Skip to main content
Top
Published in: Cardiovascular Toxicology 4/2016

01-10-2016

Notch3 Ameliorates Cardiac Fibrosis After Myocardial Infarction by Inhibiting the TGF-β1/Smad3 Pathway

Authors: Mingming Zhang, Xietian Pan, Qian Zou, Yuesheng Xia, Jiangwei Chen, Qimeng Hao, Haichang Wang, Dongdong Sun

Published in: Cardiovascular Toxicology | Issue 4/2016

Login to get access

Abstract

Notch3 and TGF-β1 signaling play a key role in the pathogenesis and progression of chronic cardiovascular disease. However, whether Notch3 protects against myocardial infarction (MI) and the underlying mechanisms remains unknown. C57BL/6 mice were randomized to be treated with Notch3 siRNA (siNotch3) or lentivirus carrying Notch3 cDNA (Notch3) before coronary artery ligation. Four weeks after constructing MI model, cardiac function and fibrosis were compared between groups. The cardiac fibroblast cells (CFs) were isolated from newborn C57BL/6 mice (1–3 days old) and transfected with lentivirus carrying Notch3 cDNA. TGF-β1 (5 ng/ml), a well-known pro-fibrotic factor, was administered 72 h after Notch3 cDNA administration in CFs. The related proteins of fibrosis such as a-smooth muscle actin (a-SMA), Type I collagen, metalloprotease (MMP)-9 and the tissue inhibitor of metalloproteinases (TIMP)-2 were examined by western blot analysis. Notch3 cDNA treatment attenuated cardiac damage and inhibited fibrosis in mice with MI. Meanwhile, Notch3 siRNA administration aggravated cardiac function damage and markedly enhanced cardiac fibrosis in mice with MI. Overexpression of Notch3 inhibited TGF-β1-induced fibroblast–myofibroblast transition of mouse cardiac fibroblast cells, as evidenced by down-regulating a-SMA and Type I collagen expression. Notch3 cDNA treatment also increased MMP-9 expression and decreased TIMP-2 expression in the TGF-β1-stimulated cells. This study indicates that Notch3 is an important protective factor for cardiac fibrosis in a MI model, and the protective effect of Notch3 is attributable to its action on TGF-β1/Smad3 signaling.
Literature
1.
go back to reference Leask, A. (2010). Potential therapeutic targets for cardiac fibrosis: TGF beta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circulation Research, 106, 1675–1680.CrossRefPubMed Leask, A. (2010). Potential therapeutic targets for cardiac fibrosis: TGF beta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circulation Research, 106, 1675–1680.CrossRefPubMed
3.
go back to reference Sassoli, C., Chellini, F., Pini, A., Tani, A., Nistri, S., Nosi, D., et al. (2013). Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-b/Smad3 signaling. PLoS ONE, 8, e63896.CrossRefPubMedPubMedCentral Sassoli, C., Chellini, F., Pini, A., Tani, A., Nistri, S., Nosi, D., et al. (2013). Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-b/Smad3 signaling. PLoS ONE, 8, e63896.CrossRefPubMedPubMedCentral
4.
go back to reference Docherty, N. G., Murphy, M., Martin, F., Brennan, E. P., & Godson, C. (2014). Targeting cellular drivers and counter-regulators of hyperglycaemia and TGF-β1 associated pro-fibrotic responses in diabetic kidney disease. Experimental Physiology, 99, 1154–1162.CrossRefPubMed Docherty, N. G., Murphy, M., Martin, F., Brennan, E. P., & Godson, C. (2014). Targeting cellular drivers and counter-regulators of hyperglycaemia and TGF-β1 associated pro-fibrotic responses in diabetic kidney disease. Experimental Physiology, 99, 1154–1162.CrossRefPubMed
5.
go back to reference Vivar, R., Humeres, C., Ayala, P., Olmedo, I., Catalán, M., García, L., et al. (2013). TGF-β1 prevents simulated ischemia/reperfusion-induced cardiac fibroblast apoptosis by activation of both canonical and non-canonical signaling pathways. Biochimica et Biophysica Acta, 1832, 754–762.CrossRefPubMed Vivar, R., Humeres, C., Ayala, P., Olmedo, I., Catalán, M., García, L., et al. (2013). TGF-β1 prevents simulated ischemia/reperfusion-induced cardiac fibroblast apoptosis by activation of both canonical and non-canonical signaling pathways. Biochimica et Biophysica Acta, 1832, 754–762.CrossRefPubMed
6.
go back to reference Lassaletta, A. D., Elmadhun, N. Y., Burgess, T. A., Bianchi, C., Sabe, A. A., Robich, M. P., et al. (2014). Microvascular Notch signaling is upregulated in response to vascular endothelial growth factor and chronic myocardial ischemia. Circulation Journal, 78, 743–751.CrossRefPubMed Lassaletta, A. D., Elmadhun, N. Y., Burgess, T. A., Bianchi, C., Sabe, A. A., Robich, M. P., et al. (2014). Microvascular Notch signaling is upregulated in response to vascular endothelial growth factor and chronic myocardial ischemia. Circulation Journal, 78, 743–751.CrossRefPubMed
7.
go back to reference Zhou, X. L., & Liu, J. C. (2014). Role of Notch signaling in the mammalian heart. Brazilian Journal of Medical and Biological Research, 47, 1–10.CrossRefPubMed Zhou, X. L., & Liu, J. C. (2014). Role of Notch signaling in the mammalian heart. Brazilian Journal of Medical and Biological Research, 47, 1–10.CrossRefPubMed
8.
go back to reference Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: Cell fate control and signal integration in development. Science, 284, 770–776.CrossRefPubMed Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: Cell fate control and signal integration in development. Science, 284, 770–776.CrossRefPubMed
9.
go back to reference Bray, S. J. (2006). Notch signalling: A simple pathway becomes complex. Nature Reviews Molecular Cell Biology, 7, 678–689.CrossRefPubMed Bray, S. J. (2006). Notch signalling: A simple pathway becomes complex. Nature Reviews Molecular Cell Biology, 7, 678–689.CrossRefPubMed
10.
go back to reference Mazzone, M., Selfors, L. M., Albeck, J., Overholtzer, M., Sale, S., Carroll, D. L., et al. (2010). Dose-dependent induction of distinct phenotypic responses to Notch pathway activation in mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 107, 5012–5017.CrossRefPubMedPubMedCentral Mazzone, M., Selfors, L. M., Albeck, J., Overholtzer, M., Sale, S., Carroll, D. L., et al. (2010). Dose-dependent induction of distinct phenotypic responses to Notch pathway activation in mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 107, 5012–5017.CrossRefPubMedPubMedCentral
11.
go back to reference Wickremasinghe, R. G., Prentice, A. G., & Steele, A. J. (2011). p53 and Notch signaling in chronic lymphocytic leukemia: Clues to identifying novel therapeutic strategies. Leukemia, 25, 1400–1407.CrossRefPubMed Wickremasinghe, R. G., Prentice, A. G., & Steele, A. J. (2011). p53 and Notch signaling in chronic lymphocytic leukemia: Clues to identifying novel therapeutic strategies. Leukemia, 25, 1400–1407.CrossRefPubMed
12.
go back to reference Kennard, S., Liu, H., & Lilly, B. (2008). Transforming growth factor-beta (TGF-1) down-regulates Notch-3 in fibroblasts to promote smooth muscle gene expression. Journal of Biological Chemistry, 283, 1324–1333.CrossRefPubMed Kennard, S., Liu, H., & Lilly, B. (2008). Transforming growth factor-beta (TGF-1) down-regulates Notch-3 in fibroblasts to promote smooth muscle gene expression. Journal of Biological Chemistry, 283, 1324–1333.CrossRefPubMed
13.
go back to reference MacGrogan, D., Nus, M., & de la Pompa, J. L. (2010). Notch signaling in cardiac development and disease. Current Topics in Developmental Biology, 92, 333–365.CrossRefPubMed MacGrogan, D., Nus, M., & de la Pompa, J. L. (2010). Notch signaling in cardiac development and disease. Current Topics in Developmental Biology, 92, 333–365.CrossRefPubMed
14.
go back to reference Hurlbut, G. D., Kankel, M. W., Lake, R. J., & Artavanis-Tsakonas, S. (2007). Crossing paths with Notch in the hyper-network. Current Opinion in Cell Biology, 19, 166–175.CrossRefPubMed Hurlbut, G. D., Kankel, M. W., Lake, R. J., & Artavanis-Tsakonas, S. (2007). Crossing paths with Notch in the hyper-network. Current Opinion in Cell Biology, 19, 166–175.CrossRefPubMed
15.
go back to reference Fan, Y. H., Dong, H., Pan, Q., Cao, Y. J., Li, H., & Wang, H. C. (2011). Notch signaling may negatively regulate neonatal rat cardiac fibroblast-myofibroblast transformation. Physiological Research, 60, 739–748.PubMed Fan, Y. H., Dong, H., Pan, Q., Cao, Y. J., Li, H., & Wang, H. C. (2011). Notch signaling may negatively regulate neonatal rat cardiac fibroblast-myofibroblast transformation. Physiological Research, 60, 739–748.PubMed
16.
go back to reference Gude, N. A., Emmanuel, G., Wu, W., Cottage, C. T., Fischer, K., Quijada, P., et al. (2008). Activation of Notch-mediated protective signaling in the myocardium. Circulation Research, 102, 1025–1035.CrossRefPubMedPubMedCentral Gude, N. A., Emmanuel, G., Wu, W., Cottage, C. T., Fischer, K., Quijada, P., et al. (2008). Activation of Notch-mediated protective signaling in the myocardium. Circulation Research, 102, 1025–1035.CrossRefPubMedPubMedCentral
17.
go back to reference Gao, E., Lei, Y. H., Shang, X., Huang, Z. M., Zuo, L., Boucher, M., et al. (2010). A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circulation Research, 107, 1445–1453.CrossRefPubMedPubMedCentral Gao, E., Lei, Y. H., Shang, X., Huang, Z. M., Zuo, L., Boucher, M., et al. (2010). A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circulation Research, 107, 1445–1453.CrossRefPubMedPubMedCentral
18.
go back to reference Li, P., Wang, D., Lucas, J., Oparil, S., Xing, D., Cao, X., et al. (2008). A trial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circulation Research, 102, 185–192.CrossRefPubMed Li, P., Wang, D., Lucas, J., Oparil, S., Xing, D., Cao, X., et al. (2008). A trial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circulation Research, 102, 185–192.CrossRefPubMed
19.
go back to reference Li, Y., Hiroi, Y., Ngoy, S., Okamoto, R., Noma, K., Wang, C. Y., et al. (2011). Notch1 in bone marrow derived cells mediates cardiac repair after myocardial infarction. Circulation, 123, 866–876.CrossRefPubMedPubMedCentral Li, Y., Hiroi, Y., Ngoy, S., Okamoto, R., Noma, K., Wang, C. Y., et al. (2011). Notch1 in bone marrow derived cells mediates cardiac repair after myocardial infarction. Circulation, 123, 866–876.CrossRefPubMedPubMedCentral
20.
go back to reference Zakharova, L., Nural-Guvener, H., Nimlos, J., Popovic, S., & Gaballa, M. A. (2013). Myocardial infarction is associated with transforming growth factor beta-dependent yield and functional decline in atrial explant-derived c-Kit + cells. Journal of the American Heart Association, 2, e000317.CrossRefPubMedPubMedCentral Zakharova, L., Nural-Guvener, H., Nimlos, J., Popovic, S., & Gaballa, M. A. (2013). Myocardial infarction is associated with transforming growth factor beta-dependent yield and functional decline in atrial explant-derived c-Kit + cells. Journal of the American Heart Association, 2, e000317.CrossRefPubMedPubMedCentral
21.
go back to reference Kratsios, P., Catela, C., Salimova, E., Huth, M., Berno, V., Rosenthal, N., et al. (2010). Distinct roles for cell-autonomous notch signaling in cardiomyocytes of the embryonic and adult heart. Circulation Research, 106, 559–572.CrossRefPubMed Kratsios, P., Catela, C., Salimova, E., Huth, M., Berno, V., Rosenthal, N., et al. (2010). Distinct roles for cell-autonomous notch signaling in cardiomyocytes of the embryonic and adult heart. Circulation Research, 106, 559–572.CrossRefPubMed
22.
go back to reference Ge, W., & Ren, J. (2012). mTOR-STAT3-notch signalling contributes to ALDH2-induced protection against cardiac contractile dysfunction and autophagy under alcoholism. Journal of Cellular and Molecular Medicine, 16, 616–626.CrossRefPubMed Ge, W., & Ren, J. (2012). mTOR-STAT3-notch signalling contributes to ALDH2-induced protection against cardiac contractile dysfunction and autophagy under alcoholism. Journal of Cellular and Molecular Medicine, 16, 616–626.CrossRefPubMed
23.
go back to reference Russell, J. L., Goetsch, S. C., Gaiano, N. R., Hill, J. A., Olson, E. N., & Schneider, J. W. (2011). A dynamic Notch injury response activates epicardium and contributes to fibrosis-repair. Circulation Research, 108, 51–59.CrossRefPubMed Russell, J. L., Goetsch, S. C., Gaiano, N. R., Hill, J. A., Olson, E. N., & Schneider, J. W. (2011). A dynamic Notch injury response activates epicardium and contributes to fibrosis-repair. Circulation Research, 108, 51–59.CrossRefPubMed
24.
go back to reference Li, Y., Hiroi, Y., & Liao, J. K. (2010). Notch signaling as an important mediator of cardiac repair and regeneration after myocardial infarction. Trends in Cardiovascular Medicine, 20, 228–231.CrossRefPubMedPubMedCentral Li, Y., Hiroi, Y., & Liao, J. K. (2010). Notch signaling as an important mediator of cardiac repair and regeneration after myocardial infarction. Trends in Cardiovascular Medicine, 20, 228–231.CrossRefPubMedPubMedCentral
25.
go back to reference Visse, R., & Nagase, H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circulation Research, 92, 827–839.CrossRefPubMed Visse, R., & Nagase, H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circulation Research, 92, 827–839.CrossRefPubMed
26.
go back to reference Barnes, B. R., Szelenyi, E. R., Warren, G. L., & Urso, M. L. (2009). Alterations in mRNA and protein levels of metalloproteinases-2, -9, and -14 and tissue inhibitor of metalloproteinase-2 responses to traumatic skeletal muscle injury. American Journal of Physiology. Cell Physiology, 297, C1501–C1508.CrossRefPubMed Barnes, B. R., Szelenyi, E. R., Warren, G. L., & Urso, M. L. (2009). Alterations in mRNA and protein levels of metalloproteinases-2, -9, and -14 and tissue inhibitor of metalloproteinase-2 responses to traumatic skeletal muscle injury. American Journal of Physiology. Cell Physiology, 297, C1501–C1508.CrossRefPubMed
27.
go back to reference Lu, K. V., Jong, K. A., Rajasekaran, A. K., Cloughesy, T. F., & Mischel, P. S. (2004). Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and cell invasion in a human glioblastoma cell line. Laboratory Investigation, 84, 8–20.CrossRefPubMed Lu, K. V., Jong, K. A., Rajasekaran, A. K., Cloughesy, T. F., & Mischel, P. S. (2004). Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and cell invasion in a human glioblastoma cell line. Laboratory Investigation, 84, 8–20.CrossRefPubMed
28.
go back to reference Yang, J., Zheng, J., Wu, L., Shi, M., Zhang, H., Wang, X., et al. (2011). NDRG2 ameliorates hepatic fibrosis by inhibiting the TGF-b1/Smad pathway and Altering the MMP2/TIMP2 ratio in rats. PLoS ONE, 6, e27710.CrossRefPubMedPubMedCentral Yang, J., Zheng, J., Wu, L., Shi, M., Zhang, H., Wang, X., et al. (2011). NDRG2 ameliorates hepatic fibrosis by inhibiting the TGF-b1/Smad pathway and Altering the MMP2/TIMP2 ratio in rats. PLoS ONE, 6, e27710.CrossRefPubMedPubMedCentral
29.
go back to reference Huang, X. Z., Wen, D., Zhang, M., Xie, Q., Ma, L., Guan, Y., et al. (2014). Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-b/Smad3 pathway. Journal of Cellular Biochemistry, 115, 996–1005.CrossRefPubMed Huang, X. Z., Wen, D., Zhang, M., Xie, Q., Ma, L., Guan, Y., et al. (2014). Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-b/Smad3 pathway. Journal of Cellular Biochemistry, 115, 996–1005.CrossRefPubMed
30.
go back to reference Feng, X. H., & Derynck, R. (2005). Specificity and versatility in TGF-beta signaling through Smads. Annual Review of Cell and Developmental Biology, 21, 659–693.CrossRefPubMed Feng, X. H., & Derynck, R. (2005). Specificity and versatility in TGF-beta signaling through Smads. Annual Review of Cell and Developmental Biology, 21, 659–693.CrossRefPubMed
31.
go back to reference Samarakoon, R., Overstreet, J. M., & Higgins, P. J. (2013). TGF-b signaling in tissue fibrosis: Redox controls, target genes and therapeutic opportunities. Cellular Signalling, 25, 264–268.CrossRefPubMed Samarakoon, R., Overstreet, J. M., & Higgins, P. J. (2013). TGF-b signaling in tissue fibrosis: Redox controls, target genes and therapeutic opportunities. Cellular Signalling, 25, 264–268.CrossRefPubMed
32.
go back to reference Nemir, M., Metrich, M., Plaisance, I., Lepore, M., Cruchet, S., Berthonneche, C., et al. (2014). The Notch pathway controls fibrotic and regenerative repair in the adult heart. European Heart Journal, 35, 2174–2185.CrossRefPubMed Nemir, M., Metrich, M., Plaisance, I., Lepore, M., Cruchet, S., Berthonneche, C., et al. (2014). The Notch pathway controls fibrotic and regenerative repair in the adult heart. European Heart Journal, 35, 2174–2185.CrossRefPubMed
Metadata
Title
Notch3 Ameliorates Cardiac Fibrosis After Myocardial Infarction by Inhibiting the TGF-β1/Smad3 Pathway
Authors
Mingming Zhang
Xietian Pan
Qian Zou
Yuesheng Xia
Jiangwei Chen
Qimeng Hao
Haichang Wang
Dongdong Sun
Publication date
01-10-2016
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 4/2016
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-015-9341-z

Other articles of this Issue 4/2016

Cardiovascular Toxicology 4/2016 Go to the issue