Skip to main content
Top
Published in: Cardiovascular Toxicology 4/2017

01-10-2017

Electrophysiologic Studies on the Risks and Potential Mechanism Underlying the Proarrhythmic Nature of Azithromycin

Authors: Mengdan Zhang, Ming Xie, Sha Li, Ying Gao, Shuyin Xue, Huili Huang, Kesu Chen, Fuming Liu, Long Chen

Published in: Cardiovascular Toxicology | Issue 4/2017

Login to get access

Abstract

The mechanisms underlying arrhythmia induced by the clinical use of azithromycin are poorly understood. We aimed to investigate the proarrhythmic effects of azithromycin using electrocardiogram (ECG) and ion channel models. In vivo and in vitro guinea pig ECG and current and voltage clamp recordings were carried out. Azithromycin at 114.6 mg/kg (three times the clinically relevant dose) reduced heart rate (HR) and prolonged the PR, QRS and rate-corrected QT (QTc) intervals of guinea pig ECG in vivo. In vitro technique revealed that azithromycin at 207.5 and 415 mg/L [five and ten times clinically relevant concentration (CRC)] reduced HR and prolonged the PR, QRS and QTc intervals in the isolated guinea pig heart ECG. Both arrhythmias presented bradyarrhythmic features, mainly with reduced HR and prolonged PR interval. Action potential analysis from the guinea pig cardiomyocytes indicated that azithromycin at 830 mg/L (20 times CRC) significantly prolonged the action potential durations at 50% (APD50) and 90% (APD90) of full repolarization levels with a rectangular pattern. Azithromycin significantly suppressed the L-type Ca2+ and Na+ currents from the left ventricular myocytes of guinea pig at 50% inhibiting concentrations (IC50) of 942.5 ± 68.4 mg/L (22.7 times CRC) and 1123.0 ± 87.7 mg/L (27.1 times CRC), respectively. However, azithromycin at 50 times CRC (2075 mg/L) inhibited IKr current at an inhibition rate of 30.99 ± 5.23% with an undetectable IC50. Azithromycin caused bradyarrhythmia primarily by inhibiting L-type Ca2+ and Na+ currents.
Literature
1.
go back to reference Lee, R. A., Guyton, A., Kunz, D., Cutter, G. R., & Hoesley, C. J. (2016). Evaluation of baseline corrected QT interval and azithromycin prescriptions in an academic medical center. Journal of Hospital Medicine, 11, 15–20.CrossRefPubMed Lee, R. A., Guyton, A., Kunz, D., Cutter, G. R., & Hoesley, C. J. (2016). Evaluation of baseline corrected QT interval and azithromycin prescriptions in an academic medical center. Journal of Hospital Medicine, 11, 15–20.CrossRefPubMed
2.
go back to reference Huang, B. H., Wu, C. H., Hsia, C. P., & Yin Chen, C. (2007). Azithromycin-induced torsade de pointes. Pacing and Clinical Electrophysiology, 30, 1579–1582.CrossRefPubMed Huang, B. H., Wu, C. H., Hsia, C. P., & Yin Chen, C. (2007). Azithromycin-induced torsade de pointes. Pacing and Clinical Electrophysiology, 30, 1579–1582.CrossRefPubMed
3.
go back to reference Ray, W. A., Murray, K. T., Hall, K., Arbogast, P. G., & Stein, C. M. (2012). Azithromycin and the risk of cardiovascular death. The New England Journal of Medicine, 366, 1881–1890.CrossRefPubMedPubMedCentral Ray, W. A., Murray, K. T., Hall, K., Arbogast, P. G., & Stein, C. M. (2012). Azithromycin and the risk of cardiovascular death. The New England Journal of Medicine, 366, 1881–1890.CrossRefPubMedPubMedCentral
4.
go back to reference Rao, G. A., Mann, J. R., Shoaibi, A., Bennett, C. L., Nahhas, G., Sutton, S. S., et al. (2014). Azithromycin and levofloxacin use and increased risk of cardiac arrhythmia and death. Annals of Family Medicine, 12, 121–127.CrossRefPubMedPubMedCentral Rao, G. A., Mann, J. R., Shoaibi, A., Bennett, C. L., Nahhas, G., Sutton, S. S., et al. (2014). Azithromycin and levofloxacin use and increased risk of cardiac arrhythmia and death. Annals of Family Medicine, 12, 121–127.CrossRefPubMedPubMedCentral
5.
go back to reference Chou, H. W., Wang, J. L., Chang, C. H., Lai, C. L., Lai, M. S., & Chan, K. A. (2015). Risks of cardiac arrhythmia and mortality among patients using new-generation macrolides, fluoroquinolones, and β-lactam/β-lactamase inhibitors: A Taiwanese nationwide study. Clinical Infectious Diseases, 2015(60), 566–577.CrossRef Chou, H. W., Wang, J. L., Chang, C. H., Lai, C. L., Lai, M. S., & Chan, K. A. (2015). Risks of cardiac arrhythmia and mortality among patients using new-generation macrolides, fluoroquinolones, and β-lactam/β-lactamase inhibitors: A Taiwanese nationwide study. Clinical Infectious Diseases, 2015(60), 566–577.CrossRef
6.
go back to reference Tilelli, J. A., Smith, K. M., & Pettignano, R. (2006). Life-threatening bradyarrhythmia after massive azithromycin overdose. Pharmacotherapy, 26, 147–150.CrossRefPubMed Tilelli, J. A., Smith, K. M., & Pettignano, R. (2006). Life-threatening bradyarrhythmia after massive azithromycin overdose. Pharmacotherapy, 26, 147–150.CrossRefPubMed
7.
go back to reference Nilsson, M. F., & Webster, W. S. (2014). Effects of macrolide antibiotics on rat embryonic heart function in vitro. Birth Defects Research Part B, Developmental and Reproductive Toxicology, 101, 189–198.CrossRefPubMed Nilsson, M. F., & Webster, W. S. (2014). Effects of macrolide antibiotics on rat embryonic heart function in vitro. Birth Defects Research Part B, Developmental and Reproductive Toxicology, 101, 189–198.CrossRefPubMed
9.
go back to reference Maisch, N. M., Kochupurackal, J. G., & Sin, J. (2014). Azithromycin and the risk of cardiovascular complications. Journal of Pharmacy Practice, 27, 496–500.CrossRefPubMed Maisch, N. M., Kochupurackal, J. G., & Sin, J. (2014). Azithromycin and the risk of cardiovascular complications. Journal of Pharmacy Practice, 27, 496–500.CrossRefPubMed
10.
go back to reference Granowitz, E. V., Tabor, K. J., & Kirchhoffer, J. B. (2000). Potentially fatal interaction between azithromycin and disopyramide. Pacing and Clinical Electrophysiology, 23, 1433–1435.CrossRefPubMed Granowitz, E. V., Tabor, K. J., & Kirchhoffer, J. B. (2000). Potentially fatal interaction between azithromycin and disopyramide. Pacing and Clinical Electrophysiology, 23, 1433–1435.CrossRefPubMed
11.
go back to reference Samarendra, P., Kumari, S., Evans, S. J., Sacchi, T. J., & Navarro, V. (2001). QT prolongation associated with azithromycin/amiodarone combination. Pacing and Clinical Electrophysiology, 24, 1572–1574.CrossRefPubMed Samarendra, P., Kumari, S., Evans, S. J., Sacchi, T. J., & Navarro, V. (2001). QT prolongation associated with azithromycin/amiodarone combination. Pacing and Clinical Electrophysiology, 24, 1572–1574.CrossRefPubMed
12.
go back to reference Cocco, G., & Jerie, P. (2015). Torsades de pointes induced by the concomitant use of ivabradine and azithromycin: An unexpected dangerous interaction. Cardiovascular Toxicology, 15, 104–106.CrossRefPubMed Cocco, G., & Jerie, P. (2015). Torsades de pointes induced by the concomitant use of ivabradine and azithromycin: An unexpected dangerous interaction. Cardiovascular Toxicology, 15, 104–106.CrossRefPubMed
13.
go back to reference Winton, J. C., & Twilla, J. D. (2013). Sudden cardiac arrest in a patient on chronic methadone after the addition of azithromycin. The American Journal of the Medical Sciences, 345, 160–162.CrossRefPubMed Winton, J. C., & Twilla, J. D. (2013). Sudden cardiac arrest in a patient on chronic methadone after the addition of azithromycin. The American Journal of the Medical Sciences, 345, 160–162.CrossRefPubMed
14.
go back to reference Niedrig, D., Maechler, S., Hoppe, L., Corti, N., Kovari, H., & Russmann, S. (2016). Drug safety of macrolide and quinolone antibiotics in a tertiary care hospital: Administration of interacting co-medication and QT prolongation. European Journal of Clinical Pharmacology, 72, 859–867.CrossRefPubMed Niedrig, D., Maechler, S., Hoppe, L., Corti, N., Kovari, H., & Russmann, S. (2016). Drug safety of macrolide and quinolone antibiotics in a tertiary care hospital: Administration of interacting co-medication and QT prolongation. European Journal of Clinical Pharmacology, 72, 859–867.CrossRefPubMed
15.
go back to reference Howard, P. A. (2013). Azithromycin-induced proarrhythmia and cardiovascular death. The Annals of Pharmacotherapy, 47, 1547–1551.CrossRefPubMed Howard, P. A. (2013). Azithromycin-induced proarrhythmia and cardiovascular death. The Annals of Pharmacotherapy, 47, 1547–1551.CrossRefPubMed
16.
go back to reference Ohara, H., Nakamura, Y., Watanabe, Y., Cao, X., Yamazaki, Y., Izumi-Nakaseko, H., et al. (2015). Azithromycin can prolong QT interval and suppress ventricular contraction, but will not induce torsade de pointes. Cardiovascular Toxicology, 15, 232–240.CrossRefPubMed Ohara, H., Nakamura, Y., Watanabe, Y., Cao, X., Yamazaki, Y., Izumi-Nakaseko, H., et al. (2015). Azithromycin can prolong QT interval and suppress ventricular contraction, but will not induce torsade de pointes. Cardiovascular Toxicology, 15, 232–240.CrossRefPubMed
17.
go back to reference Trac, M. H., McArthur, E., Jandoc, R., Dixon, S. N., Nash, D. M., Hackam, D. G., et al. (2016). Macrolide antibiotics and the risk of ventricular arrhythmia in older adults. Canadian Medical Association Journal, 188, E120–E129.CrossRefPubMedPubMedCentral Trac, M. H., McArthur, E., Jandoc, R., Dixon, S. N., Nash, D. M., Hackam, D. G., et al. (2016). Macrolide antibiotics and the risk of ventricular arrhythmia in older adults. Canadian Medical Association Journal, 188, E120–E129.CrossRefPubMedPubMedCentral
18.
go back to reference Svanström, H., Pasternak, B., & Hviid, A. (2013). Use of azithromycin and death from cardiovascular causes. The New England Journal of Medicine, 368, 1704–1712.CrossRefPubMed Svanström, H., Pasternak, B., & Hviid, A. (2013). Use of azithromycin and death from cardiovascular causes. The New England Journal of Medicine, 368, 1704–1712.CrossRefPubMed
19.
go back to reference Albert, R. K., & Schuller, J. L. (2014). COPD Clinical Research Network. Macrolide antibiotics and the risk of cardiac arrhythmias. American Journal of Respiratory and Critical Care Medicine, 189, 1173–1180.CrossRefPubMedPubMedCentral Albert, R. K., & Schuller, J. L. (2014). COPD Clinical Research Network. Macrolide antibiotics and the risk of cardiac arrhythmias. American Journal of Respiratory and Critical Care Medicine, 189, 1173–1180.CrossRefPubMedPubMedCentral
20.
go back to reference Fossa, A. A., Wisialowski, T., Duncan, J. N., Deng, S., & Dunne, M. (2007). Azithromycin/chloroquine combination does not increase cardiac instability despite an increase in monophasic action potential duration in the anesthetized guinea pig. The American Journal of Tropical Medicine and Hygiene, 77, 929–938.PubMed Fossa, A. A., Wisialowski, T., Duncan, J. N., Deng, S., & Dunne, M. (2007). Azithromycin/chloroquine combination does not increase cardiac instability despite an increase in monophasic action potential duration in the anesthetized guinea pig. The American Journal of Tropical Medicine and Hygiene, 77, 929–938.PubMed
21.
go back to reference Thomsen, M. B., Beekman, J. D., Attevelt, N. J., Takahara, A., Sugiyama, A., Chiba, K., et al. (2006). No proarrhythmic properties of the antibiotics Moxifloxacin or Azithromycin in anaesthetized dogs with chronic-AV block. British Journal of Pharmacology, 149, 1039–1048.CrossRefPubMedPubMedCentral Thomsen, M. B., Beekman, J. D., Attevelt, N. J., Takahara, A., Sugiyama, A., Chiba, K., et al. (2006). No proarrhythmic properties of the antibiotics Moxifloxacin or Azithromycin in anaesthetized dogs with chronic-AV block. British Journal of Pharmacology, 149, 1039–1048.CrossRefPubMedPubMedCentral
22.
go back to reference Milberg, P., Eckardt, L., Bruns, H. J., Biertz, J., Ramtin, S., Reinsch, N., et al. (2002). Divergent proarrhythmic potential of macrolide antibiotics despite similar QT prolongation: Fast phase 3 repolarization prevents early afterdepolarizations and torsade de pointes. The Journal of Pharmacology and Experimental Therapeutics, 303, 218–225.CrossRefPubMed Milberg, P., Eckardt, L., Bruns, H. J., Biertz, J., Ramtin, S., Reinsch, N., et al. (2002). Divergent proarrhythmic potential of macrolide antibiotics despite similar QT prolongation: Fast phase 3 repolarization prevents early afterdepolarizations and torsade de pointes. The Journal of Pharmacology and Experimental Therapeutics, 303, 218–225.CrossRefPubMed
23.
go back to reference Reagan-Shaw, S., Nihal, M., & Ahmad, N. (2008). Dose translation from animal to human studies revisited. FASEB Journal, 22, 659–661.CrossRefPubMed Reagan-Shaw, S., Nihal, M., & Ahmad, N. (2008). Dose translation from animal to human studies revisited. FASEB Journal, 22, 659–661.CrossRefPubMed
24.
go back to reference Chen, L., Titch, T., Luo, Z., Xu, Y., Li, X., Huang, F., et al. (2012). Confirmation of a proarrhythmic risk underlying the clinical use of common Chinese herbal intravenous injections. Journal of Ethnopharmacology, 142, 829–835.CrossRefPubMed Chen, L., Titch, T., Luo, Z., Xu, Y., Li, X., Huang, F., et al. (2012). Confirmation of a proarrhythmic risk underlying the clinical use of common Chinese herbal intravenous injections. Journal of Ethnopharmacology, 142, 829–835.CrossRefPubMed
25.
go back to reference Chen, L., Wang, L., Xu, B., Ni, G., Yu, L., Han, B., et al. (2009). Mechanisms of alpha1-adrenoceptor mediated QT prolongation in the diabetic rat heart. Life Sciences, 84, 250–256.CrossRefPubMed Chen, L., Wang, L., Xu, B., Ni, G., Yu, L., Han, B., et al. (2009). Mechanisms of alpha1-adrenoceptor mediated QT prolongation in the diabetic rat heart. Life Sciences, 84, 250–256.CrossRefPubMed
26.
go back to reference Salimi, A., Eybagi, S., Seydi, E., Naserzadeh, P., Kazerouni, N. P., & Pourahmad, J. (2016). Toxicity of macrolide antibiotics on isolated heart mitochondria: A justification for their cardiotoxic adverse effect. Xenobiotica, 46, 82–93.CrossRefPubMed Salimi, A., Eybagi, S., Seydi, E., Naserzadeh, P., Kazerouni, N. P., & Pourahmad, J. (2016). Toxicity of macrolide antibiotics on isolated heart mitochondria: A justification for their cardiotoxic adverse effect. Xenobiotica, 46, 82–93.CrossRefPubMed
27.
go back to reference Redfern, W. S., Carlsson, L., Davis, A. S., Lynch, W. G., MacKenzie, I., Palethorpe, S., et al. (2003). Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: Evidence for a provisional safety margin in drug development. Cardiovascular Research, 58, 32–45.CrossRefPubMed Redfern, W. S., Carlsson, L., Davis, A. S., Lynch, W. G., MacKenzie, I., Palethorpe, S., et al. (2003). Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: Evidence for a provisional safety margin in drug development. Cardiovascular Research, 58, 32–45.CrossRefPubMed
28.
go back to reference Matzneller, P., Krasniqi, S., Kinzig, M., Sörgel, F., Hüttner, S., Lackner, E., et al. (2013). Blood, tissue, and intracellular concentrations of azithromycin during and after end of therapy. Antimicrobial Agents and Chemotherapy, 57, 1736–1742.CrossRefPubMedPubMedCentral Matzneller, P., Krasniqi, S., Kinzig, M., Sörgel, F., Hüttner, S., Lackner, E., et al. (2013). Blood, tissue, and intracellular concentrations of azithromycin during and after end of therapy. Antimicrobial Agents and Chemotherapy, 57, 1736–1742.CrossRefPubMedPubMedCentral
Metadata
Title
Electrophysiologic Studies on the Risks and Potential Mechanism Underlying the Proarrhythmic Nature of Azithromycin
Authors
Mengdan Zhang
Ming Xie
Sha Li
Ying Gao
Shuyin Xue
Huili Huang
Kesu Chen
Fuming Liu
Long Chen
Publication date
01-10-2017
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 4/2017
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-017-9401-7

Other articles of this Issue 4/2017

Cardiovascular Toxicology 4/2017 Go to the issue