Skip to main content
Top
Published in: Cardiovascular Toxicology 4/2017

01-10-2017

Ultrafine Particulate Matter Increases Cardiac Ischemia/Reperfusion Injury via Mitochondrial Permeability Transition Pore

Authors: Nathan A. Holland, Chad R. Fraiser, Ruben C. Sloan III, Robert B. Devlin, David A. Brown, Christopher J. Wingard

Published in: Cardiovascular Toxicology | Issue 4/2017

Login to get access

Abstract

Ultrafine particulate matter (UFP) has been associated with increased cardiovascular morbidity and mortality. However, the mechanisms that drive PM-associated cardiovascular disease and dysfunction remain unclear. We examined the impact of oropharyngeal aspiration of 100 μg UFP from the Chapel Hill, NC, air shed in Sprague–Dawley rats on cardiac function, arrhythmogenesis, and cardiac ischemia/reperfusion (I/R) injury using a Langendorff working heart model. We found that exposure to UFP was capable of significantly exacerbating cardiac I/R injury without changing overall cardiac function or major changes in arrhythmogenesis. Cardiac I/R injury was attenuable with administration of cyclosporin A (CsA), suggesting a role for the mitochondrial permeability transition pore (mPTP) in UFP-associated cardiovascular toxicity. Isolated cardiac mitochondria displayed decreased Ca2+ buffering before opening of the mPTP. These findings suggest that UFP-induced expansion of cardiac I/R injury may be a result of mPTP Ca2+ sensitization resulting in increased mitochondrial permeability transition and potential initiation of mPTP-associated cell death pathways.
Appendix
Available only for authorised users
Literature
1.
go back to reference Roger, V. L., Go, A. S., Lloyd-Jones, D. M., Adams, R. J., Berry, J. D., Brown, T. M., et al. (2011). Heart disease and stroke statistics–2011 update: A report from the American Heart Association. Circulation, 123, e18–e209.CrossRefPubMed Roger, V. L., Go, A. S., Lloyd-Jones, D. M., Adams, R. J., Berry, J. D., Brown, T. M., et al. (2011). Heart disease and stroke statistics–2011 update: A report from the American Heart Association. Circulation, 123, e18–e209.CrossRefPubMed
2.
3.
go back to reference Riediker, M., Cascio, W. E., Griggs, T. R., Herbst, M. C., Bromberg, P. A., Neas, L., et al. (2004). Particulate matter exposure in cars is associated with cardiovascular effects in healthy young men. American Journal of Respiratory and Critical Care Medicine, 169, 934–940.CrossRefPubMed Riediker, M., Cascio, W. E., Griggs, T. R., Herbst, M. C., Bromberg, P. A., Neas, L., et al. (2004). Particulate matter exposure in cars is associated with cardiovascular effects in healthy young men. American Journal of Respiratory and Critical Care Medicine, 169, 934–940.CrossRefPubMed
5.
go back to reference Bellavia, A., Urch, B., Speck, M., Brook, R. D., Scott, J. A., Albetti, B., et al. (2013). DNA hypomethylation, ambient particulate matter, and increased blood pressure: Findings from controlled human exposure experiments. Journal of the American Heart Association, 2, e000212.CrossRefPubMedPubMedCentral Bellavia, A., Urch, B., Speck, M., Brook, R. D., Scott, J. A., Albetti, B., et al. (2013). DNA hypomethylation, ambient particulate matter, and increased blood pressure: Findings from controlled human exposure experiments. Journal of the American Heart Association, 2, e000212.CrossRefPubMedPubMedCentral
6.
go back to reference Suwa, T., Hogg, J. C., Quinlan, K. B., Ohgami, A., Vincent, R., & van Eeden, S. F. (2002). Particulate air pollution induces progression of atherosclerosis. Journal of the American College of Cardiology, 39, 935–942.CrossRefPubMed Suwa, T., Hogg, J. C., Quinlan, K. B., Ohgami, A., Vincent, R., & van Eeden, S. F. (2002). Particulate air pollution induces progression of atherosclerosis. Journal of the American College of Cardiology, 39, 935–942.CrossRefPubMed
7.
go back to reference Cozzi, E., Hazarika, S., Stallings, H. W., 3rd, Cascio, W. E., Devlin, R. B., Lust, R. M., et al. (2006). Ultrafine particulate matter exposure augments ischemia-reperfusion injury in mice. American Journal of Physiology: Heart and Circulatory Physiology, 291, H894–H903.PubMed Cozzi, E., Hazarika, S., Stallings, H. W., 3rd, Cascio, W. E., Devlin, R. B., Lust, R. M., et al. (2006). Ultrafine particulate matter exposure augments ischemia-reperfusion injury in mice. American Journal of Physiology: Heart and Circulatory Physiology, 291, H894–H903.PubMed
8.
go back to reference Holland, N., Becak, B., Shanahan, J., Brown, J., Carratt,S., Van Winkle, L., et al. (2015). Cardiac ischemia reperfusion injury following instillation of 20 nm citrate-capped nanosilver. Journal of Nanomedicine and Nanotechnology, S6, 006. Holland, N., Becak, B., Shanahan, J., Brown, J., Carratt,S., Van Winkle, L., et al. (2015). Cardiac ischemia reperfusion injury following instillation of 20 nm citrate-capped nanosilver. Journal of Nanomedicine and Nanotechnology, S6, 006.
9.
go back to reference Brook, R. D., Rajagopalan, S., Pope, C. A., 3rd, Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., et al. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121, 2331–2378.CrossRefPubMed Brook, R. D., Rajagopalan, S., Pope, C. A., 3rd, Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., et al. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121, 2331–2378.CrossRefPubMed
10.
go back to reference Burke, A. P., & Virmani, R. (2007). Pathophysiology of acute myocardial infarction. Medical Clinics of North America, 91, 553–572.CrossRefPubMed Burke, A. P., & Virmani, R. (2007). Pathophysiology of acute myocardial infarction. Medical Clinics of North America, 91, 553–572.CrossRefPubMed
11.
go back to reference Moens, A. L., Claeys, M. J., Timmermans, J. P., & Vrints, C. J. (2005). Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. International Journal of Cardiology, 100, 179–190.CrossRefPubMed Moens, A. L., Claeys, M. J., Timmermans, J. P., & Vrints, C. J. (2005). Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. International Journal of Cardiology, 100, 179–190.CrossRefPubMed
12.
go back to reference Perrelli, M. G., Pagliaro, P., & Penna, C. (2011). Ischemia/reperfusion injury and cardioprotective mechanisms: Role of mitochondria and reactive oxygen species. World Journal of Cardiology, 3, 186–200.CrossRefPubMedPubMedCentral Perrelli, M. G., Pagliaro, P., & Penna, C. (2011). Ischemia/reperfusion injury and cardioprotective mechanisms: Role of mitochondria and reactive oxygen species. World Journal of Cardiology, 3, 186–200.CrossRefPubMedPubMedCentral
13.
go back to reference Przyklenk, K., Dong, Y., Undyala, V. V., & Whittaker, P. (2012). Autophagy as a therapeutic target for ischaemia/reperfusion injury? Concepts, controversies, and challenges. Cardiovascular Research, 94, 197–205.CrossRefPubMed Przyklenk, K., Dong, Y., Undyala, V. V., & Whittaker, P. (2012). Autophagy as a therapeutic target for ischaemia/reperfusion injury? Concepts, controversies, and challenges. Cardiovascular Research, 94, 197–205.CrossRefPubMed
14.
go back to reference Di Lisa, F., Menabo, R., Canton, M., Barile, M., & Bernardi, P. (2001). Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. The Journal of Biological Chemistry, 276, 2571–2575.CrossRefPubMed Di Lisa, F., Menabo, R., Canton, M., Barile, M., & Bernardi, P. (2001). Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. The Journal of Biological Chemistry, 276, 2571–2575.CrossRefPubMed
15.
go back to reference Abdallah, Y., Kasseckert, S. A., Iraqi, W., Said, M., Shahzad, T., Erdogan, A., et al. (2011). Interplay between Ca2+ cycling and mitochondrial permeability transition pores promotes reperfusion-induced injury of cardiac myocytes. Journal of Cellular and Molecular Medicine, 15, 2478–2485.CrossRefPubMedPubMedCentral Abdallah, Y., Kasseckert, S. A., Iraqi, W., Said, M., Shahzad, T., Erdogan, A., et al. (2011). Interplay between Ca2+ cycling and mitochondrial permeability transition pores promotes reperfusion-induced injury of cardiac myocytes. Journal of Cellular and Molecular Medicine, 15, 2478–2485.CrossRefPubMedPubMedCentral
17.
go back to reference Pell, V. R., Chouchani, E. T., Murphy, M. P., Brookes, P. S., & Krieg, T. (2016). Moving forwards by blocking back-flow: The Yin and Yang of MI therapy. Circulation Research, 118, 898–906.CrossRefPubMedPubMedCentral Pell, V. R., Chouchani, E. T., Murphy, M. P., Brookes, P. S., & Krieg, T. (2016). Moving forwards by blocking back-flow: The Yin and Yang of MI therapy. Circulation Research, 118, 898–906.CrossRefPubMedPubMedCentral
18.
go back to reference Halestrap, A. P., & Pasdois, P. (2009). The role of the mitochondrial permeability transition pore in heart disease. Biochimica et Biophysica Acta, 1787, 1402–1415.CrossRefPubMed Halestrap, A. P., & Pasdois, P. (2009). The role of the mitochondrial permeability transition pore in heart disease. Biochimica et Biophysica Acta, 1787, 1402–1415.CrossRefPubMed
19.
go back to reference Li, R., Kou, X., Geng, H., Xie, J., Tian, J., Cai, Z., et al. (2015). Mitochondrial damage: An important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats. Journal of Hazardous Materials, 287, 392–401.CrossRefPubMed Li, R., Kou, X., Geng, H., Xie, J., Tian, J., Cai, Z., et al. (2015). Mitochondrial damage: An important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats. Journal of Hazardous Materials, 287, 392–401.CrossRefPubMed
20.
go back to reference Golomb, E., Matza, D., Cummings, C. A., Schwalb, H., Kodavanti, U. P., Schneider, A., et al. (2012). Myocardial mitochondrial injury induced by pulmonary exposure to particulate matter in rats. Toxicologic Pathology, 40, 779–788.CrossRefPubMed Golomb, E., Matza, D., Cummings, C. A., Schwalb, H., Kodavanti, U. P., Schneider, A., et al. (2012). Myocardial mitochondrial injury induced by pulmonary exposure to particulate matter in rats. Toxicologic Pathology, 40, 779–788.CrossRefPubMed
21.
go back to reference Xia, T., Korge, P., Weiss, J. N., Li, N., Venkatesen, M. I., Sioutas, C., et al. (2004). Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: Implications for ultrafine particle toxicity. Environmental Health Perspectives, 112, 1347–1358.CrossRefPubMedPubMedCentral Xia, T., Korge, P., Weiss, J. N., Li, N., Venkatesen, M. I., Sioutas, C., et al. (2004). Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: Implications for ultrafine particle toxicity. Environmental Health Perspectives, 112, 1347–1358.CrossRefPubMedPubMedCentral
22.
go back to reference Nichols, C. E., Shepherd, D. L., Knuckles, T. L., Thapa, D., Stricker, J. C., Stapleton, P. A., et al. (2015). Cardiac and mitochondrial dysfunction following acute pulmonary exposure to mountaintop removal mining particulate matter. American Journal of Physiology: Heart and Circulatory Physiology, 309, H2017–H2030.PubMedPubMedCentral Nichols, C. E., Shepherd, D. L., Knuckles, T. L., Thapa, D., Stricker, J. C., Stapleton, P. A., et al. (2015). Cardiac and mitochondrial dysfunction following acute pulmonary exposure to mountaintop removal mining particulate matter. American Journal of Physiology: Heart and Circulatory Physiology, 309, H2017–H2030.PubMedPubMedCentral
23.
go back to reference Ong, S. B., Samangouei, P., Kalkhoran, S. B., & Hausenloy, D. J. (2015). The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. Journal of Molecular and Cellular Cardiology, 78, 23–34.CrossRefPubMed Ong, S. B., Samangouei, P., Kalkhoran, S. B., & Hausenloy, D. J. (2015). The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. Journal of Molecular and Cellular Cardiology, 78, 23–34.CrossRefPubMed
24.
go back to reference Becker, S., Dailey, L. A., Soukup, J. M., Grambow, S. C., Devlin, R. B., & Huang, Y. C. (2005). Seasonal variations in air pollution particle-induced inflammatory mediator release and oxidative stress. Environmental Health Perspectives, 113, 1032–1038.CrossRefPubMedPubMedCentral Becker, S., Dailey, L. A., Soukup, J. M., Grambow, S. C., Devlin, R. B., & Huang, Y. C. (2005). Seasonal variations in air pollution particle-induced inflammatory mediator release and oxidative stress. Environmental Health Perspectives, 113, 1032–1038.CrossRefPubMedPubMedCentral
25.
go back to reference Holland, N. A., Thompson, L. C., Vidanapathirana, A. K., Urankar, R. N., Lust, R. M., Fennell, T. R., et al. (2016). Impact of pulmonary exposure to gold core silver nanoparticles of different size and capping agents on cardiovascular injury. Particle and Fibre Toxicology, 13, 48.CrossRefPubMedPubMedCentral Holland, N. A., Thompson, L. C., Vidanapathirana, A. K., Urankar, R. N., Lust, R. M., Fennell, T. R., et al. (2016). Impact of pulmonary exposure to gold core silver nanoparticles of different size and capping agents on cardiovascular injury. Particle and Fibre Toxicology, 13, 48.CrossRefPubMedPubMedCentral
26.
go back to reference Thompson, L. C., Urankar, R. N., Holland, N. A., Vidanapathirana, A. K., Pitzer, J. E., Han, L., et al. (2014). C(6)(0) exposure augments cardiac ischemia/reperfusion injury and coronary artery contraction in Sprague Dawley rats. Toxicological Sciences: An Official Journal of the Society of Toxicology, 138, 365–378.CrossRef Thompson, L. C., Urankar, R. N., Holland, N. A., Vidanapathirana, A. K., Pitzer, J. E., Han, L., et al. (2014). C(6)(0) exposure augments cardiac ischemia/reperfusion injury and coronary artery contraction in Sprague Dawley rats. Toxicological Sciences: An Official Journal of the Society of Toxicology, 138, 365–378.CrossRef
27.
go back to reference Minarchick, V. C., Stapleton, P. A., Porter, D. W., Wolfarth, M. G., Ciftyurek, E., Barger, M., et al. (2013). Pulmonary cerium dioxide nanoparticle exposure differentially impairs coronary and mesenteric arteriolar reactivity. Cardiovascular Toxicology, 13, 323–337.CrossRefPubMed Minarchick, V. C., Stapleton, P. A., Porter, D. W., Wolfarth, M. G., Ciftyurek, E., Barger, M., et al. (2013). Pulmonary cerium dioxide nanoparticle exposure differentially impairs coronary and mesenteric arteriolar reactivity. Cardiovascular Toxicology, 13, 323–337.CrossRefPubMed
28.
go back to reference Frasier, C. R., Sloan, R. C., Bostian, P. A., Gonzon, M. D., Kurowicki, J., Lopresto, S. J., et al. (2011). Short-term exercise preserves myocardial glutathione and decreases arrhythmias after thiol oxidation and ischemia in isolated rat hearts. Journal of Applied Physiology, 111, 1751–1759.CrossRefPubMed Frasier, C. R., Sloan, R. C., Bostian, P. A., Gonzon, M. D., Kurowicki, J., Lopresto, S. J., et al. (2011). Short-term exercise preserves myocardial glutathione and decreases arrhythmias after thiol oxidation and ischemia in isolated rat hearts. Journal of Applied Physiology, 111, 1751–1759.CrossRefPubMed
29.
go back to reference Curtis, M. J., & Walker, M. J. (1988). Quantification of arrhythmias using scoring systems: An examination of seven scores in an in vivo model of regional myocardial ischaemia. Cardiovascular Research, 22, 656–665.CrossRefPubMed Curtis, M. J., & Walker, M. J. (1988). Quantification of arrhythmias using scoring systems: An examination of seven scores in an in vivo model of regional myocardial ischaemia. Cardiovascular Research, 22, 656–665.CrossRefPubMed
30.
go back to reference Brown, D. A., Jew, K. N., Sparagna, G. C., Musch, T. I., & Moore, R. L. (2003). Exercise training preserves coronary flow and reduces infarct size after ischemia-reperfusion in rat heart. Journal of Applied Physiology, 95, 2510–2518.CrossRefPubMed Brown, D. A., Jew, K. N., Sparagna, G. C., Musch, T. I., & Moore, R. L. (2003). Exercise training preserves coronary flow and reduces infarct size after ischemia-reperfusion in rat heart. Journal of Applied Physiology, 95, 2510–2518.CrossRefPubMed
31.
go back to reference Frasier, C. R., Brown, D. A., Sloan, R. C., Hayes, B., Stewart, L. M., Patel, H. D., et al. (2013). Stage of the estrous cycle does not influence myocardial ischemia-reperfusion injury in rats (Rattus norvegicus). Comparative Medicine, 63, 416–421.PubMedPubMedCentral Frasier, C. R., Brown, D. A., Sloan, R. C., Hayes, B., Stewart, L. M., Patel, H. D., et al. (2013). Stage of the estrous cycle does not influence myocardial ischemia-reperfusion injury in rats (Rattus norvegicus). Comparative Medicine, 63, 416–421.PubMedPubMedCentral
32.
go back to reference Thompson, L. C., Frasier, C. R., Sloan, R. C., Mann, E. E., Harrison, B. S., Brown, J. M., et al. (2014). Pulmonary instillation of multi-walled carbon nanotubes promotes coronary vasoconstriction and exacerbates injury in isolated hearts. Nanotoxicology, 8, 38–49.CrossRefPubMed Thompson, L. C., Frasier, C. R., Sloan, R. C., Mann, E. E., Harrison, B. S., Brown, J. M., et al. (2014). Pulmonary instillation of multi-walled carbon nanotubes promotes coronary vasoconstriction and exacerbates injury in isolated hearts. Nanotoxicology, 8, 38–49.CrossRefPubMed
33.
go back to reference Sloan, R. C., Moukdar, F., Frasier, C. R., Patel, H. D., Bostian, P. A., Lust, R. M., et al. (2012). Mitochondrial permeability transition in the diabetic heart: Contributions of thiol redox state and mitochondrial calcium to augmented reperfusion injury. Journal of Molecular and Cellular Cardiology, 52, 1009–1018.CrossRefPubMed Sloan, R. C., Moukdar, F., Frasier, C. R., Patel, H. D., Bostian, P. A., Lust, R. M., et al. (2012). Mitochondrial permeability transition in the diabetic heart: Contributions of thiol redox state and mitochondrial calcium to augmented reperfusion injury. Journal of Molecular and Cellular Cardiology, 52, 1009–1018.CrossRefPubMed
34.
go back to reference Tong, H., Cheng, W. Y., Samet, J. M., Gilmour, M. I., & Devlin, R. B. (2010). Differential cardiopulmonary effects of size-fractionated ambient particulate matter in mice. Cardiovascular Toxicology, 10, 259–267.CrossRefPubMed Tong, H., Cheng, W. Y., Samet, J. M., Gilmour, M. I., & Devlin, R. B. (2010). Differential cardiopulmonary effects of size-fractionated ambient particulate matter in mice. Cardiovascular Toxicology, 10, 259–267.CrossRefPubMed
35.
go back to reference Bagate, K., Meiring, J. J., Gerlofs-Nijland, M. E., Cassee, F. R., Wiegand, H., Osornio-Vargas, A., et al. (2006). Ambient particulate matter affects cardiac recovery in a Langendorff ischemia model. Inhalation Toxicology, 18, 633–643.CrossRefPubMed Bagate, K., Meiring, J. J., Gerlofs-Nijland, M. E., Cassee, F. R., Wiegand, H., Osornio-Vargas, A., et al. (2006). Ambient particulate matter affects cardiac recovery in a Langendorff ischemia model. Inhalation Toxicology, 18, 633–643.CrossRefPubMed
36.
go back to reference Marchini, T., D’Annunzio, V., Paz, M. L., Caceres, L., Garces, M., Perez, V., et al. (2015). Selective TNF-alpha targeting with infliximab attenuates impaired oxygen metabolism and contractile function induced by an acute exposure to air particulate matter. American Journal of Physiology: Heart and Circulatory Physiology, 309, H1621–H1628.PubMed Marchini, T., D’Annunzio, V., Paz, M. L., Caceres, L., Garces, M., Perez, V., et al. (2015). Selective TNF-alpha targeting with infliximab attenuates impaired oxygen metabolism and contractile function induced by an acute exposure to air particulate matter. American Journal of Physiology: Heart and Circulatory Physiology, 309, H1621–H1628.PubMed
37.
go back to reference Hazari, M. S., Haykal-Coates, N., Winsett, D. W., Costa, D. L., & Farraj, A. K. (2009). A single exposure to particulate or gaseous air pollution increases the risk of aconitine-induced cardiac arrhythmia in hypertensive rats. Toxicological Sciences: An Official Journal of the Society of Toxicology, 112, 532–542.CrossRef Hazari, M. S., Haykal-Coates, N., Winsett, D. W., Costa, D. L., & Farraj, A. K. (2009). A single exposure to particulate or gaseous air pollution increases the risk of aconitine-induced cardiac arrhythmia in hypertensive rats. Toxicological Sciences: An Official Journal of the Society of Toxicology, 112, 532–542.CrossRef
38.
go back to reference Nattel, S., Maguy, A., Le Bouter, S., & Yeh, Y. H. (2007). Arrhythmogenic ion-channel remodeling in the heart: Heart failure, myocardial infarction, and atrial fibrillation. Physiological Reviews, 87, 425–456.CrossRefPubMed Nattel, S., Maguy, A., Le Bouter, S., & Yeh, Y. H. (2007). Arrhythmogenic ion-channel remodeling in the heart: Heart failure, myocardial infarction, and atrial fibrillation. Physiological Reviews, 87, 425–456.CrossRefPubMed
39.
40.
go back to reference Michael, S., Montag, M., & Dott, W. (2013). Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter. Environmental Pollution, 183, 19–29.CrossRefPubMed Michael, S., Montag, M., & Dott, W. (2013). Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter. Environmental Pollution, 183, 19–29.CrossRefPubMed
41.
go back to reference Alessandrini, F., Beck-Speier, I., Krappmann, D., Weichenmeier, I., Takenaka, S., Karg, E., et al. (2009). Role of oxidative stress in ultrafine particle-induced exacerbation of allergic lung inflammation. American Journal of Respiratory and Critical Care Medicine, 179, 984–991.CrossRefPubMed Alessandrini, F., Beck-Speier, I., Krappmann, D., Weichenmeier, I., Takenaka, S., Karg, E., et al. (2009). Role of oxidative stress in ultrafine particle-induced exacerbation of allergic lung inflammation. American Journal of Respiratory and Critical Care Medicine, 179, 984–991.CrossRefPubMed
42.
go back to reference Li, R., Ning, Z., Cui, J., Khalsa, B., Ai, L., Takabe, W., et al. (2009). Ultrafine particles from diesel engines induce vascular oxidative stress via JNK activation. Free Radical Biology and Medicine, 46, 775–782.CrossRefPubMed Li, R., Ning, Z., Cui, J., Khalsa, B., Ai, L., Takabe, W., et al. (2009). Ultrafine particles from diesel engines induce vascular oxidative stress via JNK activation. Free Radical Biology and Medicine, 46, 775–782.CrossRefPubMed
43.
go back to reference Beck-Speier, I., Dayal, N., Karg, E., Maier, K. L., Schumann, G., Schulz, H., et al. (2005). Oxidative stress and lipid mediators induced in alveolar macrophages by ultrafine particles. Free Radical Biology and Medicine, 38, 1080–1092.CrossRefPubMed Beck-Speier, I., Dayal, N., Karg, E., Maier, K. L., Schumann, G., Schulz, H., et al. (2005). Oxidative stress and lipid mediators induced in alveolar macrophages by ultrafine particles. Free Radical Biology and Medicine, 38, 1080–1092.CrossRefPubMed
44.
go back to reference Kim, J. B., Kim, C., Choi, E., Park, S., Park, H., Pak, H. N., et al. (2012). Particulate air pollution induces arrhythmia via oxidative stress and calcium calmodulin kinase II activation. Toxicology and Applied Pharmacology, 259, 66–73.CrossRefPubMed Kim, J. B., Kim, C., Choi, E., Park, S., Park, H., Pak, H. N., et al. (2012). Particulate air pollution induces arrhythmia via oxidative stress and calcium calmodulin kinase II activation. Toxicology and Applied Pharmacology, 259, 66–73.CrossRefPubMed
45.
go back to reference Gorr, M. W., Youtz, D. J., Eichenseer, C. M., Smith, K. E., Nelin, T. D., Cormet-Boyaka, E., et al. (2015). In vitro particulate matter exposure causes direct and lung-mediated indirect effects on cardiomyocyte function. American Journal of Physiology: Heart and Circulatory Physiology, 309, H53–H62.PubMedPubMedCentral Gorr, M. W., Youtz, D. J., Eichenseer, C. M., Smith, K. E., Nelin, T. D., Cormet-Boyaka, E., et al. (2015). In vitro particulate matter exposure causes direct and lung-mediated indirect effects on cardiomyocyte function. American Journal of Physiology: Heart and Circulatory Physiology, 309, H53–H62.PubMedPubMedCentral
46.
go back to reference Wold, L. E., Ying, Z., Hutchinson, K. R., Velten, M., Gorr, M. W., Velten, C., et al. (2012). Cardiovascular remodeling in response to long-term exposure to fine particulate matter air pollution. Circulation: Heart Failure, 5, 452–461.PubMedPubMedCentral Wold, L. E., Ying, Z., Hutchinson, K. R., Velten, M., Gorr, M. W., Velten, C., et al. (2012). Cardiovascular remodeling in response to long-term exposure to fine particulate matter air pollution. Circulation: Heart Failure, 5, 452–461.PubMedPubMedCentral
47.
go back to reference Moller, W., Brown, D. M., Kreyling, W. G., & Stone, V. (2005). Ultrafine particles cause cytoskeletal dysfunctions in macrophages: Role of intracellular calcium. Particle and Fibre Toxicology, 2, 7.CrossRefPubMedPubMedCentral Moller, W., Brown, D. M., Kreyling, W. G., & Stone, V. (2005). Ultrafine particles cause cytoskeletal dysfunctions in macrophages: Role of intracellular calcium. Particle and Fibre Toxicology, 2, 7.CrossRefPubMedPubMedCentral
48.
go back to reference Halestrap, A. P., & Richardson, A. P. (2015). The mitochondrial permeability transition: A current perspective on its identity and role in ischaemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 78, 129–141.CrossRefPubMed Halestrap, A. P., & Richardson, A. P. (2015). The mitochondrial permeability transition: A current perspective on its identity and role in ischaemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 78, 129–141.CrossRefPubMed
49.
go back to reference Gill, R. S., Bigam, D. L., & Cheung, P. Y. (2012). The role of cyclosporine in the treatment of myocardial reperfusion injury. Shock, 37, 341–347.CrossRefPubMed Gill, R. S., Bigam, D. L., & Cheung, P. Y. (2012). The role of cyclosporine in the treatment of myocardial reperfusion injury. Shock, 37, 341–347.CrossRefPubMed
50.
go back to reference Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological Reviews, 94, 909–950.CrossRefPubMedPubMedCentral Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological Reviews, 94, 909–950.CrossRefPubMedPubMedCentral
51.
go back to reference Biary, N., Xie, C., Kauffman, J., & Akar, F. G. (2011). Biophysical properties and functional consequences of reactive oxygen species (ROS)-induced ROS release in intact myocardium. Journal of Physiology, 589, 5167–5179.CrossRefPubMedPubMedCentral Biary, N., Xie, C., Kauffman, J., & Akar, F. G. (2011). Biophysical properties and functional consequences of reactive oxygen species (ROS)-induced ROS release in intact myocardium. Journal of Physiology, 589, 5167–5179.CrossRefPubMedPubMedCentral
52.
go back to reference Hausenloy, D. J., Maddock, H. L., Baxter, G. F., & Yellon, D. M. (2002). Inhibiting mitochondrial permeability transition pore opening: A new paradigm for myocardial preconditioning? Cardiovascular Research, 55, 534–543.CrossRefPubMed Hausenloy, D. J., Maddock, H. L., Baxter, G. F., & Yellon, D. M. (2002). Inhibiting mitochondrial permeability transition pore opening: A new paradigm for myocardial preconditioning? Cardiovascular Research, 55, 534–543.CrossRefPubMed
Metadata
Title
Ultrafine Particulate Matter Increases Cardiac Ischemia/Reperfusion Injury via Mitochondrial Permeability Transition Pore
Authors
Nathan A. Holland
Chad R. Fraiser
Ruben C. Sloan III
Robert B. Devlin
David A. Brown
Christopher J. Wingard
Publication date
01-10-2017
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 4/2017
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-017-9402-6

Other articles of this Issue 4/2017

Cardiovascular Toxicology 4/2017 Go to the issue