., Mita, Y., Okawa, Y., Ariyoshi, M., Iwai-Kanai, E., Ueyama, T., et al. (2013). Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nature Communications, 4, 2308.CrossRefPubMed
32.
go back to reference Jang, Y. M., Kendaiah, S., Drew, B., Phillips, T., Selman, C., Julian, D., et al. (2004). Doxorubicin treatment in vivo activates caspase-12 mediated cardiac apoptosis in both male and female rats. FEBS Letters, 577, 483–490.CrossRefPubMed Jang, Y. M., Kendaiah, S., Drew, B., Phillips, T., Selman, C., Julian, D., et al. (2004). Doxorubicin treatment in vivo activates caspase-12 mediated cardiac apoptosis in both male and female rats. FEBS Letters, 577, 483–490.CrossRefPubMed
33.
go back to reference Klamt, F., Zdanov, S., Levine, R. L., Pariser, A., Zhang, Y., Zhang, B., et al. (2009). Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin. Nature Cell Biology, 11, 1241–1246.CrossRefPubMedPubMedCentral Klamt, F., Zdanov, S., Levine, R. L., Pariser, A., Zhang, Y., Zhang, B., et al. (2009). Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin. Nature Cell Biology, 11, 1241–1246.CrossRefPubMedPubMedCentral
35.
go back to reference Kobayashi, S., Volden, P., Timm, D., Mao, K., Xu, X., & Liang, Q. (2010). Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. Journal of Biological Chemistry, 285, 793–804.CrossRefPubMed Kobayashi, S., Volden, P., Timm, D., Mao, K., Xu, X., & Liang, Q. (2010). Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. Journal of Biological Chemistry, 285, 793–804.CrossRefPubMed
36.
go back to reference Krauskopf, A., Eriksson, O., Craigen, W. J., Forte, M. A., & Bernardi, P. (2006). Properties of the permeability transition in VDAC1(-/-) mitochondria. Biochimica et Biophysica Acta, 1757, 590–595.CrossRefPubMed Krauskopf, A., Eriksson, O., Craigen, W. J., Forte, M. A., & Bernardi, P. (2006). Properties of the permeability transition in VDAC1(-/-) mitochondria. Biochimica et Biophysica Acta, 1757, 590–595.CrossRefPubMed
37.
38.
go back to reference Kumar, D., Kirshenbaum, L. A., Li, T., Danelisen, I., & Singal, P. K. (2001). Apoptosis in adriamycin cardiomyopathy and its modulation by probucol. Antioxidants & Redox Signaling, 3, 135–145.CrossRef Kumar, D., Kirshenbaum, L. A., Li, T., Danelisen, I., & Singal, P. K. (2001). Apoptosis in adriamycin cardiomyopathy and its modulation by probucol. Antioxidants & Redox Signaling, 3, 135–145.CrossRef
39.
go back to reference Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.CrossRefPubMed Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.CrossRefPubMed
40.
go back to reference Lee, Y., Lee, H. Y., Hanna, R. A., & Gustafsson, A. B. (2011). Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. American Journal of Physiology Heart and Circulatory Physiology, 301, H1924–H1931.CrossRefPubMedPubMedCentral Lee, Y., Lee, H. Y., Hanna, R. A., & Gustafsson, A. B. (2011). Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. American Journal of Physiology Heart and Circulatory Physiology, 301, H1924–H1931.CrossRefPubMedPubMedCentral
41.
go back to reference Lee, Y. J., Jeong, S. Y., Karbowski, M., Smith, C. L., & Youle, R. J. (2004). Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Molecular Biology of the Cell, 15, 5001–5011.CrossRefPubMedPubMedCentral Lee, Y. J., Jeong, S. Y., Karbowski, M., Smith, C. L., & Youle, R. J. (2004). Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Molecular Biology of the Cell, 15, 5001–5011.CrossRefPubMedPubMedCentral
42.
go back to reference Liesa, M., Palacin, M., & Zorzano, A. (2009). Mitochondrial dynamics in mammalian health and disease. Physiological Reviews, 89, 799–845.CrossRefPubMed Liesa, M., Palacin, M., & Zorzano, A. (2009). Mitochondrial dynamics in mammalian health and disease. Physiological Reviews, 89, 799–845.CrossRefPubMed
43.
go back to reference Lin, S. T., Chou, H. C., Chen, Y. W., & Chan, H. L. (2013). Redox-proteomic analysis of doxorubicin-induced altered thiol activity in cardiomyocytes. Molecular BioSystems, 9, 447–456.CrossRefPubMed Lin, S. T., Chou, H. C., Chen, Y. W., & Chan, H. L. (2013). Redox-proteomic analysis of doxorubicin-induced altered thiol activity in cardiomyocytes. Molecular BioSystems, 9, 447–456.CrossRefPubMed
44.
go back to reference Locke, M., Noble, E. G., & Atkinson, B. G. (1990). Exercising mammals synthesize stress proteins. American Journal of Physiology, 258, C723–C729.CrossRefPubMed Locke, M., Noble, E. G., & Atkinson, B. G. (1990). Exercising mammals synthesize stress proteins. American Journal of Physiology, 258, C723–C729.CrossRefPubMed
45.
go back to reference Lu, L., Wu, W., Yan, J., Li, X., Yu, H., & Yu, X. (2009). Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a rat model of heart failure. International Journal of Cardiology, 134, 82–90.CrossRefPubMed Lu, L., Wu, W., Yan, J., Li, X., Yu, H., & Yu, X. (2009). Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a rat model of heart failure. International Journal of Cardiology, 134, 82–90.CrossRefPubMed
46.
go back to reference Lumini-Oliveira, J., Magalhaes, J., Pereira, C. V., Moreira, A. C., Oliveira, P. J., & Ascensao, A. (2011). Endurance training reverts heart mitochondrial dysfunction, permeability transition and apoptotic signaling in long-term severe hyperglycemia. Mitochondrion, 11, 54–63.CrossRefPubMed Lumini-Oliveira, J., Magalhaes, J., Pereira, C. V., Moreira, A. C., Oliveira, P. J., & Ascensao, A. (2011). Endurance training reverts heart mitochondrial dysfunction, permeability transition and apoptotic signaling in long-term severe hyperglycemia. Mitochondrion, 11, 54–63.CrossRefPubMed
47.
go back to reference Marechal, X., Montaigne, D., Marciniak, C., Marchetti, P., Hassoun, S. M., Beauvillain, J. C., et al. (2011). Doxorubicin-induced cardiac dysfunction is attenuated by ciclosporin treatment in mice through improvements in mitochondrial bioenergetics. Clinical science (London), 121, 405–413.CrossRef Marechal, X., Montaigne, D., Marciniak, C., Marchetti, P., Hassoun, S. M., Beauvillain, J. C., et al. (2011). Doxorubicin-induced cardiac dysfunction is attenuated by ciclosporin treatment in mice through improvements in mitochondrial bioenergetics. Clinical science (London), 121, 405–413.CrossRef
48.
go back to reference Marques-Aleixo, I., Santos-Alves, E., Mariani, D., Rizo-Roca, D., Padrao, A. I., Rocha-Rodrigues, S., et al. (2015). Physical exercise prior and during treatment reduces sub-chronic doxorubicin-induced mitochondrial toxicity and oxidative stress. Mitochondrion, 20, 22–33.CrossRefPubMed Marques-Aleixo, I., Santos-Alves, E., Mariani, D., Rizo-Roca, D., Padrao, A. I., Rocha-Rodrigues, S., et al. (2015). Physical exercise prior and during treatment reduces sub-chronic doxorubicin-induced mitochondrial toxicity and oxidative stress. Mitochondrion, 20, 22–33.CrossRefPubMed
49.
go back to reference Marquez, R. T., & Xu, L. (2012). Bcl-2: Beclin 1 complex: Multiple, mechanisms regulating autophagy/apoptosis toggle switch. American Journal of Cancer Research, 2, 214–221.PubMedPubMedCentral Marquez, R. T., & Xu, L. (2012). Bcl-2: Beclin 1 complex: Multiple, mechanisms regulating autophagy/apoptosis toggle switch. American Journal of Cancer Research, 2, 214–221.PubMedPubMedCentral
50.
go back to reference Narendra, D., Kane, L. A., Hauser, D. N., Fearnley, I. M., & Youle, R. J. (2010). p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy, 6, 1090–1106.CrossRefPubMedPubMedCentral Narendra, D., Kane, L. A., Hauser, D. N., Fearnley, I. M., & Youle, R. J. (2010). p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy, 6, 1090–1106.CrossRefPubMedPubMedCentral
51.
go back to reference Nogueira, V., Devin, A., Walter, L., Rigoulet, M., Leverve, X., & Fontaine, E. (2005). Effects of decreasing mitochondrial volume on the regulation of the permeability transition pore. Journal of Bioenergetics and Biomembranes, 37, 25–33.CrossRefPubMed Nogueira, V., Devin, A., Walter, L., Rigoulet, M., Leverve, X., & Fontaine, E. (2005). Effects of decreasing mitochondrial volume on the regulation of the permeability transition pore. Journal of Bioenergetics and Biomembranes, 37, 25–33.CrossRefPubMed
52.
go back to reference Oliveira, P. J., Bjork, J. A., Santos, M. S., Leino, R. L., Froberg, M. K., Moreno, A. J., et al. (2004). Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicology and Applied Pharmacology, 200, 159–168.CrossRefPubMed Oliveira, P. J., Bjork, J. A., Santos, M. S., Leino, R. L., Froberg, M. K., Moreno, A. J., et al. (2004). Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicology and Applied Pharmacology, 200, 159–168.CrossRefPubMed
53.
go back to reference Oliveira, P. J., & Wallace, K. B. (2006). Depletion of adenine nucleotide translocator protein in heart mitochondria from doxorubicin-treated rats–relevance for mitochondrial dysfunction. Toxicology, 220, 160–168.CrossRefPubMed Oliveira, P. J., & Wallace, K. B. (2006). Depletion of adenine nucleotide translocator protein in heart mitochondria from doxorubicin-treated rats–relevance for mitochondrial dysfunction. Toxicology, 220, 160–168.CrossRefPubMed
54.
go back to reference Ong, S. B., Subrayan, S., Lim, S. Y., Yellon, D. M., Davidson, S. M., & Hausenloy, D. J. (2010). Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation, 121, 2012–2022.CrossRefPubMed Ong, S. B., Subrayan, S., Lim, S. Y., Yellon, D. M., Davidson, S. M., & Hausenloy, D. J. (2010). Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation, 121, 2012–2022.CrossRefPubMed
55.
go back to reference Papanicolaou, K. N., Khairallah, R. J., Ngoh, G. A., Chikando, A., Luptak, I., O’Shea, K. M., et al. (2011). Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Molecular and Cellular Biology, 31, 1309–1328.CrossRefPubMedPubMedCentral Papanicolaou, K. N., Khairallah, R. J., Ngoh, G. A., Chikando, A., Luptak, I., O’Shea, K. M., et al. (2011). Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Molecular and Cellular Biology, 31, 1309–1328.CrossRefPubMedPubMedCentral
56.
go back to reference Papanicolaou, K. N., Ngoh, G. A., Dabkowski, E. R., O’Connell, K. A., Ribeiro, R. F., Jr., Stanley, W. C., et al. (2012). Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. American Journal of Physiology Heart and Circulatory Physiology, 302, H167–H179.CrossRefPubMed Papanicolaou, K. N., Ngoh, G. A., Dabkowski, E. R., O’Connell, K. A., Ribeiro, R. F., Jr., Stanley, W. C., et al. (2012). Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. American Journal of Physiology Heart and Circulatory Physiology, 302, H167–H179.CrossRefPubMed
57.
go back to reference Papanicolaou, K. N., Phillippo, M. M., & Walsh, K. (2012). Mitofusins and the mitochondrial permeability transition: the potential downside of mitochondrial fusion. American Journal of Physiology Heart and Circulatory Physiology, 303, H243–H255.CrossRefPubMedPubMedCentral Papanicolaou, K. N., Phillippo, M. M., & Walsh, K. (2012). Mitofusins and the mitochondrial permeability transition: the potential downside of mitochondrial fusion. American Journal of Physiology Heart and Circulatory Physiology, 303, H243–H255.CrossRefPubMedPubMedCentral
58.
go back to reference Parone, P. A., James, D. I., Da Cruz, S., Mattenberger, Y., Donze, O., Barja, F., et al. (2006). Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Molecular and Cellular Biology, 26, 7397–7408.CrossRefPubMedPubMedCentral Parone, P. A., James, D. I., Da Cruz, S., Mattenberger, Y., Donze, O., Barja, F., et al. (2006). Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Molecular and Cellular Biology, 26, 7397–7408.CrossRefPubMedPubMedCentral
59.
go back to reference Parra, V., Eisner, V., Chiong, M., Criollo, A., Moraga, F., Garcia, A., et al. (2008). Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovascular Research, 77, 387–397.CrossRefPubMed Parra, V., Eisner, V., Chiong, M., Criollo, A., Moraga, F., Garcia, A., et al. (2008). Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovascular Research, 77, 387–397.CrossRefPubMed
60.
go back to reference Pereira, G. C., Pereira, S. P., Pereira, C. V., Lumini, J. A., Magalhaes, J., Ascensao, A., et al. (2012). Mitochondrionopathy phenotype in doxorubicin-treated Wistar rats depends on treatment protocol and is cardiac-specific. PLoS ONE, 7, e38867.CrossRefPubMedPubMedCentral Pereira, G. C., Pereira, S. P., Pereira, C. V., Lumini, J. A., Magalhaes, J., Ascensao, A., et al. (2012). Mitochondrionopathy phenotype in doxorubicin-treated Wistar rats depends on treatment protocol and is cardiac-specific. PLoS ONE, 7, e38867.CrossRefPubMedPubMedCentral
61.
go back to reference Pereira, G. C., Silva, A. M., Diogo, C. V., Carvalho, F. S., Monteiro, P., & Oliveira, P. J. (2011). Drug-induced cardiac mitochondrial toxicity and protection: From doxorubicin to carvedilol. Current Pharmaceutical Design, 17, 2113–2129.CrossRefPubMed Pereira, G. C., Silva, A. M., Diogo, C. V., Carvalho, F. S., Monteiro, P., & Oliveira, P. J. (2011). Drug-induced cardiac mitochondrial toxicity and protection: From doxorubicin to carvedilol. Current Pharmaceutical Design, 17, 2113–2129.CrossRefPubMed
62.
go back to reference Pich, S., Bach, D., Briones, P., Liesa, M., Camps, M., Testar, X., et al. (2005). The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Human Molecular Genetics, 14, 1405–1415.CrossRefPubMed Pich, S., Bach, D., Briones, P., Liesa, M., Camps, M., Testar, X., et al. (2005). The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Human Molecular Genetics, 14, 1405–1415.CrossRefPubMed
63.
go back to reference Piquereau, J., Caffin, F., Novotova, M., Lemaire, C., Veksler, V., Garnier, A., et al. (2013). Mitochondrial dynamics in the adult cardiomyocytes: Which roles for a highly specialized cell? Frontiers in Physiology, 4, 102.CrossRefPubMedPubMedCentral Piquereau, J., Caffin, F., Novotova, M., Lemaire, C., Veksler, V., Garnier, A., et al. (2013). Mitochondrial dynamics in the adult cardiomyocytes: Which roles for a highly specialized cell? Frontiers in Physiology, 4, 102.CrossRefPubMedPubMedCentral
64.
go back to reference Piquereau, J., Caffin, F., Novotova, M., Prola, A., Garnier, A., Mateo, P., et al. (2012). Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovascular Research, 94, 408–417.CrossRefPubMedPubMedCentral Piquereau, J., Caffin, F., Novotova, M., Prola, A., Garnier, A., Mateo, P., et al. (2012). Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovascular Research, 94, 408–417.CrossRefPubMedPubMedCentral
65.
go back to reference Santos, D. L., Moreno, A. J., Leino, R. L., Froberg, M. K., & Wallace, K. B. (2002). Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicology and Applied Pharmacology, 185, 218–227.CrossRefPubMed Santos, D. L., Moreno, A. J., Leino, R. L., Froberg, M. K., & Wallace, K. B. (2002). Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicology and Applied Pharmacology, 185, 218–227.CrossRefPubMed
66.
go back to reference Scherz-Shouval, R., & Elazar, Z. (2011). Regulation of autophagy by ROS: Physiology and pathology. Trends in Biochemical Sciences, 36, 30–38.CrossRefPubMed Scherz-Shouval, R., & Elazar, Z. (2011). Regulation of autophagy by ROS: Physiology and pathology. Trends in Biochemical Sciences, 36, 30–38.CrossRefPubMed
67.
go back to reference Sciarretta, S., Hariharan, N., Monden, Y., Zablocki, D., & Sadoshima, J. (2011). Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatric Cardiology, 32, 275–281.CrossRefPubMed Sciarretta, S., Hariharan, N., Monden, Y., Zablocki, D., & Sadoshima, J. (2011). Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatric Cardiology, 32, 275–281.CrossRefPubMed
68.
go back to reference Sishi, B. J., Loos, B., van Rooyen, J., & Engelbrecht, A. M. (2013). Autophagy upregulation promotes survival and attenuates doxorubicin-induced cardiotoxicity. Biochemical Pharmacology, 85, 124–134.CrossRefPubMed Sishi, B. J., Loos, B., van Rooyen, J., & Engelbrecht, A. M. (2013). Autophagy upregulation promotes survival and attenuates doxorubicin-induced cardiotoxicity. Biochemical Pharmacology, 85, 124–134.CrossRefPubMed
69.
go back to reference Smuder, A. J., Kavazis, A. N., Min, K., & Powers, S. K. (2011). Exercise protects against doxorubicin-induced markers of autophagy signaling in skeletal muscle. Journal of Applied Physiology, 111, 1190–1198.CrossRefPubMed Smuder, A. J., Kavazis, A. N., Min, K., & Powers, S. K. (2011). Exercise protects against doxorubicin-induced markers of autophagy signaling in skeletal muscle. Journal of Applied Physiology, 111, 1190–1198.CrossRefPubMed
70.
go back to reference Smuder, A. J., Kavazis, A. N., Min, K., & Powers, S. K. (2013). Doxorubicin-induced markers of myocardial autophagic signaling in sedentary and exercise trained animals. Journal of Applied Physiology, 115, 176–185.CrossRefPubMed Smuder, A. J., Kavazis, A. N., Min, K., & Powers, S. K. (2013). Doxorubicin-induced markers of myocardial autophagic signaling in sedentary and exercise trained animals. Journal of Applied Physiology, 115, 176–185.CrossRefPubMed
71.
go back to reference Sun, M., Shen, W., Zhong, M., Wu, P., Chen, H., & Lu, A. (2013). Nandrolone attenuates aortic adaptation to exercise in rats. Cardiovascular Research, 97, 686–695.CrossRefPubMed Sun, M., Shen, W., Zhong, M., Wu, P., Chen, H., & Lu, A. (2013). Nandrolone attenuates aortic adaptation to exercise in rats. Cardiovascular Research, 97, 686–695.CrossRefPubMed
72.
go back to reference Szigeti, A., Hocsak, E., Rapolti, E., Racz, B., Boronkai, A., Pozsgai, E., et al. (2010). Facilitation of mitochondrial outer and inner membrane permeabilization and cell death in oxidative stress by a novel Bcl-2 homology 3 domain protein. Journal of Biological Chemistry, 285, 2140–2151.CrossRefPubMed Szigeti, A., Hocsak, E., Rapolti, E., Racz, B., Boronkai, A., Pozsgai, E., et al. (2010). Facilitation of mitochondrial outer and inner membrane permeabilization and cell death in oxidative stress by a novel Bcl-2 homology 3 domain protein. Journal of Biological Chemistry, 285, 2140–2151.CrossRefPubMed
73.
go back to reference Tanaka, A., Cleland, M. M., Xu, S., Narendra, D. P., Suen, D. F., Karbowski, M., et al. (2010). Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. Journal of Cell Biology, 191, 1367–1380.CrossRefPubMedPubMedCentral Tanaka, A., Cleland, M. M., Xu, S., Narendra, D. P., Suen, D. F., Karbowski, M., et al. (2010). Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. Journal of Cell Biology, 191, 1367–1380.CrossRefPubMedPubMedCentral
74.
go back to reference Twig, G., Elorza, A., Molina, A. J., Mohamed, H., Wikstrom, J. D., Walzer, G., et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO Journal, 27, 433–446.CrossRefPubMedPubMedCentral Twig, G., Elorza, A., Molina, A. J., Mohamed, H., Wikstrom, J. D., Walzer, G., et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO Journal, 27, 433–446.CrossRefPubMedPubMedCentral
75.
go back to reference Wallace, K. B. (2003). Doxorubicin-induced cardiac mitochondrionopathy. Pharmacology and Toxicology, 93, 105–115.CrossRefPubMed Wallace, K. B. (2003). Doxorubicin-induced cardiac mitochondrionopathy. Pharmacology and Toxicology, 93, 105–115.CrossRefPubMed
76.
go back to reference Wallace, K. B. (2007). Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovascular Toxicology, 7, 101–107.CrossRefPubMed Wallace, K. B. (2007). Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovascular Toxicology, 7, 101–107.CrossRefPubMed
77.
go back to reference Wang, G. W., Klein, J. B., & Kang, Y. J. (2001). Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 298, 461–468.PubMed Wang, G. W., Klein, J. B., & Kang, Y. J. (2001). Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 298, 461–468.PubMed
78.
go back to reference Wang, X. L., Wang, X., Xiong, L. L., Zhu, Y., Chen, H. L., Chen, J. X., et al. (2013). Salidroside improves doxorubicin-induced cardiac dysfunction by suppression of excessive oxidative stress and cardiomyocyte apoptosis. Journal of Cardiovascular Pharmacology, 62, 512–523.CrossRefPubMed Wang, X. L., Wang, X., Xiong, L. L., Zhu, Y., Chen, H. L., Chen, J. X., et al. (2013). Salidroside improves doxorubicin-induced cardiac dysfunction by suppression of excessive oxidative stress and cardiomyocyte apoptosis. Journal of Cardiovascular Pharmacology, 62, 512–523.CrossRefPubMed
79.
go back to reference Wasilewski, M., & Scorrano, L. (2009). The changing shape of mitochondrial apoptosis. Trends in Endocrinology and Metabolism, 20, 287–294.CrossRefPubMed Wasilewski, M., & Scorrano, L. (2009). The changing shape of mitochondrial apoptosis. Trends in Endocrinology and Metabolism, 20, 287–294.CrossRefPubMed
80.
go back to reference Whelan, R. S., Konstantinidis, K., Wei, A. C., Chen, Y., Reyna, D. E., Jha, S., et al. (2012). Bax regulates primary necrosis through mitochondrial dynamics. Proceedings of the National Academy of Sciences USA, 109, 6566–6571.CrossRef Whelan, R. S., Konstantinidis, K., Wei, A. C., Chen, Y., Reyna, D. E., Jha, S., et al. (2012). Bax regulates primary necrosis through mitochondrial dynamics. Proceedings of the National Academy of Sciences USA, 109, 6566–6571.CrossRef
81.
go back to reference Xu, X., Chen, K., Kobayashi, S., Timm, D., & Liang, Q. (2012). Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. Journal of Pharmacology and Experimental Therapeutics, 341, 183–195.CrossRefPubMedPubMedCentral Xu, X., Chen, K., Kobayashi, S., Timm, D., & Liang, Q. (2012). Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. Journal of Pharmacology and Experimental Therapeutics, 341, 183–195.CrossRefPubMedPubMedCentral
83.
go back to reference Zhang, Y. W., Shi, J., Li, Y. J., & Wei, L. (2009). Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Archivum immunologiae et therapiae experimentalis, 57, 435–445.CrossRefPubMedPubMedCentral Zhang, Y. W., Shi, J., Li, Y. J., & Wei, L. (2009). Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Archivum immunologiae et therapiae experimentalis, 57, 435–445.CrossRefPubMedPubMedCentral
84.
go back to reference Zheng, Q., & Wang, X. (2010). Autophagy and the ubiquitin-proteasome system in cardiac dysfunction. Panminerva Medica, 52, 9–25.PubMedPubMedCentral Zheng, Q., & Wang, X. (2010). Autophagy and the ubiquitin-proteasome system in cardiac dysfunction. Panminerva Medica, 52, 9–25.PubMedPubMedCentral
85.
go back to reference Zhou, S., Palmeira, C. M., & Wallace, K. B. (2001). Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicology Letters, 121, 151–157.CrossRefPubMed Zhou, S., Palmeira, C. M., & Wallace, K. B. (2001). Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicology Letters, 121, 151–157.CrossRefPubMed
86.
go back to reference Zhou, S., Starkov, A., Froberg, M. K., Leino, R. L., & Wallace, K. B. (2001). Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Research, 61, 771–777.PubMed Zhou, S., Starkov, A., Froberg, M. K., Leino, R. L., & Wallace, K. B. (2001). Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Research, 61, 771–777.PubMed
Metadata
Title
Exercise and Doxorubicin Treatment Modulate Cardiac Mitochondrial Quality Control Signaling
Authors
I. Marques-Aleixo
E. Santos-Alves
J. R. Torrella
P. J. Oliveira
J. Magalhães
A. Ascensão
Publication date
01-02-2018
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 1/2018
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-017-9412-4

Other articles of this Issue 1/2018

Cardiovascular Toxicology 1/2018 Go to the issue